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Understanding 
Biomolecular Function

Evolutionary 
Analysis

Molecular 
Dynamics

Network 
Analysis

Bayesian 
Analysis

Polymer Models

Investigation of complex systems requires the 
application of multiple tools

Kinetic Models
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Setting the Genetic Code: Evolutionary Analysis 
The central dogma of molecular biology 

describes how DNA is translated into proteins

The universal genetic 
code is used to translate 

the information in the 
DNA into functional 

proteins.

http://compbio.pbworks.com/w/page/16252897/Introduction%20and%20Basic%20Molecular%20Biology
Sunday, June 2, 13
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http://plato.stanford.edu/entries/information-biological/

The genetic code is set by enzymes called the 
aminoacyl-tRNA synthetases

Setting the Genetic Code: Evolutionary Analysis 

How do complex biomolecules perform their function?

Sunday, June 2, 13
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Goal of Evolutionary Analysis
Setting the Genetic Code: Evolutionary Analysis 

Nothing in biology makes sense except in the light of 
evolution. - Theodosius Dobzhansky

Structural alignment Sequence alignment

Conservation analysis provides information on the 
constraints in the evolution of biomolecular families.
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Evolutionary Analysis

Sequence Sequence Database
BLAST

The sequences used to represent the evolutionary history of a 
biomolecule are the sequences found in a database.

Setting the Genetic Code: Evolutionary Analysis 
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Sequence Sequence Database
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Sequence Alignment

CLUSTAL W
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The sequences used to represent the evolutionary history of a 
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Evolutionary Analysis

Sequence Sequence Database
BLAST

Sequence Alignment

CLUSTAL W

Statistical Analysis

PSI-BLAST
HMMER

The sequences used to represent the evolutionary history of a 
biomolecule are the sequences found in a database.

Setting the Genetic Code: Evolutionary Analysis 
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The sequence and structure databases are 
biased towards bacterial domain of life

Universal Phylogenetic Tree
Three domains of life

for review see Woese PNAS 2000

Leucyl-tRNA synthetase displays the 
full canonical phylogenetic distribution.

Woese, et al., MMBR 2000.

Based on rRNA

Eucarya

Archaea

Bacteria

Setting the Genetic Code: Evolutionary Analysis 
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The sequence and structure databases are 
biased towards bacterial domain of life

Universal Phylogenetic Tree
Three domains of life

for review see Woese PNAS 2000

Leucyl-tRNA synthetase displays the 
full canonical phylogenetic distribution.

Woese, et al., MMBR 2000.

Based on rRNA

Eucarya

Archaea

Bacteria

Setting the Genetic Code: Evolutionary Analysis 

The databases are biased and statistical analysis of sequence and 
structure profiles implement ad-hoc sequence weighting methods.
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Non-redundant sets of sequences and 
structures can be used for statistical analysis.

Multidimensional QR 
factorization

of alignment matrix, A.

Too much information
129 Structures

Economy of information
16 representatives

P. O’Donoghue, et al. JMB, 2005; A. Sethi, et al., PNAS, 2005

Setting the Genetic Code: Evolutionary Analysis 
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Non-redundant sets of sequences and 
structures can be used for statistical analysis.

Multidimensional QR 
factorization

of alignment matrix, A.

Too much information
129 Structures

Economy of information
16 representatives

P. O’Donoghue, et al. JMB, 2005; A. Sethi, et al., PNAS, 2005

QR computes a set of maximal linearly independent sequences/structures.

Setting the Genetic Code: Evolutionary Analysis 
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The story of the missing archaeal CysRS
M.jannaschii genome was completely sequenced in 1996.
Genome had four missing aaRSs:

AsnRS
GlnRS
LysRS
CysRS

A Sethi, et al., PNAS, 2005.

Setting the Genetic Code: Evolutionary Analysis 
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GlnRS} Indirect Mechanism
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The story of the missing archaeal CysRS
M.jannaschii genome was completely sequenced in 1996.
Genome had four missing aaRSs:

AsnRS
GlnRS} Indirect Mechanism
LysRS
CysRS

Class I aaRS

A Sethi, et al., PNAS, 2005.
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The story of the missing archaeal CysRS
M.jannaschii genome was completely sequenced in 1996.
Genome had four missing aaRSs:

AsnRS
GlnRS} Indirect Mechanism
LysRS
CysRS

Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is 
still unknown.  J. Bacteriology, Jan. 2004, 186:8-14. Ruan B, Nakano H, Tanaka M, 
Mills JA, DeVito JA, Min B, Low KB, Battista JR, and Söll D.

Class I aaRS

A Sethi, et al., PNAS, 2005.
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The story of the missing archaeal CysRS
M.jannaschii genome was completely sequenced in 1996.
Genome had four missing aaRSs:

AsnRS
GlnRS} Indirect Mechanism
LysRS
CysRS

Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is 
still unknown.  J. Bacteriology, Jan. 2004, 186:8-14. Ruan B, Nakano H, Tanaka M, 
Mills JA, DeVito JA, Min B, Low KB, Battista JR, and Söll D.

M. jannaschii  
genome database 
search using EP of 
class II aaRS with 
HMMER

MJ1660

Class I aaRS

A Sethi, et al., PNAS, 2005.

Setting the Genetic Code: Evolutionary Analysis 

Sunday, June 2, 13



The Complete Story
Setting the Genetic Code: Evolutionary Analysis 

Sauerwald, et al., Science, 2005.
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The Complete Story
Direct pathway for cysteine aminoacylation

Setting the Genetic Code: Evolutionary Analysis 

Sauerwald, et al., Science, 2005.
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The Complete Story
Setting the Genetic Code: Evolutionary Analysis 

Sauerwald, et al., Science, 2005.

Indirect pathway for cysteine aminoacylation
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The Complete Story
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Sauerwald, et al., Science, 2005.
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Success from Structure Prediction

RMSD = 2.72 Å
Orientation of O-phosphoserine in SepRS is different from that of all other 
amino acid substrates in the catalytic site of class II aaRS.

Fukunaga and Yokoyama, Nature Str. Mol. Biol., 2007. Sethi, et al., PNAS, 2005.
Sunday, June 2, 13



SeqQR was used to study all the steps of 
translation.

Evolution gives valuable clues to understand 
how complex systems function.

However, conservation can be due to a variety 
of reasons and teasing out the details requires 

physical models.
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Molecular dynamics simulations can be used 
to analyze the dynamics within biomolecules

Setting the Genetic Code: Signaling Within Biomolecules
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Long range communication is necessary for 
setting the genetic code

PDB ID: 1N78
Sekine, et. al., JMB, 1996.Sekine, et. al., Eur. J. Biochem, 1999.

Setting the Genetic Code: Signaling Within Biomolecules

aa + ATP                aa-AMP + PPi

aa-AMP + tRNAaa                      aa-tRNAaa + AMP 

aaRS

aaRS
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Nucleotides that affect the efficiency of 
the reaction (catalytic rate) can occur 
up to 50-70 Angstoms away from the 
catalytic site.

Long range communication is necessary for 
setting the genetic code

PDB ID: 1N78
Sekine, et. al., JMB, 1996.Sekine, et. al., Eur. J. Biochem, 1999.
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aa + ATP                aa-AMP + PPi

aa-AMP + tRNAaa                      aa-tRNAaa + AMP 

aaRS
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Energy landscape theory explains how 
macromolecules fold and function

Onuchic, et al., Ann Rev Phys Chem, 1997
Lila Gierarsch, Curr Opin Str Biol, 2006

Allostery involves a change in 
conformation or dynamics.
Structural changes might occur 
through a network of local changes.

Setting the Genetic Code: Signaling Within Biomolecules

Ligand

Ligand

Ligand
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Observation of Allostery in MD Simulations

Correlation in motion between residues and nucleotides in protein:RNA 
complex.

Network Analysis: Allostery in aaRS:tRNA Complex

A Sethi, et al., PNAS, 2009.

C(i, j) =
< �ri(t) ·�rj(t) >

(< �ri(t)2 >< �rj(t)2 >)0.5

Setting the Genetic Code: Signaling Within Biomolecules

Sunday, June 2, 13



• Nodes represent the 
residues/nucleotides 
in the complex.

• Edges rep resen t 
con tac t be tween 
monomers in the 
complex.

Ideas borrowed from network theory

The edges can either be unweighted or weighted.
The edges are weighted by correlation (Cij) 

between contacts in the simulation:

Setting the Genetic Code: Signaling Within Biomolecules
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The path distance is the sum of the weights or 
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Path from 1       6
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• Nodes represent the 
residues/nucleotides 
in the complex.

• Edges rep resen t 
con tac t be tween 
monomers in the 
complex.

Ideas borrowed from network theory

The edges can either be unweighted or weighted.
The edges are weighted by correlation (Cij) 

between contacts in the simulation:

The path distance is the sum of the weights or 
distance of each edge:

Girvan and Newman, PNAS, 2002

Setting the Genetic Code: Signaling Within Biomolecules

Modules have fewer 
connections between 
them
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There are a number of suboptimal paths for communication between 
identity elements and active site.

The Importance of Suboptimal Paths
Suboptimal paths from anticodon 

base

A Sethi, et al., PNAS, 2009.

Suboptimal paths from anticodon 
base

Setting the Genetic Code: Signaling Within Biomolecules
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A Sethi, et al., PNAS, 2009.
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There are a number of suboptimal paths for communication between 
identity elements and active site.

The Importance of Suboptimal Paths
Suboptimal paths from anticodon 

base
Suboptimal paths from Ura11

A Sethi, et al., PNAS, 2009.

Suboptimal paths from Ura11Suboptimal paths from anticodon 
base
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• Communities are modules within the 
network that move in a correlated 
fashion during the MD simulation.

• Residues connecting modules are 
critical for communication in the 
biomolecular network

• They are conserved in evolution
• They affect network properties
• They occur in majority of suboptimal 

pathways

Regions connecting modules form hotspots for 
communication in the network

A Sethi, et al., PNAS, 2009.

Setting the Genetic Code: Signaling Within Biomolecules
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The modules in the protein are more highly 
conserved

CAP210 YU2 HXBC2The communities in the network are highly conserved between 
different sequences of gp120.

The intermodular contacts are under high immune pressure to 
evolve.

Signaling Within Biomolecules

A Sethi, et al., PLoS Comp Biol, 2013

CAP210 YU2 HXBC2

Sunday, June 2, 13



• Balanced evolutionary profiles provide an economy of 
information that can be used for gene annotation.

• Evolutionary profiles were successful at identifying the protein 
responsible for cysteine aminoacylation in methanogens. 

• The suboptimal paths should be considered while studying 
communication between distant sites in biomolecular 
complexes.

• The residues involved in communication between modules in 
the dynamical network are highly conserved and form hot spots 
for communication in biomolecular complexes.

Conclusions
Setting the Genetic Code
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Part 2:

Structurally 
Modeling 
Signaling 
Cascades

Signaling cascades 
regulate information 
transfer inside the 

cell.

http://en.wikipedia.org/wiki/Cell_signaling
Sunday, June 2, 13
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Eukaryotes have a significant proportion of 
their proteins that are disordered.

Classical interpretation:

Protein’s ordered structure is 
related to its function.

Liu, et al. PNAS, 2009
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Eukaryotes have a significant proportion of 
their proteins that are disordered.

Classical interpretation:

Protein’s ordered structure is 
related to its function.

Liu, et al. PNAS, 2009

Folding upon binding
Fuzzy complexes
Entropic chains
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Papoian, PNAS, 2008Onuchic, et al., Ann Rev Phys Chem, 1997

Disordered proteins are considered to either 
have a weakly funneled or a rugged energy 

landscape

Signaling Cascades: Disordered Regions
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Signaling Cascades: Quantifying Multivalent Binding

T h e n u c l e o t i d e 
exchange fac to r 
Sos1 has to be 
localized near the 
plasma membrane. Houtman, et al., NSB, 2006.

Nag, et al., Biophys J., 2009. 

Signaling proteins utilize multivalent 
interactions
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Grb2 consists of 
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Signaling Cascades: Quantifying Multivalent Binding

T h e n u c l e o t i d e 
exchange fac to r 
Sos1 has to be 
localized near the 
plasma membrane.

Grb2 consists of 
two SH3 domains 
that interact with 
Sos1.

Houtman, et al., NSB, 2006.
Nag, et al., Biophys J., 2009. 

Grb2 consists of 
a SH2 domain 
tha t i n te rac ts 
with LAT.

Signaling proteins utilize multivalent 
interactions
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Multivalent interactions are ubiquitous in 
biology.

Signaling proteins often use 
multiple binding sites to increase 
the overall strength and specificity 
of the complexes formed.

Signaling Cascades: Quantifying Multivalent Binding

Mammen, et al., Angewandte Chemie, 1998 
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N-SH3
C-SH3

 McDonald, et al., Biochemistry, 2009 Maignan, et al., Science, 1995.

Grb2 Sos1

Controversy on stoichiometry of complexes 
formed under physiological conditions.

Signaling Cascades: Quantifying Multivalent Binding
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Signaling Cascades: Quantifying Multivalent Binding

�
GPC

j

⇥
= KC

j [G] [Pj ]

Simultaneous binding of both SH3 domains to 
two motifs in Sos1

A Sethi, et al., PLoS Comp. Biol., 2011
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�
GPC

j

⇥
= KC

j [G] [Pj ]

[PC
j GPN

i ] = KC�

j [GPN
i ]

Simultaneous binding of both SH3 domains to 
two motifs in Sos1

A Sethi, et al., PLoS Comp. Biol., 2011
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Signaling Cascades: Quantifying Multivalent Binding

�
GPC

j

⇥
= KC

j [G] [Pj ]

[PC
j GPN

i ] = KC�

j [GPN
i ]

KC�

j = KC
j � Ceff (PN

i , PC
j )

Simultaneous binding of both SH3 domains to 
two motifs in Sos1

A Sethi, et al., PLoS Comp. Biol., 2011
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Signaling Cascades: Quantifying Multivalent Binding

Motifs of Sos1 that bind to Grb2
 - Evolutionary analysis
 - Binding Energy Calculations

A Sethi, et al., PLoS Comp. Biol., 2011

Modeling multivalent interactions
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Signaling Cascades: Quantifying Multivalent Binding

Motifs of Sos1 that bind to Grb2
 - Evolutionary analysis
 - Binding Energy Calculations

Simultaneous binding of two motifs in Sos1 to Grb2
- Hybrid model from polymer theory and MD Simulations.

A Sethi, et al., PLoS Comp. Biol., 2011

Modeling multivalent interactions
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Signaling Cascades: Quantifying Multivalent Binding

Motifs of Sos1 that bind to Grb2
 - Evolutionary analysis
 - Binding Energy Calculations

Simultaneous binding of two motifs in Sos1 to Grb2
- Hybrid model from polymer theory and MD Simulations.

Binding of Grb2 to Sos1
 - Thermodynamic modeling of Grb2-Sos1 complexes.

A Sethi, et al., PLoS Comp. Biol., 2011

Modeling multivalent interactions
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The flexibility of both binding partners 
determine Ceff.

Signaling Cascades: Quantifying Multivalent Binding

Ceff

�
PN

i , Pj
C

⇥
=

⇤ ⇥

r=0

⇤ ⇥

r�=0
pbs(⇥r�)ppep

�
PN

i , PC
j ,⇥r

⇥
�(⇥r � ⇥r�)d3rd3r⇥

=
⇤ ⇥

r=0
pbs(⇥r)ppep

�
PN

i , PC
j ,⇥r

⇥
d3r
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The flexibility of both binding partners 
determine Ceff.

Signaling Cascades: Quantifying Multivalent Binding
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The flexibility of both binding partners 
determine Ceff.

Signaling Cascades: Quantifying Multivalent Binding
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The flexibility of the linker and the motion of 
the two domains with respect to each other 

influence Ceff

Signaling Cascades: Quantifying Multivalent Binding

A Sethi, et al., PLoS Comp. Biol., 2011
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The local concentration of the other motifs near 
the second binding site of Grb2 is in mM range

P1 P2 P3 RP P4

P1 - 0.6 2.1 1.6 1.6
P2 0.3 - 0.7 1.7 1.9
P3 1.6 0.4 - 1.5 2.1
RP 1.6 1.7 1.5 - 0.07
P4 1.4 1.6 1.7 0.07 -

Motif bound to N-SH3 domain

Motif 
bound to 
C-SH3 
domain Ceff (mM)

Signaling Cascades: Quantifying Multivalent Binding

A Sethi, et al., PLoS Comp. Biol., 2011
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The local concentration of the other motifs near 
the second binding site of Grb2 is in mM range

P1 P2 P3 RP P4

P1 - 0.6 2.1 1.6 1.6
P2 0.3 - 0.7 1.7 1.9
P3 1.6 0.4 - 1.5 2.1
RP 1.6 1.7 1.5 - 0.07
P4 1.4 1.6 1.7 0.07 -

Motif bound to N-SH3 domain

Motif 
bound to 
C-SH3 
domain Ceff (mM)

P1 P2 P3 RP P4
P1 - 12 7 9 7
P2 164 - 220 94 62
P3 42 220 - 133 67
RP 43 56 130 - 2100
P4 37 46 90 2300 -

Motif bound to N-SH3 domain

Motif 
bound to 
C-SH3 
domain

1/K̄NC
ij (µM)

Signaling Cascades: Quantifying Multivalent Binding

A Sethi, et al., PLoS Comp. Biol., 2011
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It is very difficult to distinguish different 
complexes formed between Sos1 and Grb2 in 

experiments

Signaling Cascades: Quantifying Multivalent Binding
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The 1:1 complex is actually a large 
combination of complexes that should be taken 

into account.

A Sethi, et al., PLoS Comp. Biol., 2011

Signaling Cascades: Quantifying Multivalent Binding
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The 1:1 complex is actually a large 
combination of complexes that should be taken 

into account.

A Sethi, et al., PLoS Comp. Biol., 2011

Predicted value = 1.2 µM.
Experimental value = 0.3 µM.

Signaling Cascades: Quantifying Multivalent Binding
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Predicted value = 14 µM.
Experimental value = 1 µM.

The 2:1 complex contains an even larger 
combination of complexes.

A Sethi, et al., PLoS Comp. Biol., 2011

Signaling Cascades: Quantifying Multivalent Binding
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Is a WLC model a good model to get the 
probability of the distance between the 

two ends of a linker? 
Can we use MD-based methods to 

figure this probability density?
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Cookson, Ann. Rev. Biochem., 2005

Fibrils or oligomers of disordered proteins are 
often implicated in neurological diseases

Signaling Cascades: Disordered Regions
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Image Source:
http://www.genome.gov/pressDisplay.cfm?photoID=10004

Cookson, Ann. Rev. Biochem., 2005

Fibrils or oligomers of disordered proteins are 
often implicated in neurological diseases
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Can we break an IDP into smaller, more manageable, pieces in order to 
calculate it’s conformational network (divide and conquer approach)?

Is divide and conquer technique possible for 
IDPs?
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A Sethi, et al., Biophys. J., 2012

We performed 100 simulations to sample 
the entire phase space of α-synuclein

50 conformations generated 
using random coil generator 
(conformations of random 
coils in pdb database)

8 partially helical conformations 
chosen from one simulation of the 
helix turn helix conformation + 2 
native conformations of α-synuclein = 
50 partially helical simulations (five 
simulations starting from 10 different 
conformations).

Signaling Cascades: Disordered Regions
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The protein collapses and remains collapsed 
during the timescale of these simulations.

Signaling Cascades: Disordered Regions

A Sethi, et al., Biophys. J., 2012
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<r(i,j)> (in Angstroms) during 
300ns of 298K (NMR)

Standard deviation in r(i,j) 
(in Angstroms) during 

300ns of the 298K (NMR) 
simulation.

The protein stays trapped in a minima upto 
hundreds of nanoseconds.

Signaling Cascades: Disordered Regions

A Sethi, et al., Biophys. J., 2012
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The protein forms a heterogeneous collapsed 
state.

Signaling Cascades: Disordered Regions

A Sethi, et al., Biophys. J., 2012
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The protein behaves like an ideal chain in poor solvent.
There are no persistent long-range contacts in the protein.

The protein forms a heterogeneous collapsed 
state.

Signaling Cascades: Disordered Regions

A Sethi, et al., Biophys. J., 2012
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Communities are modules within the network.

Signaling Cascades: Disordered Regions
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The heterogeneous nature of the compact 
states may make it possible to split α-synuclein 

into smaller peptides

Nine communities in combined trajectory.

The communities are made of sequentially contiguous 
residues.

Signaling Cascades: Disordered Regions

A Sethi, et al., Biophys. J., 2012
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Sethi et al., Chem. Phys., In Press.

The Bayesian ensemble based on the FT-IR spectrum of 
an IDP was also consistent with its NMR chemical shifts

The)Bayesian)ensemble)of)α8
synuclein)is)semi8collapsed)
(mean)of)35)Angstroms))and)
contains)very)low)residual)
secondary)structure)(mean)of)
7%)helicity)

The)predicted)chemical)shiZs)
for)the)Bayesian)ensemble)are)
consistent)with)experimental)
observaOons

Sethi,)et)al.,)Chem)Phys,)Under)Review

Bayesian Statistics of Intrinscially Disordered 
Proteins
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The local concentration in multivalent complexes can be quantified using 
a combination of polymer models and MD simulations.
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The local concentration in multivalent complexes can be quantified using 
a combination of polymer models and MD simulations.

The distribution of the multivalent complexes further increases the 
effective equilibrium constants for complexes of different stoichiometry to 
form.

Conclusions
Signaling Cascades

IDPs can  exist in a heterogeneous collapsed state in aqueous 
environment.

The collapsed states are stabilized by contacts that remain for hundreds 
of nanoseconds.

The heterogeneity in the collapsed states might make it possible to divide 
α−Synuclein  into smaller fragments.
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