Computational Efforts to Decipher the Splicing Code

Jing Zhang

zhang28@usc.edu

University of Southern California

Department of Electrical Engineering

Computational Biology Program, Department of Biological Science

Outline

- Introduction alternative splicing
- Part I mRNA product quantification
 - Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)
- Part II alternative splicing regulation
 - Part A Context based regulation: motifs discovery via a varying coefficient regression
 - Part B Structure based regulation: stability of mRNA secondary structures and splicing site selection
- Conclusion and future work

Transcriptome Diversity

• Alternative Splicing produces multiple transcript isoforms from a single gene

- Spinal muscular atrophy: ~1 per 10,000 live births, the leading genetic cause of infant mortality, the second most common lethal autosomal recessive disorder.
- Cystic fibrosis: 1 per 3,200-3,500 in whites (1 per 31,000 in Asian Americans), the most common lethal autosomal recessive disorder.
- Retinitis pigmentosa: ~1 in 4000.
- Prader-Willi syndrome: most are sporadic. 1 per 16,062 or 1 per 25,000.

Outline

- Introduction alternative splicing
- Part I mRNA product quantification
 - Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)
- Part II alternative splicing regulation
 - Part A Context based regulation: motifs discovery via a varying coefficient regression
 - Part B Structure based regulation: stability of mRNA secondary structures and splicing site selection
- Conclusion and future work

Transcriptome Quantification

• Microarrays for mRNA expression estimation

- <u>**Disadvantages</u>**: high noise-to-signal ratio, sensitive to SNPs, rely on gene annotations/genome sequences.</u>
- <u>Advantages</u>: can prioritize genes of interest.

RNA-seq Quantification

- <u>Challenge</u>: Remove the potential bias when estimating expression levels.
- <u>Focus</u>: Position-level read count (i.e. the number of sequence reads starting from each position of a gene/exon)
- <u>Common Assumptions</u>: Position-level read count follows a Poisson distribution with rate θ. Or equal probability of a read starting from a specific position.
 - The gene/exon length-normalized read count: maximum likelihood estimator (MLE) of θ .
 - RPKM (Reads per kilobase of exon model per million mapped reads) = lengthnormalized read count / total mapped reads (in million).

7/24/2013

• Doesn't consider the bias.

9

Generalized Poisson

Probability mass function (Consul 1989):

 $\Pr(X = x) = \begin{cases} \theta(\theta + x\lambda)^{x-1} e^{-\theta - x\lambda} / x!, & x = 0, 1, 2, ..., \\ 0 & \text{for } x > q \text{ if } \lambda < 0, \end{cases}$ where $\theta > 0$, $\max(-1, -\theta/q) \le \lambda \le 1$, and $q (\ge 4)$ is the largest positive integer for which $\theta + q\lambda > 0$ when $\lambda < 0$.

- $\boldsymbol{\theta}$ is the average rate for the natural Poisson process (expression level)
- $\boldsymbol{\lambda}$ is the average rate of the effort that the subjects are making to deviate from the process, a measure of the departure from Poissonicity (bias).

$\lambda > 0 \rightarrow \sigma^2 > \mu$		Gene level		Exon level	
$\lambda < 0 \rightarrow \sigma^2 < \mu$		GP	Poisson	GP	Poisson
$\lambda = 0 \rightarrow \sigma^2 = \mu$	MAQC data	85.72%	1.57%	89.62%	19.71%
	Human data	77.28%	3.22%	88.78%	28.35%
	Mouse data	88.57%	7.88%	91.73%	39.67%
	Yeast data	93.24%	20.49%	93.21%	23.73%
	MAQC-2_sep	92.93%	10.18%	92.90%	41.51%

Examples of Poisson and Generalized Poisson fitting

Srivastava, S. and L. Chen*, A two-parameter generalized Poisson model to improve the analysis of RNA-seq data.?Nucleic Acids Research, 2010. 38(17): p. e170.

11

Bias removal through Generalized Poisson model

• <u>The heterogeneity of read counts:</u>

- expression varies among genes
- regions shared by multiple isoforms are expected to contain more reads than regions specific to a single isoform
- inherent experimental bias of the RNA-Seq protocol
- <u>Goal</u>: remove the inherent bias while estimating the transcript isoform expression.
- Single-isoform genes
 - Data-adaptive bias correction by GP in WemIQ (WemIQ)
 - Correct the sequence-specific bias from random hexmer priming (seq)
 - Correct the bias from relative positions (pos)

WemIQ: A EM based mRNA quantification Method

2) virtual exon assignment and overdispersion parameter estimation

virtual exons $v_1 v_2$ v_3 v_4 v_5 overdispersion $\lambda_1 \lambda_2$ λ_3 λ_4 λ_5 $P(X_s = x) = \begin{cases} \theta_s (\theta_s + x\lambda_s)^{x-1} e^{-\theta_s - x\lambda_s} / x!, & x = 0, 1, 2, \cdots \\ 0 & x > q \text{ if } \lambda_s < 0 \end{cases}$

3) gene and isoform expression quantification by weighted EM

weighted
$$\log(P\{\mathbf{R}, \boldsymbol{\pi} | \boldsymbol{\tau}\}) = \sum_{i=1}^{n} \sum_{j=1}^{m} (1 - \lambda_{S_{b_i}}) I(\boldsymbol{\pi}_i = j) \log\left(\frac{1}{L'_j} \times P\{l_{i,j}\} \times \boldsymbol{\tau}_j\right)$$

Jing Zhang, C.-C. Jay Kuo, Liang Chen, WemIQ: a weighted-log-likelihood expectation maximization method for 7/24/2013 isoform quantification from RNA-Seq data (in Submission)

Simulation Study

Simulation Study (continued)

- 18.85%, 21.60%, and 40.85% of the exons in Cufflinks, RSEM and SpliceTrap have estimation error >0.1
- <u>1.35%</u> of the exons in WemIQ have estimation error >0.1

7/24/2013

Real data analysis

qRT-PCR at the gene level: MAQC data

- TaqMan qRT-PCR results on approximately 1,000 genes
- o at least 75% of the qRT-PCR replicates had a detectable expression
- Finally, 526 genes were compared across methods and platforms. The correlation of the qRT-RCR data and WemIQ was <u>0.739</u>, higher than those of Cufflinks (0.681) and RSEM (0.700)

• <u>Two independent RNA-Seq experiments:</u> two labs in GM12878 cell

Resolution	Method	A1 VS. B1	A1 VS. B2	A2 VS. B1	A2 VS. B2
Isoform	WemIQ	0.713	0.817	0.696	0.798
	Cufflinks	0.679	0.769	0.587	0.695
	RSEM	0.577	0.749	0.517	0.680
Genes	WemIQ	0.738	0.835	0.721	0.816
	Cufflinks	0.684	0.770	0.588	0.692
	RSEM	0.576	0.749	0.514	0.679

Real data analysis (continued)

• <u>Results consistency on a group of highly and moderately expressed</u>

genes

group	Resolution	Method	A1 VS. B1	A1 VS. B2	A2 VS. B1	A2 VS. B2
Highly	Isoform	WemIQ	0.752	0.844	0.736	0.823
expressed genes		Cufflinks	0.706	0.789	0.609	0.713
		RSEM	0.753	0.831	0.659	0.749
	Genes	WemIQ	0.772	0.854	0.759	0.836
		Cufflinks	0.723	0.806	0.621	0.727
		RSEM	0.758	0.839	0.661	0.753
Moderately	Isoform	WemIQ	0.448	0.618	0.433	0.606
expressed genes		Cufflinks	0.376	0.473	0.324	0.422
		RSEM	0.329	0.489	0.293	0.436
	Genes	WemIQ	0.502	0.682	0.490	0.670
		Cufflinks	0.429	0.483	0.390	0.448
		RSEM	0.504	0.664	0.436	0.596

WemIQ provides more consistent estimation across different experiments on the same tissue!

Real data analysis (continued)

Number of differentially expressed genes in technical replicates

In technical replicates, ideally there should be no differentially expressed genes

WemIQ claims much less DE genes than Cufflinks and RSEM

WemIQ: short conclusion

Characteristics of WemIQ:

- Use Generalized Poisson model to handle the over dispersion of the read count data from RNA-Seq
- O Estimate the biases in a data driven manner
- Allocate the reads across isoforms through EM algorithm
- O Use bias parameter to assign different weights in EM

Advantage of WemIQ

- O Simulation study shows improved isoform percentage estimation
- Real RNA-Seq experiments provided more consistent estimates

Outline

- Introduction alternative splicing
- Part I mRNA product quantification
 - Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)
- Part II alternative splicing regulation
 - Part A Context based regulation: splice factor binding sites discovery via a varying coefficient regression
 - Part B Structure based regulation: stability of mRNA secondary structures and splicing site selection
- Conclusion and future work

How splice sites are recognized?

• <u>Splicing code part 1</u>: consensus at the junction and branch point

• <u>Is the consensus enough</u> : existence of decoy splice sites

A B	Name	position	sequence	score
	A	CHR 1, 36706391	GCTTTACCATCCAGGCCTATGCTG	5.30
18nt	В	CHR 1, 36706409	CTCTCTTCCCATAGCTCCCTCCCA	10.39

• <u>Is branch point enough</u>: branch point insertion fails to promote recognition

Sun H, Chasin LA: Multiple splicing defects in an intronic false exon. Mol Cell Biol 2000, 7/24/2013 20(17):6414-6425.

How splice sites are recognized?

• <u>Splicing code part 2</u>: involvement of proteins (SR protein family & hnRNPs)

Why SRE discovery is difficult?

• Problem 1: individual SRE recognition

- Goals:
- Where are they and how do they work?
- Challenges:
 - Length of motif: 4~7 nt
 - Tissue preference

- Positional preference
- Functional preference

Existing methods — computational approaches

• word count/enrichment analysis : more frequent — more functional ?

Data Preparation

• <u>Model implementation</u>: tissue specific exon inclusion rate calculation

Model Implementation

Model implementation : Semi-parametric varying coefficient model

Journal of Computational Biology, 2012.

Results

	upstream			downstream				
tissue	VERSE	LR	union	intersect	VERSE	LR	union	intersect
BT474	86	57	91	52	59	29	63	25
lymph	285	191	301	175	206	140	220	126
testes	350	224	363	211	274	207	287	194
adipose	182	132	206	108	195	134	212	117
colon	28	2	28	2	26	6	27	5
muscle	146	48	149	45	199	102	209	92
heart	65	31	66	30	69	26	71	24
liver	47	15	50	12	32	5	32	5
maquhr	96	52	98	50	63	44	73	34
maqhc	40	3	40	3	43	5	43	5
T47D	122	73	130	65	110	75	120	65
MB435	165	102	176	91	125	87	136	76
MCF7	124	87	137	74	128	71	139	60
breast	405	307	427	285	325	262	344	243
HME	189	142	197	134	192	121	208	105
brain	87	6	87	6	79	11	81	9

Results (continued)

<u>Individual SRE results in 16 human tissues</u>

Specific SRE: identified within in only 1 tissue General SRE: identified in at least 8 tissues

$$specificity = \frac{\# \text{specific SRE}}{\# \text{general SRE}}$$

	_						
	upstream			downstream			
tissue	specific	general	specificity	specific	general	specificity	
BT474	22	21	1.048	21	7	3.000	
lymph	84	34	2.471	46	28	1.643	
testes	92	34	2.706	67	33	2.030	
adipose	34	29	1.172	47	26	1.808	
colon	16	3	5.333	6	6	1.000	
muscle	33	24	1.375	55	24	2.292	
heart	12	15	0.800	22	14	1.571	
liver	18	4	4.500	11	3	3.667	
maquhr	12	29	0.414	17	20	0.850	
maghc	11	2	5.500	17	9	1.889	
T47D	33	28	1.179	21	26	0.808	
MB435	37	34	1.088	30	26	1.154	
MCF7	31	18	1.722	38	15	2.533	
breast	113	36	3.139	95	33	2.879	
HME	44	28	1.571	52	24	2.167	
brain	40	4	10.00	40	4	10.00	

Brain has the largest tissue specificity MAQ-UHR has the lowest tissue specificity

VERSE: short conclusion

Characteristics of VERSE:

- **O** SRE discovery by integrating multiple assisting information
- Allows the contribution of SREs varying with different biological environments
- A two stage clustering method to identify SREs bound by the same protein

Conclusion of discovered SREs

- Brain demonstrated unique pattern of splicing regulation at the context level
- O Conservation does take effect in some of the tissues

Outline

- Introduction alternative splicing
- Part I mRNA product quantification
 - Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)
- Part II alternative splicing regulation
 - Part A Context based regulation: motifs discovery via a varying coefficient regression
 - Part B Structure based regulation: stability of mRNA secondary structures and splicing site selection
- Conclusion and future work

Observation:

- Nearly perfect correlation between GC content and structure energy
- Regression shows similar results among all exon categories and all species *Question:*

• Is GC content the only source for the structure stability difference?

Explanations for Structure Difference (continued)

• Neutral Selection Pressure on Nucleotide Order Effect

<u>Question:</u> factors affect stability

- 1. GC content stable combination per pair
- 2. Context selection to keep a thermal favorable nucleotide order

Method: Permutation study

- 1. Keep 1st order nucleotide frequency (p1)
- 2. Keep 2nd order nucleotide frequency (p2)

Method: Stability study

1. Compare different groups with similar GC

Result: GC content effect is more significant

- 1. Fix GC, energy is similar among groups
- 2. Native sequence shows similar stability with control

GC selection near Exon Junctions

• Real Sites vs. Decoy Sites: Structure Stability is Different

Method:

• structure and GC difference of spliced (real) and non-spliced sites (decoy)

Observation:

GC correlates perfectly with the mRNA structure stability in all sites
GC enrichment in real sites near the

consensus sequences

•Similar GC percentage far away from

consensus sequence

GC difference explains the more stable structures near the real splice sites

Outline

- Introduction alternative splicing
- Part I mRNA product quantification
 - Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)
- Part II alternative splicing regulation
 - Part A Context based regulation: motifs discovery via a varying coefficient regression
 - Part B Structure based regulation: stability of mRNA secondary structures and splicing site selection
- Conclusion and future work

Conclusion and ongoing projects

- Quantification of mRNA product at isoform level
 - Weighted EM with bias removal through GP model(WemIQ)
- Alternative splicing regulation
 - Context based: motif discovery and clustering (VERSE)
 - Structure based: structural difference around splice sites
- Ongoing projects
 - GWAS studies on Parkinson's and Alzheimer's Disease to discover SNPS with aging effect through varying coefficient model
 - o regulatory elements discovery by integrating multiple features

Acknowledgement

- Dr. Liang Chen and Dr. Jay Kuo
- Dr. Fengzhu Sun and Dr. Andrew Smith

Media Communications Lab

Ming Hsieh Department of Electrical Engineering

- Sudeep Srivas
- Cheyu Lee

