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Introduction: RNA-seq utilizes high-throughput sequencing technology to 
quantify RNA expression profiles. After extracting all RNAs from cells, these 
RNAs are converted to complementary DNA (cDNA). cDNAs are then sheared 
into small fragments, typically 200-300 bp. Each of these short sequences, or 
“reads”, is then determined by next-generation sequencing technology. 
Computationally, by mapping these short sequences back to the reference 
genome or transcriptome, gene expression level can be inferred from read 
abundance at each position. Downstream analysis of RNA-seq includes 
quantifying differential gene expression, RNA editing, transcriptional profiling, 
novel gene identification, alternative splicing and SNP discovery.  
 
 A typical RNA-seq pipeline consists of a few major components: read alignment 
and assembly, quantification and downstream analyses. The final projects will 
focus on major parts in RNA-seq pipeline. The workflow is adapted from:  
 
https://main.g2.bx.psu.edu/u/jeremy/p/galaxy-rna-seq-analysis-exercise 
 
Late policy: Barring a valid medical reason (with supporting documentation), or 
sufficient advance notice of a schedule conflict (at least two weeks before the 
due date), late projects will not be accepted.  
 
Plagiarism: Following are documents on Yale’s policies on academic integrity, 
and how to avoid plagiarism:  
 
http://www.yale.edu/graduateschool/academics/forms/Avoiding plagiarism.pdf  
http://www.yale.edu/graduateschool/academics/forms/integrity_resources.pdf 
 
 
 
 ● For MBB/MCDB students:  
 
Your final project consists of two sections: a semi-computational section (30%) 
and a literature survey (70%).  
 
Please zip up all the files to be submitted, with filename according to 
format:  
netID_firstNameLastName_cbb752b14_finalproj_MBB.zip. The completed 
assignment should be emailed to cbb752@gersteinlab.org.  
 
  
 
  



 
Section 1: RNA-seq read mapping in GALAXY  
 
For the semi-computational section, to get a tiny sense of how RNA-seq 
informatics is done, you will use GALAXY to only do the initial quality control and 
then the mapping of reads. For this section, you only need to submit the answers 
to the parts in red. 
 
GALAXY is an open, web-based computational portal, that is specifically 
designed to be “accessible, reproducible and transparent” to ALL scientists 
(Giardine et. al., Genome Res., 2005). It was designed in a modular fashion 
called ‘workflows’, that are meant to be intuitive and less computationally 
involved - specially for use by experimental researchers in genomics analyses 
(Brankenburg et. al., Curr Protoc Mol Biol, 2010). They offer a range of file and 
data manipulation tools and a myriad of other tools for downstream analyses. No 
programming experience is required.  
 
1) Importing the data and understanding the data file  
 

a) Unzip the FOUR files in ‘cbb752a12_galaxy_rnaseq_files.zip’ found on 
class wiki.  

b) Upload them onto your workspace on GALAXY by the “Get Data” tool. 
These are four FASTQ sample files from the Illumina BodyMap 2.0 project 
adrenal and brain tissues. They contain data from paired-end reads of 50 
base pairs on chromosome 19 physical positions 3000000-3500000.  

 
  
Q1) Each read is denoted by 4 lines in a typical FASTQ file. In the first entry of 
adrenal_1.fastq file, what does this line show:  
‘5.544,444344555CC?CAEF@EEFFFFFFFFFFFFFFFFFEFFFEFFF’?  
 
2) Quality Control (QC) of the reads.  
 
The “NGS: QC and manipulation” is toolbox for FASTQ and FASTA files 
manipulation.  
(a) Use FASTQC under “NGS: QC and manipulation” to generate a summary of 
the reads required for QC. There are a number of ways to assess sequence 
quality using FASTQC (HINT). The easiest way is by per base sequence quality.  
 
3) Trim reads. 

Based on your QC in Q2, assess the number of positions to be trimmed for each 
set of reads. Do the necessary trimming by using FASTQ trimmer under “NGS: 
QC and manipulation”. It might be a good idea to name your modules for this 
step more intuitively. 

Q3) How many positions did you trim? Substantiate your assessment. 



4) Read mapping using TopHat 

The reads, if you recall, are cDNAs, so they do not contain introns. There is a 
potential issue of reads mapping across splice junctions, so a specialized 
mapper like TopHat is essential to this endeavor.  

a) Go to “NGS: RNA Analysis” to find TopHat. Map the reads to hg19 
“Canonical Female build”.  

b) Set the mean inner distance between pairs of reads to be 110 for Illumina 
BodyMap data.  

c) You might already have noticed by now that the dataset is made up of 
paired-end reads.  

d) Finally, use default TopHat settings. 

Q4) Copy and paste the top 10 hits for your ‘splice junctions’, ‘insertions’ and 
‘deletions’. 

5) Rename your workflow in the format: netID_cbb752a12_finalmywf. Publish 
your ‘workflow’ and obtain a URL. To publish the workflow, click on the ‘gear’ 
icon on the right hand side of the ‘Histories’ bar, then choose ‘Share or publish’. 

Q5) Copy and paste the URL of your workflow. 

 

 

Section 2: RNA-seq or ChIPseq? 

Literature Survey: Limit your writing less than 10 pages (12 pt font, Times 
New Roman font, double-spaced and 1” border), with citations in the end 
(citations and Section 1 do not count towards the 10 pages). 

Suggested format: 

1) Background (~ 1-2 pages)  
2) Limitation discussion (~ 1-3 pages)  
3) Results: Case Study (~ 3-5 pages)  
4) Discussion (~1-2 pages)   
5) References NOTE: Some suggested reference managers: Mendeley, 

Zotero or EndNote. For references, please follow the Nature citation 
format:  
http://www.nature.com/nature/authors/gta/ - a5.4. 

ChIPseq and RNA-seq are both powerful genome-wide techniques in the study 
of regulatory elements. But they do possess certain limitations. (i) Explore the 
experimental limitations (via your own observations or from literature survey) of 
one of these techniques and relate their impact to downstream informatics 



analyses. 

(ii) Also, choose a specific case study that mentioned at least one of these 
experimental limitations and their potential impacts downstream and discuss, if 
they did, how they tried to resolve or circumvent the constraints. 

You can also provide your own thoughts and suggestions. 

References: 

1. Pepke et. al. Computation for ChIP-seq and RNA-seq studies, Nature Methods 
(2009) 2. Wang et. al. RNA-Seq: a revolutionary tool for transcriptomics, Nature 
Reviews (2009) 

 

  



● For CBB/CPSC students: The final project pertains to RNA-seq analysis and 
consists of 3 sections. You are required to choose only ONE of the sections as 
your project. Programming is mandatory in the analysis and the use of 
portals such as GALAXY will not be accepted. 

For your submission, please provide the following:  

1) Source code (source code should directly read input files from common 
directory in bulldogl (/home/cpsc752/common/), and produce output files 
in your current directory).  

2) Output file(s)  
3) A short README file on description of your files and how to execute your 

program. Unexplained files will be regarded as missing/unused files. 
4) A short write-up on the algorithm implemented. Include also your answers 

to the questions in red and references, maximum 3 pages (excluding 
references). 

Please zip up all your files, with filename according to format: 
netID_firstNameLastName_cbb752a12_finalproj_sectionNum.zip. The 
completed assignment should be emailed to cbb752@gersteinlab.org. For 
each of your file, please prefix: netID_firstNameLastName_sectionNum_ 

NOTE: Some suggested reference managers: Mendeley, Zotero or EndNote. For 
references, please follow the Nature citation format: 
http://www.nature.com/nature/authors/gta/#a5.4. 

Section 1: Expression quantification 

[ Grading policy: 80% on programming; 20% on writing. For programming 
part, grading will be based on:  

1) source code and output (80%)  
2) programming style (eg. comments) and clearly document how your 

script works (README.txt) in order for us to successfully run your 
script (20%). Programs that do not compile will get an immediate 
0. To receive partial credit, please make sure your program is well-
commented ] 

File directory on Bulldogl : /home/cpsc752/common/Section1/  

Input data 1: We provide two RNA-seq datasets that contain the aligned reads 
of chromosome 19 from the heart of an embryonic mouse (GSM850907_heart-
E14.5-1.chr19.sam) and adult mouse (GSM723770_RenLab-RNA-Seq-heart-
ZY6.chr19.sam), from GSE29278 in the Gene Expression Omnibus (GEO) (Shen 
et al. A map of the cis-regulatory sequences in the mouse genome. Nature 
2012). These files are in SAM format.  



Input data 2: You are also given a list of genomic elements with their gene 
names on chromosome 19 (mm9_genes_chr19.gtf) in GTF format.  

Sample Test data: test.sample. 

 
One of the main challenges in quantification is transcript abundance estimation. 
There are a number of publicly available software that perform such estimates, 
for instance Cufflinks and ERANGE. 

To simplify this problem, we assume that each read maps to a single-isoform 
gene and that reads in chromosome 19 (this file) represents the entire set of 
reads. (a) Extract the exons from input data 2. It is optional to include this step in 
the script below, i.e. not required. 

(b) Fragments per kilobase of million fragments mapped, or FPKM, is a metric 
devised to quantitate relative abundance and also account for bias due to longer 
exons. Write a script to calculate the FPKM for each GENE. 

 

Q1) The start and end positions in the GTF format are 1-based. How is this 
different from a 0- based system? Q2) What do values of 0 and 16 in the second 
column of the SAM file mean? Q3) Are the assumptions made here justified in an 
actual RNA-seq pipeline? What are other considerations and confounders? 
Discuss. 

References: 

1. Roberts et. al., Improving RNA-seq expression estimates by correcting for 
fragment bias, Genome Biology (2011). 2. Trapnell et. al., Transcript assembly 
and quantification by RNA-seq reveals unannotated transcripts and isoform 
switching during cell differentiation. Nature biotechnology (2010). 

  



Section 2: Detect and Analyze Differentially Expressed Genes 

[ Grading policy: 80% on programming; 20% on writing. For programming 
part, grading will be based on: 1) source code and output (80%) 2) 
programming style (eg. comments) and clearly document how your script 
works (README.txt) in order for us to successfully run your script (20%). If 
any external pre-existing codes or libraries is used, please make sure they 
are properly placed or installed, that we could easily rerun your code. 
Programs that do not compile will get an immediate 0. To receive partial 
credits, please make sure your program is well commented. In writing your 
program, you may use libraries and pre-existing code for certain 
“supporting computations”, such as matrix multiplication. You may not use 
libraries or pre-existing code for any computation that operates directly on 
the network, including storage and retrieval of network nodes and edges, 
calculating path lengths, and computation of betweenness centrality. If you 
are unsure of whether a particular library is permissible, please contact the 
TFs first.] 

File directory on Bulldogl : /home/cpsc752/common/Section2/ Input data 1: 
Gene expression profiles (chromosome 19) derived from RNA-seq data of two 
samples, an embryonic mouse heart (Embryo.fpkm) and adult mouse heart 
(Adult.fpkm). (Gene expression values are estimated by relative reads 
abundance mapped to the particular gene. Values are shown in FPKM - 
Fragments per kilobase of million fragments mapped. FPKM is a well-recognized 
metric to quantify expression values, taking into account exon length bias.) Input 
data 2: A collected set of mouse protein-protein interaction data (Mouse.PPI) 
from five PPI databases: DIP, BIND, MIPS, MINT and IntAct. Each line 
represents an interacting gene pair. Sample test data: test.sample 

As we learned, RNA-seq reads can be mapped and assembled to quantify gene 
expression values. One further application of RNA-seq is to detect differentially 
expressed genes under different conditions or in different tissues. Genes that are 
significantly highly or lowly expressed in one sample compared to other samples 
are termed as differentially expressed genes. Why do some genes tend to have 
different expression values under different conditions or different tissues ? One 
reason is that they might play critical biological roles. To get a glimpse of their 
functional involvement in particular conditions or samples, we will investigate if 
they are enriched in certain functional pathways. This pathway information 
provides us the clue to the functional differences. Here, we provide a simplified 
procedure aiming to analyze differentially expressed genes in embryo and adult 
hearts. 

1. Identify differentially expressed genes and their functions. 

The simplest way to detect differentially expressed genes is to directly compare 
expression values. For each gene in Input 1, obtain its expression ratio in 
embryonic and adult mouse hearts. Set your own ratio cut-off to define 



differentially expressed genes. 

Q1) Provide the gene expression ratio file indicating which sample is the 
denominator. What is your cut-off? Justify your choice of this cut-off. 

Q2) Based on your cut-off, how many genes are highly expressed in embryonic 
heart? How many are highly expressed in the adult heart? 

Upload the gene lists that are highly expressed in embryonic and adult hearts 
separately to DAVID (a functional annotation tool) to perform function and 
pathway analysis. (HINT: go to “Functional Annotation”, then upload or paste the 
file with “select identifier - official_gene_symbol”) 

Q3) Give a snapshot of the DAVID outputs. Present and comment on the results. 

2. Network Analysis of differentially expressed genes. 

In biological networks, hub proteins tend to be more conserved during evolution 
and more likely to be essential. Here we try to quantify network positions of 
differentially expressed genes derived from the previous step. 

For EACH GENE in the mouse PPI (not just differentially expressed ones), write 
your own script to calculate their degree centrality and betweenness centrality. 
Degree centrality is defined as the number of edges that a node has. 
Betweenness centrality is defined as: 

 
  
where is the total number of shortest paths from node s to node t and is 
the number of these paths through node v. Your program should produce three-
column list where the first column is the gene, the second column is the degree 
centrality, and the third column is the betweenness centrality. 

Q4) List the centralities of the differentially expressed genes, if they exist. 

Q5) Use Cytoscape to visualize the network, and highlight the differentially 
expressed genes. 

 

 

 

 



[Appendix, additional information on the quantitation of differential gene 
expression: The simple cut-off method does not take into account the underlying 
possible gene expression levels. In other words, gene expression value under 
certain conditions possess certain variations. To obtain accurate significant P 
values, RNA-seq experiments are usually done with replicates. The sound 
statistical framework is described below. 

To test whether an observed difference in a gene's expression is significant, first 
get the expression ratio in two conditions: 

 
The log of the ratio (T) of expression in two conditions can actually be used as a 
test statistic, because the quantity: 

 
 
is approximately normally distributed and can be calculated as 

 
 
With replicated, expression variations under same conditions are easy to get and 
be applied to this equation. The corresponding P value could be obtained from 
normal distribution. 

In our case without replicates, cuffdiff (cufflinks software) can tackle this problem 
based on certain assumptions (for details, go to 
http://cufflinks.cbcb.umd.edu/howitworks.html#hdif ). ] 

Reference: 

1. Xiao Li, Jiabao Xu, Haoyang Cai, Yizheng Zhang. A mouse protein 
interactome through combined literature mining with multiple sources of 
interaction evidence. (Under review) 2. Trapnell et. al., Transcript assembly and 
quantification by RNA-seq reveals unannotated transcripts and isoform switching 
during cell differentiation. Nature biotechnology (2010). 

  



Section 3: SNV calling and functional interpretation 

[ Grading policy: 60% on programming; 40% on writing. For programming 
part, grading will be based on: 1) source code and output (80%) 2) 
programming style (eg. comments) and clearly document how your script 
works (README.txt) in order for us to successfully run your script (20%). 
For writing part, incomplete answers will get partial credits. Programs that 
do not compile will get an immediate 0. To receive partial credits, please 
make sure your program is well-commented. ] 

File directory in BulldogL: /home/cpsc752/common/Section3/ Input data 1: 
To simplify this process, Adult.Heart.pileup is provided (pileup format file 
facilitating SNP/indel calling). For detailed information, see Pileup format. To 
obtain this format from RNA-seq aligned data, SAMtools (pileup function) is used 
to convert Bam file to Pileup format. This file contains reads in mouse chr19 : 
5,000,000 - 8,000,000. Input data 2: You are also given a list of genomic 
elements with their gene names on chromosome 19 (mm9_genes_chr19.gtf) in 
GTF format. 

Ten column pileup format 

The ten-column (consensus) pileup incorporates additional consensus 
information:  

 
where: 

Column Definition 
 
--------------------------------------------------------------- 

1. Chromosome  
2. Position (1-based)  
3. Reference base at that position  
4. Consensus bases  
5. Consensus quality (Phred scaled consensus quality)  
6. SNP quality (Phred scaled probability of difference from reference bases)  
7. Maximum mapping quality  
8. Coverage (# reads aligning over that position)  



9. Bases within r 
10. Quality values (ASCII: phred+33 scale) 
 
1. SNV (single nucleotide variant) calling. 

Similar to direct genomic DNA sequencing, RNA-seq technology could also be 
used to call variants. Instead of calling genome-wide variants, RNA-seq variant 
calling identifies expressed variants. Compared to variants happened in silent 
genes, expressed variants are much more likely to possess functional impact on 
proteins, thus affecting phenotypes. There are a number of software that perform 
variant calling, such as VarScan, Bcftool, GATK and SOAPsnp. These methods 
apply sophisticated statistical models to infer variants. 

Here, we will perform a simple variant filtering process to find potential SNVs 
from the raw pileup file. Please write your own code following the filtering 
criteria listed below and report identified SNVs in the following format: 
Chromosome, Position, Reference base at that position, Number of A reads, 
Number of C reads, Number of G reads, Number of T reads, Quality adjusted 
read coverage, also genes (if any) the SNV resides in). 

Filtering:  

1) minimum SNP quality is 20.  
2) minimum Maximum mapping quality is 25.  
3) Filter out read mapping bases with quality (phred quality score) lower than 

20. 
4) After filtering, the read depth should between 3 and 100.  
5) After filtering, at least one mapped reads contain mutation. 

Q1) What is Phred Quality Score? How is it defined? Q2) The simple filtering 
process will certainly reduce false positive rate. What are the potential drawbacks 
of this approach? Q3) Provide the SNV calling results. Among these identified 
SNVs, do you observe variants with partially mutated bases (bases in aligned 
reads)? If yes, give some explanations. For positions with 100% mutated bases, 
what are the situations that can result in such cases? 

2. Variant Functional Interpretation. 

Variants occurring in different genomic locations may have different functional 
impacts. For example, non-synonymous variants in translated genes are more 
likely to have a greater impact than synonymous variants. Many methods have 
been developed to assess SNV effect, such as VEP (Variant Effect Predictor) 
and VAT (Variant Annotation Tool). Here, we will use VEP to annotate our 
identified SNVs. Go to 
http://may2012.archive.ensembl.org/Mus_musculus/Info/Index, click “Manage 
Data”, then “Variant Effect Predictor”. (Convert your SNV file to proper format, 
use “+” as strand information). 



Q4) Paste your result from VEP. What do synonymous and nonsynonymous 
SNVs mean? Even in nonsynonymous SNVs, you could further quantify their 
potential damage effect. Please provide some other ideas that could be used to 
further interpret or validate SNV effects. Q5) RNA-seq, in theory, should capture 
mRNA sequences. However, some SNVs occur in intronic regions which are not 
transcribed. What could possibly explain this phenomenon that we are observing 
these ‘intronic’ SNVs in RNA-seq? 

Go to the UCSC Genome Browser, and navigate to those SNV positions in the 
mm9 mouse genome assembly. Look at the vertebrate multiple alignment for 
these positions. If you are unfamiliar with the UCSC genome browser, please 
check out this link: http://www.openhelix.com/ucsc. 

Q6) Show a print-screen of the multiple alignment of one of the SNVs found in 
UCSC. How can one tell if these SNVs are evolutionarily important? Based on 
this, can you infer if ANY positions are possibly more important than others? 

References: 

1. Heng Li, A statistical framework for SNP calling, mutation discovery, 
association mapping and population genetical parameter estimation from 
sequencing data, Bioinformatics (2011) 2. Li H, Handsaker B, et al., 1000 
Genome Project Data Processing Subgroup. The Sequence Alignment/Map 
format and SAMtools. Bioinformatics (2009) 

 

 

 


