Statistical methods for analyzing the Hi-C contact matrices, a brief overview

KKY Gerstein Lab JC, July 2013

Hi-C experiment

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome

Erez Lieberman-Aiden,^{1,2,3,4}* Nynke L. van Berkum,⁵* Louise Williams,¹ Maxim Imakaev,² Tobias Ragoczy,^{6,7} Agnes Telling,^{6,7} Ido Amit,¹ Bryan R. Lajoie,⁵ Peter J. Sabo,⁸ Michael O. Dorschner,⁸ Richard Sandstrom,⁸ Bradley Bernstein,^{1,9} M. A. Bender,¹⁰ Mark Groudine,^{6,7} Andreas Gnirke,¹ John Stamatoyannopoulos,⁸ Leonid A. Mirny,^{2,11} Eric S. Lander,^{1,12,13}† Job Dekker⁵†

We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity

9 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org

Contact Matrix

Normalization of the matrix

- Artificial separation of intrachromosomal and interchromosomal interactions
 - Intrachromosomal expectation as a function of distance: Obs/Exp
 - Interchromosomal expectation – number of reads*f_i*f_j Obs/Exp

Eigenvectors: Genome compartments

A more sophisticated error model

ANALYSIS

Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture

Eitan Yaffe & Amos Tanay

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. Correspondence should be addressed to A.T. (amos.tanay@weizmann.ac.il).

Received 16 February; accepted 25 August; published online 16 October 2011; doi:10.1038/ng.947

•7

Model

Given 2 fragment ends a, b, the probability to observe them in a pair-end read

$$P(X_{a,b}) = P_{\text{prior}} \cdot F_{len}(a_{len}, b_{len}) \cdot F_{\text{gc}}(a_{\text{gc}}, b_{\text{gc}}) \cdot M(a) \cdot M(b),$$
20 by 20 matrices 800 parameters

10⁶ pair-end reads -> 10¹² combinations

$$\begin{split} L(F_{len}, F_{gc}) &= \prod_{\{a,b\} \in I} P(X_{a,b}) \cdot \prod_{\{a,b\} \notin I} (1 - P(X_{a,b})) \\ &= \prod_{c = (a_{len}, a_{gc}, b_{len}, b_{gc})} P(X_{a,b})^{n_c} \cdot [1 - P(X_{a,b})]^{m_c} \end{split}$$

After correction

Clustering of the corrected matrix

Remarks:

- assume particular sources of bias
- very computationally expensive: 800 parameters, all possible pairs of fragments

A "better" approach: ICE

Iterative correction of Hi-C data reveals hallmarks of chromosome organization

Maxim Imakaev^{1,5}, Geoffrey Fudenberg^{2,5}, Rachel Patton McCord³, Natalia Naumova³, Anton Goloborodko¹,Bryan R Lajoie³, Job Dekker³ & Leonid A Mirny^{1,2,4}NATURE METHODS | VOL.9 NO.10 | OCTOBER 2012 | 999

Model

Matrix T: "true" relative contact probabilities

$$\sum_{j} T_{ij} = 1 \qquad \text{equal visibility}$$

For each loci i, there is a bias factor B_i (summarize all sorts of sources) the expected contact frequency between i and j is given by $B_i B_j T_{ij}$

Given the observed contact frequency O_{ij} , they inferred the values of T and B by maximum likelihood.

$$O_{ij} = B_i B_j T_{ij}$$
$$\sum_{j=1}^{N} T_{ij} = 1, \forall i$$

Solve equations by iteration.

Validation

10

80

Number of reads

Number of reads

8

Biology revealed from eigenvectors of T

Cross species analysis

Pro and Limitation of ICE

- Unbiased comparison of Hi-C data between data sets, cell types and organisms
- Only for genome-wide matrix of contacts, NOT suitable for techniques like ChIA-PET compared to Yaffe and Tanay
- Operates on binned data, there's a resolution limit compared to Yaffe and Tanay