JC RK 2013-04-30

Cell

Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding

Aleksandra Helwak,^{1,2} Grzegorz Kudla,^{1,2,3} Tatiana Dudnakova,¹ and David Tollervey^{1,*}

¹Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK

²These authors contributed equally to this work

³Present address: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK

*Correspondence: d.tollervey@ed.ac.uk http://dx.doi.org/10.1016/j.cell.2013.03.043

SUMMARY

MicroRNAs (miRNAs) play key roles in gene regulation, but reliable bioinformatic or experimental identification of their targets remains difficult. To provide an unbiased view of human miRNA targets, we develpairs with the target; (2) nucleotides paired outside the seed region stabilize interactions but are reported not to influence miRNA efficacy (Garcia et al., 2011; Grimson et al., 2007); and (3) functional miRNA targets are localized close to the extremes of the 3' UTRs of protein-coding genes in relatively unstructured regions (Grimson et al., 2007). Recently,

ARTICLES

Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps

Sung Wook Chi¹, Julie B. Zang¹, Aldo Mele¹ & Robert B. Darnell¹

MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base pairing with only 6–8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein–RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c) protein–RNA complexes in mouse brain. This produced two simultaneous data sets—Ago-miRNA and Ago-mRNA binding sites—that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action *in vivo*, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.

HITS-CLIP

Cell

Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding

Aleksandra Helwak,^{1,2} Grzegorz Kudla,^{1,2,3} Tatiana Dudnakova,¹ and David Tollervey^{1,*}

¹Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK

²These authors contributed equally to this work

³Present address: MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK

*Correspondence: d.tollervey@ed.ac.uk http://dx.doi.org/10.1016/j.cell.2013.03.043

SUMMARY

MicroRNAs (miRNAs) play key roles in gene regulation, but reliable bioinformatic or experimental identification of their targets remains difficult. To provide an unbiased view of human miRNA targets, we develpairs with the target; (2) nucleotides paired outside the seed region stabilize interactions but are reported not to influence miRNA efficacy (Garcia et al., 2011; Grimson et al., 2007); and (3) functional miRNA targets are localized close to the extremes of the 3' UTRs of protein-coding genes in relatively unstructured regions (Grimson et al., 2007). Recently,

enzymatic reactions at 37°C, not 20°C

different ligase for 3' linker

linker ligation performed in solution for 16 hours

3' linker ligation performed on beads, not gel & different ligase for 3' linker

linker ligation performed in solution for 1 hour

8

Table S2A					
	ALL DATASETS		DATASET E4		
	Single reads	%	Single reads	%	
microRNA*	21,832,771	20.6	1,722,779	7.6	
mRNA	20,134,598	19.0	3,767,064	16.5	
tRNA	40,910,266	38.5	11,596,776	50.9	
rRNA	13,491,752	12.7	3,709,881	16.3	
snRNA	1,546,938	1.5	300,695	1.3	
pseudogenes	957,987	0.9	183,904	0.8	
lincRNA	519,538	0.5	138,261	0.6	
snoRNA	489,682	0.5	88,446	0.4	
other	6,288,134	5.9	1,272,717	5.6	
Total:	106,171,666		22,780,523		

Table S2B

	All	containing miRNAs	miRNA-mRNA (% of all)		
ALL DATASETS					
CHIMERIC READS:	1,700,221	563,984	66,304 (3.9%)		
collapsed reads	622,721	106,765	28,255 (4.5%)		
number of supported interactions	240,135	26,543	18,514 (7.7%)		
number of identified miRNAs			399		
number of identified mRNAs [ENSG/ENST]	6,959 / 7,390				
PUBLISHED DETAILED PROTOCOL (E4)					
CHIMERIC READS:	794,729	303,154	29,943 (3.8%)		
collapsed reads	290,221	58,337	17,237 (5.9%)		
number of supported interactions	110,148	16,386	12,198 (11.1%)		
number of identified miRNAs			340		
number of identified mRNAs [ENSG/ENST]			5,427 / 5,705		

Supp Table 2

Table S4A

		PAR-CLIP clusters	CLASH single read clusters
	Number of interactions	15,823	28,515
CLASH chimeras	18,514	1,596 (9%)	3,066 (17%)
random localization within the same gene	18,514	1,125	2,036
random localization within a random gene with similar expression level	18,514	540	968
random localization within a random gene	18,514	268	439
CLASH single read clusters	28,515	2,528 (9%)	
random localization within the same gene	28,515	1,417	
random localization within a random gene with similar expression level	28,515	702	
random localization within a random gene	28,515	343	

Table S4B

		matches with CLASH	matches with control	enrichment
	Number of interactions	6,248	6,248	
miRanda	687,208	411	29	14.2 ×
PicTar	205,263	224	9	24.9 ×
ΡΙΤΑ	192,255	195	2	97.5 ×
RNAhybrid	992,584	310	25	12.4 ×
TargetScan	54,199	170	5	34.0 ×
all predictions	2,131,509	802	59	13.6 ×

Supp Table 4

Table 1. Analysis of the Five miRNA-mRNA Base-Pairing Classes					
Class	I	II	III	IV	V
Number of interactions	3,594	3,293	4,630	3,389	3,608
Number of base-paired nucleotides	13.0 ± 0.04	15.3 ± 0.03	16.8 ± 0.03	14.6 ± 0.04	11.9 ± 0.05
Number of base-paired nucleotides in seed	5.2 ± 0.02	5.1 ± 0.02	5.0 ± 0.01	2.6 ± 0.02	3.3 ± 0.03
Interaction energy (dG)	-18.3 ± 0.04	-20.2 ± 0.06	-20.5 ± 0.05	-19.0 ± 0.05	-11.1 ± 0.05
PhyloP conservation score	0.092 ± 0.017	0.127 ± 0.018	0.097 ± 0.017	0.011 ± 0.017	0.086 ± 0.018
Efficiency of inhibition by miRNA	0.042 ± 0.007	0.052 ± 0.009	0.047 ± 0.005	0.024 ± 0.005	0.039 ± 0.004
Targets in 5' UTR	4.8%	4.2%	4.1%	5.8%	4.7%
Targets in CDS	60.7%	61.1%	61.4%	63.9%	53.4%
Targets in 3′ UTR	32.7%	32.2%	32.1%	28.1%	39.5%

Distance from the 5' end of miRNA (nt)

Position in miRNA (nt)

Ó

-50

З

GC nucleotides in motif (nt)

Supp Fig 5

20

cliffs notes

- report 18,500 miRNA-mRNA interactions
- only around 37% of seed interactions involve uninterrupted base pairing
- 16% of all interactions do not involve the seed region
- "competing endogenous RNA" from pseudogenes/lincRNAs AND abundant stable RNAs such as tRNA/rRNA to buffer temporary excess of particular miRNAs