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General Motivation:
ldentifying damaging non-coding mutations

« Control elements for coding genes

* Most GWAS hits & many rare disease-causing mutations
occur in regulatory regions

Encode integrative paper, Nature, 2012; Maurano et al, Science, 2012; Ward et al, Nature Biotech, 2012

* Most personal genome variants are non-coding

» Unlike for coding variants, no standard approaches exist to prioritize non-
coding variants

« Similar thought process to GWAS group, but....



Most Cancer Mutations are Non-coding

« ~99% of somatic SNVs occur in non-coding regions, including
TFBSs, ncRNAs and pseudogenes

* Nevertheless, cancer sequencing has been very exome focused

» Publicity for TERT promotor mutation — exception proves the rule!

« Somatic mutations very different from GWAS

— GWAS is "common variants" — e.g. expected to follow LD

— Somatic variations are not expected to follow patterns of natural variation (e.g. no
LD), so can be contrasted with them

Highly Recurrent TERT Promoter
Mutations in Human Melanoma

Science, 2013

TERT Promoter Mutations in Familial
and Sporadic Melanoma

Science, 2013

TERT promoter mutations occur frequently in
gliomas and a subset of tumors derived from
cells with low rates of self-renewal

PNAS, 2013 3
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Outline

Our Approach : Use 1000G & ENCODE to characterize
natural patterns of inherited variants in functional elements.
|dentify drivers as somatic variants breaking these patterns.

* Finding ultra-sensitive non-coding regions
& disruptive mutations (eg motif breakers)
* Prioritizing based on network connectivity

 Building a workflow & software tool for
cancer genomes



Gene categories with known
phenotypic effects

Decreasing tolerance to mutation
>

LoF-tol Neutral GWAS HGMD Essential
(common (rare
disease-assoc. disease-causing

variants) variants)
Homozygous inactivation in * Homozygous inactivation leads
at least one healthy 1000 to clinical features of death
Genomes individual before puberty or infertility
Weak selection constraints * Very strong selection

constraints
From Liao et al, PNAS, 2008

From MacArthur et al, Science, 2012



Fraction of rare SNPs (nonsyn)

Metric to estimate strength of negative
selection amongst humans

« SNP density,
heterozygosity,
== = [ enrichment of rare
SNPs
* Negative selection
restricts the allele
frequency of deleterious
mutations
* Results for protein-
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LOF-tol (Loss-of-function tolerant): least negative selection

Cancer: most negative selection
Khurana et al., Science, In press
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Negative selection in non-coding

elements
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« Broad categories
of regulatory
regions under

negative selection

« Consistent with
previous studies

ENCODE, Nature, 2012
Ward & Kellis, Science, '12



~700 specific sub-categories of broad non-coding
categories; Possible to study now using 1000G Phase 1

Broad Categories
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Genomic Avg u
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Fraction of rare SNPs

O ~ 700 specific non-coding categories
U ncRNA: snRNA, snoRNA, miRNA, lincRNA ***
U Motifs & binding sites of different TF families

U TFBSs divide into proximal vs distal and cell-line—specific vs —non-specific

U Large sample size:1,092 humans compared to pilot ~180
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SNPs which break TF motifs are under
stronger selection

Specific Categories
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Fraction of rare SNPs

Negative selection and tissue-specificity of

coding and non-coding regions
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O Ubiquitously expressed genes and bound regions show
stronger selection

U Differences in constraints amongst tissues

U Constraints in coding genes and regulatory genes are

correlated across tissues .



Fraction of rare indels

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

Functional annotation of indels and larger
structural variants

Indels show similar
patterns as SNPs
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Can we identify which non-coding elements
are under very strong “coding-like”

selection ?

Broad Categories
Coding :

Genomic Avg ..

DHS W H

TFSS
Croma ]

Pseudogene —

Non-coding /7
Sensitive :

N

Non-coding // ,
Ultra-Sensitive : /.
:

\ \ \ \
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Fraction of rare SNPs

Start 677 high-resolution non-
coding categories; Rank & find
those under strongest selection
Pick useful subsets of these —e.g. a
similar fraction to exome & Top-5 --
to define sensitive & ultra-sens.

Binding peaks of some general TFs
(eg FAMA48A)

Core motifs of some TF families (eg
JUN, GATA)

Proximal but not distal sites of ZNF274

# ~0.4% genomic coverage

~0.02% genomic coverage
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Enrichment of disease SNVs

log (odds ratio)

VL
VL

~400-fold

~40-fold

Enrichment of know disease-
causing mutations from
Human Gene Mutation

database validates functional

indispensability of sensitive
and ultra-sensitive regions

|
Ultra- Sensitive Annotated

sensitive
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Outline

Our Approach : Use 1000G & ENCODE to characterize
natural patterns of inherited variants in functional elements.
|dentify drivers as somatic variants breaking these patterns.

* Finding ultra-sensitive non-coding regions
& disruptive mutations (eg motif breakers)
* Prioritizing based on network connectivity

 Building a workflow & software tool for
cancer genomes



PPI degree (log scale)

Num of interfaces

Gene essentiality
and protein-protein
interaction network

Essential genes

S § Higher
2 - Centrality
. More
4 — interaction
2 - interfaces
LoF-  Essential
tolerant

Khurana et al., PLoS Comp. Bio., 2013
Wang et al, Nature Biotech, 2012

More Connectivity, More
Constraint : A theme
borne out in many studies

High likelihood of positive
g p O

. Not under positive selection
selection

Lower likelihood of positive No data about positive

selection O selection




Similar Results for ENCODE TF target in-degree
Human Regulatory |
Network to PPI Neg. corr. with

(SCC=-.2, P<0.5)

dN/dS
(from chimp alignments)

« Essential genes tend
to be central

E TF target in-degree
: &
S35 - TF out-degree
cf: N T Neg. corr. with
- - ns SNP density, pN/pS, avg.

LoF-tolerant Essential

DAF

Khurana et al., PLoS Comp. Bio., 2013



Genes interact using many different modes

Protein-protein
(PPI)

Genetic

Regulatory

Phosphorylation

Signaling

Metabolic
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E.g. SIX5

4 Interacts with one protein
1 Regulates 360 genes
1 HGMD, Branchio-oto-renal

syndrome
Hoskins et al, AJHG, 2007
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Multinet — the ultimate hairball!

Genes participate in many
networks and no single
network captures the
global picture of gene
interactions

Combine regulatory
interactions with other
networks : physical
protein-protein, signaling,
metabolic,
phosphorylation and
genetic to create a unified

network (Multinet) Nodes: ~15,000 genes

Edges: ~110,000 interactions

Edges shown in gray



Gene properties in

Multinet
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Outline

Our Approach : Use 1000G & ENCODE to characterize natural
patterns of inherited variants in functional elements. Identify
drivers as somatic variants breaking these patterns.

* Finding ultra-sensitive non-coding regions &
disruptive mutations (eg motif breakers)

* Prioritizing based on network connectivity

* Building a workflow & software tool for cancer
genomes



We have learned for non-coding
regions.....

Ultra-sensitive and sensitive regions are under
strong selection

Variants which break TF motifs are selected
against

Variants in promoters or enhancers of highly
connected genes are selected against

Can we combine all these features to prioritize
damaging non-coding variants?



Missense / Synonymous

Germline vs somatic variants

e .
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* Somatic mutations do not follow patterns of natural polymorphisms

* Those deviating the most from these patterns are most likely to be cancer drivers
providing selective advantage to the tumor cells (confirmed for protein-coding
genes)

* Look for mutations in elements under strong negative selection
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|dentification of non-coding candidate drivers
amongst somatic variants: Scheme
-

Cancer genome
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|dentification of non-coding candidate drivers
amongst somatic variants: Examples

ldentified ~100 non-coding driver mutations
* 64 prostate cancer samples

e 21 breast cancer samples

* 3 medulloblastoma samples

Data sets:

Berger et al, Nature, 2011;
Baca et al, Cell, 2013;
Rausch et al, Cell, 2012;
Nik-Zainal et al, Cell, 2012
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Validation of a candidate
Fiostate

Found in 1000 Genomes ?

Sanger sequencing of
FAM48A binding site (~570 bp)
inWDR74 promoter
from 19 additional samples

— chr11: 62,609,084

— chr11:62,609,138

e NN COEE GO0

Sanger sequencing of
FAM48A binding site (~570 bp)
in WDR74 promoter

from 19 additional samples D
— chr11: 62,609,084 =
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|dentification of non-coding candidate drivers
amongst somatic variants: Examples

Validation of a candidate driver identified in prostate cancer
sample in WDR74 gene promoter

1 Sanger sequencing in 19 additional samples confirms the
recurrence

d WDR74 shows increased expression in tumor samples
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FunSeq.GersteinLab.org :
webserver & code download

Downloads

Documentation

FAQ

FunSeq: Prioritization of Sequence
Variants

WELCOME TO FUNSEQ!

This site contains a downloadable tool (FunSeq) that can be
used to automatically score and annotate disease-causing
potentials of SNVs. particularly the non-coding ones. It can
be used on cancer and personal genomes.

Additionally, the tool can also detect recurrent annotation
elements in non-coding regions when running with multiple
genomes.
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Can also use FunSeq to prioritize non-
coding variants in personal genomes

Venter
Personal Genome
Sensitive

640

Ultra-sensitive

673

84/ 21

451 1401

40

Motif Breaking/\, Network Hub

Out of a total of ~3

million non-coding

variants, 25 highly
likely to be
deleterious
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Outline

Our Approach : Use 1000G & ENCODE to characterize
natural patterns of inherited variants in functional elements.
|dentify drivers as somatic variants breaking these patterns.

* Finding ultra-sensitive non-coding regions
& disruptive mutations (eg motif breakers)
* Prioritizing based on network connectivity

 Building a workflow & software tool for
cancer genomes
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