Extracellular RNA

Cristina Sisu

Journal Club 20th August 2013

Literature

Biochemical Society Transactions (2012) Volume 40, part 4

Extracellular small RNAs: what, where, why?

Anna M. Hoy and Amy H. Buck ¹ Centre for Immunity, Infection and Evolution, Ashworth Laboratories, King's Buildings, University of Ed	7248–7259 doi:10.1093/n Expor protei Kai Wang	Nucleic Acids Research, 2010 har/gkq601 t of microRN n by mamma , Shile Zhang, Jessic	9, Vol. 38, No. 20 Alas and microf Alian cells a Weber, David Baxter a	Published online 7 July 2010 RNA-protective nd David J. Galas* ^{1†}
OPEN access Freely available online	Institute for Systems Biology, 1441 N. 34th Street, Seattle, WA 98103, USA			USA
The Complex Exogenous RNA Spect An Interface with Human Gut Biota	tra in H a?	uman Plasma	a:	
Kai Wang ¹ *, Hong Li ¹ , Yue Yuan ¹ , Alton Etheridge ^{1,3} , Yong Zhou David Galas ^{1,2,3} *	u ¹ , David Hua	ang ^{1,3} , Paul Wilmes ² *,		
1 Institute for Systems Biology, Seattle, Washington, United States of America, 2 Luxembourg Center for City, Luxembourg, 3 Pacific Northwest Diabetes Research, Seattle, Washington, United States of America	Systems Biomedicing	frontiers in GENETICS		REVIEW ARTICLE published: 18 June 201; doi: 10.3389/fgene.2013.0011
Published online 24 May 2011 Nucleic Acids Researc	:h, 2011, Vol. 39 do	The complexi circulation Alton Etheridge ¹ , Claris	ty, function, and	applications of RNA in Pereira ³ , David Galas ^{1,4} * and Kai Wang ² *
Characterization of extracellular circ microRNA	 Pacific Northwest Diabetes Research Institute, Seattle, WA, USA Institute for Systems Biology, Seattle, WA, USA Graduation on Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Brazil Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg 			
Andrey Turchinovich ^{1,2,*} , Ludmila Weiz ³ , Anne Langheinz ² an	id Barbara B	urwinkel ^{1,2}		
¹ Molecular Epidemiology Group, German Cancer Research Center, Heidelberg Biology of Breast Cancer, University Women's Clinic, Heidelberg, Germany an Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg	g, Germany, ² Di nd ³ Clinical Coc rg, Germany	ivision of Molecular operation Unit		2

Timeline

Extracellular RNA composition

Importance

miRNA are usually associated with diseases

(1921 mature miRNA annotated in miRBase)

Non-invasive biomarkers.

Diagnostic potential

Table 1 | Circulating miRNAs with biomarker potential to diagnose acute myocardial infarction (AMI).

Candidate miRNA(s)	Organism	Source	Sample size	Correlation	Reference
1, 133a, 133b, 499-5p	Human; mouse	Plasma	33 patients, 17 healthy;	Elevated levels distinguished cardiac damage patients from healthy	D'Alessandra et al. (2010)
			4–5 AMI and control mice	subjects. Positive correlation with Tnl ^a	
1	Human; rat	Serum	31 patients, 20 healthy;	High expression was associated with CK-MB ^b ; positive correlation	Cheng et al. (2010)
			8 AMI rats, 8 controls	with myocardial infarct size	
1	Human	Plasma	93 patients, 66 healthy	Up-regulation correlated with QRS ^c duration	Ai et al. (2010)
208a	Human	Plasma	33 patients, 30 healthy	Present only in patients and showed to be more specific and sensitive	Wang et al. (2010a)
				than Tnl ^a	
208b, 499	Human	Plasma	32 patients, 36 healthy	High levels correlated with TnT ^d and CPK ^e	Corsten et al. (2010)
499	Human	Plasma	9 patients, 10 healthy	Elevated expression correlated positively with CK-MB ^b activity	Adachietal. (2010)
1, 133a	Human	Serum	29 patients, 42 non-AMI	Increased levels showed correlation with TnT ^d	Kuwabara etal. (2011)
133, 328	Human	Plasma,	51 patients, 28 healthy	High levels correlated with TnT ^d	Wang et al. (2011)
		whole blood			
30c, 145, 1291, 663b Human W	Whole blood	20 patients, 20 non-AMI	Elevated levels of 30c and 145 correlated with Tn T ^d ; 1291 and 663b	Meder et al. (2011)	
				distinguished patients from healthy subjects	
208b, 499	Human	Plasma	510 patients, 87 healthy	Increased levels correlated with peak concentrations of CPK ^e and TnT ^d	Devaux et al. (2012)

Extracellular environment

- miRNA was found in various body fluids: serum, plasma, saliva, tears, urine, amniotic fluid, breast milk, colostrum, bronchial lavage, cerebrospinal fluid, peritoneal fluid, pleural fluid & seminal fluid
- Synthetic RNA is degraded in < 5s in human plasma, but ex-mRNA in serum and plasma is stable for hours
- pre-treatment of serum or plasma with detergents makes mRNAs susceptible to degradation by RNases

Origins

7248–7259 Nucleic Acids Research, 2010, Vol. 38, No. 20 doi:10.1093/nar/gkq601

Published online 7 July 2010

Export of microRNAs and microRNA-protective protein by mammalian cells

Kai Wang, Shile Zhang, Jessica Weber, David Baxter and David J. Galas*,[†]

Institute for Systems Biology, 1441 N. 34th Street, Seattle, WA 98103, USA

Methods

miRNA spectra

No evidence of significant cell lysis observed for up to 48h => ex-miRNAs are most likely exported from intact cells by a specific cellular mechanisms

Induction of miRNA export

 When under stress cells alter their internal states significantly leading to cell cycle arrest, and in some cases cell death.

Hypothesis: cells could respond to this change of state, in part, by exporting miRNAs

• Stress: serum deprivation

Stress analysis results

- Differences before and after serum deprivation
- Differences between cell lines

Is exRNA stable?

exRNA export kinetics

 Is the exportation of miRNA immediately after serum deprivation from a pre-synthesized miRNA pool? ...

...YES

exRNA content analysis: 1 - separation

exRNA content analysis: 2 – results (A549)

Observations:

- 1. Various patterns for various miRNAs
- 2. miRNA content is cell specific for both extra and intracellular RNA
- 3. There are a couple of miRNA that are uniformly distributed regardless the fraction and cell line of provenience

RNA binding proteins released

Table 1. List of all of the known RNA-binding proteins which we observed with two or more peptide fragments in the medium (2h after SD)

Gene symbol	Number of peptides observed	Gene name		
HNRNPA2B1	2	Heterogeneous nuclear ribonucleoprotein a2/b1		
HNRPAB	3	Heterogeneous nuclear ribonucleoprotein a/b		
ILF2	2	Interleukin enhancer binding factor 2, 45 kda		
NCL	7	Nucleolin		
NPM1	4	Nucleophosmin (nucleolar phosphoprotein b23, numatrin)		
RPL10A	2	Ribosomal protein 110a		
RPL5	2	Ribosomal protein 15		
RPLP1	6	Ribosomal protein, large, p1		
RPS12	2	Ribosomal protein s12		
RPS19	2	Ribosomal protein s19		
SNRPG	2	Small nuclear ribonucleoprotein polypeptide g		
TROVE2	2	Trove domain family, member 2		

NPM1

- NPM1 (nucleophosmin 1) is a nucleolar RNAbinding protein,
- Nucleophosmin 1 is implicated in the nuclear export of the ribosome
- Large quantities of NPM1 were observed outside of the cell
- NPM1 bound miRNA is protected from RNase degradation

Protein Protection

Conclusions

- The exRNA spectrum varies upon cell provenience and/or stress
- ex-miRNA are exported after stress
- exRNA export is energy dependent
- exRNA is either in vesicle or protein bound (NPM1)
- The export of exRNA is a mean of cell-cell communication

Remarks

- Are RNA Binding Proteins promiscuous or specific for exRNA?
- Do have exRNA have specific binding motifs?
- exRNA purification & identification is limited experimentally => How does this affect the data analysis ?

Data availability

OPEN O ACCESS Freely available online

PLOS ONE

The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?

Kai Wang¹*, Hong Li¹, Yue Yuan¹, Alton Etheridge^{1,3}, Yong Zhou¹, David Huang^{1,3}, Paul Wilmes²*, David Galas^{1,2,3}*

1 Institute for Systems Biology, Seattle, Washington, United States of America, 2 Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg, 3 Pacific Northwest Diabetes Research, Seattle, Washington, United States of America

Sequence mapping

Data quality

Remarks

 Experimental bottleneck: separation and identification of exogenous and endogenous RNA

Thank You!

