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How genes are expressed in eukaryotes?
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� Gene Expression Regulation −− multi-level regulation

Essential Cell Biology, 2/e (@2004 Garland Science)

� How to quantify gene expression?  −− RNA-Seq Experiments

� What happed during RNA processing control? −− Splicing Regulation 



Outline
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� Introduction  alternative splicing

� Part I  mRNA product quantification 

� Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)

� Part II  alternative splicing regulation

� Part A  Context based regulation: motifs discovery via  a varying coefficient 

regression

� Part B  Structure based regulation: stability of mRNA secondary structures and 

splicing site selection

� Conclusion and future work



Transcriptome Diversity
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� Alternative Splicing produces multiple transcript isoforms from a single gene 

� Types of alternative splicing



Importance of alternative splicing
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• Prevalence of alternative splicing : RNA-Seq analyses estimate that more than 

90% of human genes are alternatively spliced 

• Tissue Differentiation: transcript isoforms variations among tissues 

• Diseases : Erroneous recognition of splice sites

• Spinal muscular atrophy: ~1 per 10,000 live births, the leading genetic cause of 

infant mortality, the second most common lethal autosomal recessive disorder.

• Cystic fibrosis: 1 per 3,200-3,500 in whites (1 per 31,000 in Asian Americans), the 

most common lethal autosomal recessive disorder.

• Retinitis pigmentosa: ~1 in 4000.

• Prader-Willi syndrome: most are sporadic. 1 per 16,062 or 1 per 25,000.
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� Part B  Structure based regulation: stability of mRNA secondary structures and 

splicing site selection
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Transcriptome Quantification
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� Microarrays for mRNA expression estimation

� Disadvantages: high noise-to-signal ratio, sensitive to SNPs, rely on gene 
annotations/genome sequences.

� Advantages: can prioritize genes of interest.
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RNA-seq Experiments
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RNA-seq Quantification
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� Challenge: Remove the potential bias when estimating expression levels.

� Focus: Position-level read count (i.e. the number of sequence reads starting 

from each position of a gene/exon)

� Common Assumptions: Position-level read count follows a Poisson 

distribution with rate θ.  Or equal probability of a read starting from a specific 

position.

� The gene/exon length-normalized read count: maximum likelihood estimator (MLE) 

of θ. 

� RPKM (Reads per kilobase of exon model per million mapped reads ) = length-

normalized read count / total mapped reads (in million). 

� Doesn’t consider the bias.



Generalized Poisson
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• Probability mass function (Consul 1989):
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where θ > 0, max(−1,−θ/q) ≤ λ ≤ 1, and q (≥ 4) is the largest positive integer for 

which θ+qλ > 0 when λ < 0.  

• θ is the average rate for the natural Poisson process (expression level) 

• λ is the average rate of the effort that the subjects are making to deviate from the 

process, a measure of the departure from Poissonicity (bias).  

λ > 0 � σ2 > µ

λ < 0 � σ2 < µ

λ = 0 � σ2 = µ

Gene level Exon level

GP Poisson GP Poisson

MAQC data 85.72% 1.57% 89.62% 19.71%

Human data 77.28% 3.22% 88.78% 28.35%

Mouse data 88.57% 7.88% 91.73% 39.67%

Yeast data 93.24% 20.49% 93.21% 23.73%

MAQC-2_sep 92.93% 10.18% 92.90% 41.51%

Srivastava, S. and L. Chen*,A two-parameter generalized Poisson model to improve the analysis of RNA-seq
data.?Nucleic Acids Research, 2010. 38(17): p. e170.



Examples of Poisson and Generalized Poisson fitting
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Observed frequency
Expected frequency by GP
Expected frequency by Poisson

Srivastava, S. and L. Chen*,A two-parameter generalized Poisson model to improve the analysis of RNA-seq
data.?Nucleic Acids Research, 2010. 38(17): p. e170.



Bias removal through Generalized Poisson model
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� The heterogeneity of read counts:
� expression varies among genes

� regions shared by multiple isoforms are expected to contain more reads than regions 
specific to a single isoform

� inherent experimental bias of the RNA-Seq protocol

� Goal: remove the inherent bias while estimating the transcript isoform 
expression.

� Single-isoform genes

� Data-adaptive bias correction by GP in 

WemIQ (WemIQ)

� Correct the sequence-specific bias from 

random hexmer priming (seq)

� Correct the bias from relative positions 

(pos)



WemIQ: A EM based mRNA quantification Method

7/24/201313 Jing Zhang, C.-C. Jay Kuo, Liang Chen, WemIQ: a weighted-log-likelihood expectation maximization method for 
isoform quantification from RNA-Seq data  (in Submission)



Simulation Study
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• Splice Ratio Estimation in a cassette exon case
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o WemIQ improves relative isoform 

expression

o Cufflinks has similar performance 

with/without bias correction

o RSEM improves its performance by 

using its empirical positional bias 

correction
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Simulation Study (continued)
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Simulation Study (exon centric measurements)

7/24/201316

• Splice Ratio Estimation in a cassette exon case

isoform expression with this exon
exon inclusion rate =

isoform expression
∑
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o 18.85%, 21.60%, and 40.85% of the exons in Cufflinks, RSEM and SpliceTrap
have estimation error >0.1

o 1.35% of the exons in WemIQ have estimation error >0.1



Real data analysis
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• qRT-PCR at the gene level: MAQC data

o TaqMan qRT-PCR results on approximately 1,000 genes

o at least 75% of the qRT-PCR replicates had a detectable expression

o Finally, 526 genes were compared across methods and platforms.  The 

correlation of the qRT-RCR data and WemIQ was 0.739, higher than 

those of Cufflinks (0.681) and RSEM (0.700)

• Two independent RNA-Seq experiments: two labs in GM12878 cell

Resolution Method A1 VS. B1 A1 VS. B2 A2 VS. B1 A2 VS. B2

Isoform WemIQ 0.713 0.817 0.696 0.798

Cufflinks 0.679 0.769 0.587 0.695

RSEM 0.577 0.749 0.517 0.680

Genes WemIQ 0.738 0.835 0.721 0.816

Cufflinks 0.684 0.770 0.588 0.692

RSEM 0.576 0.749 0.514 0.679



Real data analysis (continued)
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• Results consistency on a group of  highly and moderately expressed 

genes

WemIQ provides more consistent estimation across different 
experiments on the same tissue!

group Resolution Method A1 VS. B1 A1 VS. B2 A2 VS. B1 A2 VS. B2

Highly 

expressed genes

Isoform WemIQ 0.752 0.844 0.736 0.823

Cufflinks 0.706 0.789 0.609 0.713

RSEM 0.753 0.831 0.659 0.749

Genes WemIQ 0.772 0.854 0.759 0.836

Cufflinks 0.723 0.806 0.621 0.727

RSEM 0.758 0.839 0.661 0.753

Moderately 

expressed genes

Isoform WemIQ 0.448 0.618 0.433 0.606

Cufflinks 0.376 0.473 0.324 0.422

RSEM 0.329 0.489 0.293 0.436

Genes WemIQ 0.502 0.682 0.490 0.670

Cufflinks 0.429 0.483 0.390 0.448

RSEM 0.504 0.664 0.436 0.596



Real data analysis (continued)
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• Number of differentially expressed genes in technical replicates
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• In technical replicates, ideally there should be no differentially expressed genes

• WemIQ claims much less DE genes than Cufflinks and RSEM
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WemIQ: short conclusion
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• Characteristics of  WemIQ:

o Use Generalized Poisson model to handle the over dispersion of the read 

count data from RNA-Seq

o Estimate the biases in a data driven manner 

o Allocate the reads across isoforms through EM algorithm

o Use bias parameter to assign different weights in EM

• Advantage of WemIQ

o Simulation study shows improved isoform percentage estimation

o Real RNA-Seq experiments provided more consistent estimates



Outline
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� Introduction  alternative splicing

� Part I  mRNA product quantification 

� Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)

� Part II  alternative splicing regulation

� Part A  Context based regulation: splice factor binding sites discovery via  a 

varying coefficient regression

� Part B   Structure based regulation: stability of mRNA secondary structures and 

splicing site selection

� Conclusion and future work



How splice sites are recognized?

7/24/201322

� Splicing code part 1: consensus at the junction and branch point 

� Is the consensus enough : existence of decoy splice sites

Name position sequence score

A CHR 1, 36706391 GCTTTACCATCCAGGCCTATGCTG 5.30

B CHR 1, 36706409 CTCTCTTCCCATAGCTCCCTCCCA 10.39

� Is branch point enough: branch point insertion  fails to promote recognition 

Sun H, Chasin LA: Multiple splicing defects in an intronic false exon. Mol Cell Biol 2000, 

20(17):6414-6425.



How splice sites are recognized?
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� Splicing code part 2: involvement of proteins (SR protein family & hnRNPs)

� Where does proteins bind?  SREs

Direct involvement

Indirect involvement

exonic intronic

enhance ESE (exonic  

splicing 

enhancer)

ISS (intronic 

splicing silencer)

repress ESS (exonic 

splicing silencer)

ISE (intronic 

splicing 

enhancer)

Competition:

Looping out:

Cooperation:

SRE: splicing regulatory elements

� How does SRE work?



Why SRE discovery is difficult?
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� Problem 1:  individual SRE recognition 

• Challenges:

� Length of motif: 4~7 nt

� Tissue preference

� Positional preference

� Functional preference

• Goals:

• Where are they and how do they work?



Existing methods  experimental approaches
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� experimental predictions - SELEX

� Strength of SELEX

� binding site guarantee

� Weakness of SELEX

� very limited number of factors are 

know till now  

� in vitro binding instead of in vivo

� motif discovery, not the binding site 

discovery

� Basic idea

� amplify the binding sites

� remove the non-binding ones



y ax b= +

Y: exon inclusion rate

X: motif occurrence

Why linearity?

Existing methods  computational approaches
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� word count/enrichment analysis : more frequent — more functional ?

Frequent → func=onal?
I. No direct link of functionality

II. How to quantify its contribution to spling

Func=onal→ frequent ?
I. Control group selection

II. Multiple splicing factor

� linear regressions: more correlated — more functional



Motivation 1: Prior Info Helps?
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� Inspiration 1:  what else besides the exon inclusion rate? 

Splicing type + features => motifs

Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ, Deciphering the splicing 

code, Nature. 2010 May 6;465(7294):53-9.



Motivation 2: Nonlinearity? Varying Coefficient Regression

7/24/201328

� Inspiration 2:  what else besides the exon inclusion rate? 

y ax b= +

Y: exon inclusion rate

X: motif occurrence

1 1 2 2 n ny a x a x a x b= + + + +⋯Natural extension?

Linearity : oversimplification of splicing regulation, no interactions ?

( ) ( ),U U= TY X X a

� Model introduction : Varying coefficient regression

u
a(

u)
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varying effect



Single SRE prediction: varying coefficient regression
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� Model introduction : LS estimation and bandwidth selection 

LS estimation: 

U

Y ( )hK U

h

Bandwidth selection: 

• Theoretical calculation

• Leave one out cross validation

• AIC, BIC…
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How to predict the SREs
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� Model generalization :  Information integration and parametric variable 

Dimension of prior information: Curse of dimensionality

How to find a neighbor in a high dimension space?

U

Y ( )hK U

h

Binding Preference: U

• Logistic regression
• Random forests
• Support vector machine

( ) ( ), , TM u U ε= + +TX Z X a β Z
Non-parametric component Parametric component



Data Preparation
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� Model implementation :  tissue specific exon inclusion rate calculation 
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Goal: select exons with tissue difference

Wang Z, Gerstein M, Snyder M., "RNA-Seq: a revolutionary tool for transcriptomics", Nat Rev Genet. 2009 Jan;10(1):57-63. 
doi: 10.1038/nrg2484



Model Implementation
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� Model implementation :  Semi-parametric varying coefficient model 

( ),i i k ik
y a u β ε= + +∑

( ) ( )( ) ( )1
ˆ ,p Pu

−
= −T T

u u u u ua I 0 Γ WΓ Γ W Y Zβ

( ) ( )( ) ( ) ( )ˆ
TT TT T

β = Z I - S I - S Z Z I - S I - S Y
LS estimation: 

Baseline score: Phylop Conservation score: [-1,1]

Bandwidth selection Fivefold cross validation

7/24/2013
J. Zhang, C.C. Kuo, and L. Chen*, VERSE: A Varying Effect Regression for Splicing Elements Discovery. 

Journal of Computational Biology, 2012. 



Results
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� Individual SRE results in 16 human tissues

Conservation

7/24/2013



Results (continued)

34

� Individual SRE results in 16 human tissues
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7/24/2013



Sites for the Same Splicing Factor?
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� Why clustering? :  find out motifs bound to the same protein 

YRYYRY

Y=C or T R=A or G

Challenge: Degeneracy of motifs: 

• Kmeans

• Hierarchical clustering

• …
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VERSE: short conclusion
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• Characteristics of  VERSE:

o SRE discovery by integrating multiple assisting information

o Allows the contribution of SREs varying with different biological 

environments

o A two stage clustering method to identify SREs bound by the same 

protein

• Conclusion of discovered SREs

o Brain demonstrated unique pattern of splicing regulation at the context 

level

o Conservation does take effect in some of the tissues



Outline
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� Introduction  alternative splicing

� Part I  mRNA product quantification 

� Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)

� Part II  alternative splicing regulation

� Part A  Context based regulation: motifs discovery via  a varying coefficient 

regression

� Part B   Structure based regulation: stability of mRNA secondary structures and 

splicing site selection

� Conclusion and future work



Splicing code part 3: pre-mRNA secondary structures

38

� What is secondary structure? � How to predict the topology?

Software like RNAfold, Mfold, …

� How does it work?

7/24/2013



Structural stability different around splice sites
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� Alternative Spliced Sites Exhibit More Stable Structures

• Data: UCSC hg18 for human, Eugene for mice and fruit flies

• Method: RNAfold to calculate the energy

• Conclusion:
� alternatively spliced sites exhibit more stable structures

�This trend is conserved from human to mice and fruit flies
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7/24/2013Zhang, J., C.C. Kuo, and L. Chen*, GC content around splice sites affects splicing through pre-
mRNA secondary structures. BMC Genomics, 2011. 12: p. 90.



Explanations for Structure Difference
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� GC Content Explains the Structure Stability Difference

Observation:
• Nearly perfect correlation between GC content and structure energy
• Regression shows similar results among all exon categories and all species

Question:
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• Is GC content the only source for the structure stability difference?

7/24/2013



Explanations for Structure Difference (continued)
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� Neutral Selection Pressure on Nucleotide Order Effect

GC number
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Method: Permutation study
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Result: GC content effect is more significant
1. Fix GC, energy is similar among groups
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7/24/2013



GC selection near Exon Junctions
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� Real Sites vs. Decoy Sites: Structure Stability is Different
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Observation:

•GC correlates perfectly with the mRNA 

structure stability in all sites

•GC enrichment in real sites near the 

consensus sequences

•Similar GC percentage far away from 

consensus sequence

GC similarity 
away from sites

Method: 

• structure and GC difference of spliced 

(real) and non-spliced sites (decoy)

7/24/2013



Outline
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� Gene expression estimation with isoform resolution from RNA-Seq data (WemIQ)

� Part II  alternative splicing regulation

� Part A  Context based regulation: motifs discovery via  a varying coefficient 

regression

� Part B   Structure based regulation: stability of mRNA secondary structures and 

splicing site selection

� Conclusion and future work



Conclusion and ongoing projects
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� Quantification of mRNA product at isoform level

o Weighted EM with bias removal through GP model(WemIQ)

� Alternative splicing regulation

o Context based: motif discovery and clustering (VERSE)

o Structure based: structural difference around splice sites

� Ongoing projects

o GWAS studies on Parkinson’s and Alzheimer's Disease to discover SNPS with aging 

effect through varying coefficient model

o regulatory elements discovery by integrating multiple features 
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