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One sentence summary:  
Prioritization of non-coding variants in disease studies using patterns of polymorphisms 
in functional elements.  
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Abstract 
 
Thousands of personal genomes are now available; however, we do not understand the 
consequences of most of their variants, especially the non-coding ones. Here, we relate 
the full spectrum of 1000-Genomes-Phase-I variants to functional annotation, finding 
patterns aiding personal-genome interpretation. Specifically, we identify non-coding 
regions under strong, "coding-like" negative selection (“ultra-sensitive” elements). Next, 
we show variants breaking transcription-factor binding-motifs are selected against. We 
also examine the interplay between selection and connectivity in molecular networks. 
Indels and structural variants largely follow the same trend as SNPs, exhibiting depletion 
in functional elements. However, the large size of structural variants can lead to 
exceptions, such as enrichment of deletions formed by non-allelic homologous 
recombination in enhancers. In addition, we find positive selection is prevalent in many 
regulatory elements, particularly in promoters of hub genes. Finally, applying workflows 
based on these patterns of selection to cancer genomes allows identification of 
candidate drivers in non-coding regions. 
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Introduction 
 
Whole-genome sequencing has revealed millions of variants per individual in personal 
genomes. However, the functional implications of the vast majority of these variants 
remain poorly understood (1). It is well established that variants in protein-coding genes 
play a crucial role in human disease. Although it is known that non-coding regions are 
under purifying selection and variants in them have been linked to disease, their role is 
generally less well understood (2-9). Sequence conservation has been used to identify 
ultra-conserved elements under very strong negative selection in mammals (10), but an 
analogous study to identify the specific elements under strong purifying selection 
amongst humans is missing. Signatures of purifying selection identified using population-
scale variation data should provide better insights into the significance of a genomic 
region in humans than evolutionary conservation. This is because many regions of the 
genome show human-specific purifying selection, while others conserved across 
mammals show lack of functional activity and selection in humans (7).  
 
Besides SNPs, the human genome also contains other variants including small 
insertions and deletions (indels) and structural variants (SVs) (11). They actually account 
for more nucleotide differences amongst humans than SNPs, hence an understanding of 
their relationship with functional elements is crucial (12). 
 
It is also well known that there is a close relationship between positive selection on 
sequence polymorphisms amongst modern-day humans and disease (13) (for example, 
positively selected variants in Hemoglobin-B and DARC genes are associated with 
malaria resistance (14, 15)). While previous studies have used extreme population 
differentiation of polymorphic sites from HapMap to analyze positive selection in coding 
regions, a similar genome-wide analysis of the relationship of positive selection and non-
coding regulatory regions remains to be done (16).    
 
One of the primary aims of sequencing healthy genomes is to facilitate interpretation of 
disease genomes. Though recent studies have demonstrated a link between common 
variants from genome-wide association studies (GWAS) and regulatory regions (2), the 
deleterious effects of rare inherited variants and somatic cancer mutations in non-coding 
regions have not been explored to the same extent. In particular, availability of many 
cancer genome sequences (17-21) and presence of many somatic mutations in non-
coding regions call for an integrated framework to facilitate their functional interpretation.  
 
Here we use the full range of sequence polymorphisms (ranging from SNPs to SVs) from 
1,092 humans across fourteen populations to study patterns of selection (negative and 
positive) in various functional categories, especially non-coding regulatory regions (22). 
We identify specific genomic regions where variants are more likely to have strong 
phenotypic impact. The list of these regions includes a group of coding genes and 
specific sites within them, and, importantly, particular non-coding elements. By further 
comparing patterns of polymorphisms with disease mutations, we show how this list can 
aid interpretation of disease variants, leading to identification of cancer drivers. We use 
multiple experimental methods for validations, including yeast two-hybrid experiments 
and Sanger sequencing of independent cancer samples. 
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Results  
 
Details of all results and methods are provided in the Supplement, which is organized in 
a parallel fashion to the main text for easy cross-referencing. 
 
Genomic elements under strong purifying selection 
 
Enrichment of rare variants can be used to estimate the strength of purifying selection in 
different functional categories (22).  As expected, we find that sequence variants from 
1,092 individuals allow us to detect specific functional categories under strong purifying 
selection with much greater power than ~100 samples (sample size used for most 
previous studies) (2, 7, 9). In particular, the increased number of samples provides a 
better estimate of allele frequencies of SNPs in different categories (Fig S4), allowing 
identification of differential negative selection constraints amongst specific categories 
(for example, motifs of transcription factor families HMG and MADs-box). 
 
Purifying selection in coding genes 
Estimates of purifying selection obtained using enrichment of rare non-synonymous 
SNPs (derived allele frequency or DAF<0.5%) show that different gene categories 
exhibit differential selection constraints consistent with their known phenotypic 
consequences. Genes tolerant to loss-of-function (LoF) mutations are under weakest 
selection while cancer causal genes exhibit the strongest constraints (Fig 1A and Table 
S1).  GWAS genes associated with complex disorders lie in between these two 
extremes, consistent with the presence of common genetic variants in them. Thus, 
genes seen to be under strong selection here may be prioritized in future disease studies 
(Data file S1). 
 
Purifying selection in non-coding regulatory elements 
After observing variable selection in different gene groups, we analyze heterogeneous 
selection constraints in non-coding regions. With the power of 1000 Genomes Phase I 
data, we aim to find the regulatory elements under very strong selection. 
 
First we estimate the strength of negative selection in broad categories (for example, 
transcription factor binding sites (TFBSs), DNaseI hypersensitive sites (DHSs), ncRNAs, 
and enhancers) (Fig 2A). We find that, as observed before, most of these categories 
show slight but statistically significant enrichment of rare SNPs compared to the genomic 
average, while pseudogenes demonstrate a depletion (Fig 2A and Data File S2) (2).    
 
Next, we divide the broad categories into 677 specific, high-resolution ones. These span 
various genomic features that are likely to influence the extent of selection acting on the 
element. For example, TFBSs of different TF families are further divided into proximal vs 
distal and cell-line–specific vs –non-specific (Fig S5). For specific categories, we find 
heterogeneous degrees of negative selection (Fig 2B and Data File S2). For example, 
core motifs in the binding sites of the TF families HMG and Forkhead are under 
particularly strong selection, whereas those of the CBF-NFY family do not exhibit 
selection constraints (relative to genomic average) (Fig 2B). Similarly, amongst all the 
pseudogenes, polymorphic ones have the highest fraction of rare alleles consistent with 
their functional coding roles in some individuals (23). Overall, we find that 102 of the 677 
categories show statistically significant selection constraints (Data File S2).  We also find 
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that eQTLs are enriched in the binding sites of many TF families, many of which are 
under purifying selection based on our analysis (Fig 2B). The association of TF binding 
and gene expression at these loci provides a plausible explanation for their phenotypic 
effects. 
 
Identification of “sensitive” and “ultra-sensitive” regulatory regions 
Amongst the 102 categories under significantly strong selection we define the top 
~0.02% and ~0.4% regions of the genome as “ultra-sensitive” and “sensitive” 
respectively (Data File S3). These regions possess a very high fraction of rare variants, 
comparable to that for coding sequences (Fig 2C). We validated these variants by 
comparison with Complete Genomics data. The sensitive regions include binding sites of 
some chromatin and general TFs (e.g. BRF1 and FAM48A) and core motifs of some 
important TF families (e.g. JUN, HMG, Forkhead and GATA). Interestingly, for some TFs 
there is a strong difference between their proximal and distal binding sites; for example, 
ZNF274 proximal binding sites are under strong selection and belong to the ultra-
sensitive category, while its distal sites are not under negative selection. 
 
Motif-breaking and allelic SNPs 
We next examine selection constraints at nucleotide-level resolution in TFBSs. First, we 
analyze sites at which SNPs break or conserve the core binding motifs. As expected, we 
find that disruptive motif-breaking SNPs (those that decrease the motif-matching score to 
the position weight matrix) are significantly enriched for rare alleles compared to motif-
conserving SNPs (those that decrease the motif-matching score) for all TF families (p 
value < 2.2e-16) (Fig 2D). Interestingly, the difference between selection constraints on 
motif-breaking vs. -conserving SNPs varies for different TF families, possibly reflecting 
differences in the topology of their DNA binding domains (Data File S4).  
 
We also examine SNPs from a personal genome (NA12878) that show allele-specific TF 
binding in ChIP-Seq data or allele-specific expression in noncoding regions in RNA-seq 
data (with the allele-specific “activity” tagging a difference between the maternal and 
paternal chromosomes at the genomic region in question). We find that matched sites 
lacking allele-specific activity are enriched for rare variants (Fig 2E). This suggests that 
regions where allelic regulatory differences are not tolerated may be under stronger 
purifying selection (24). 
 
Tissue-specificity vs purifying selection 
We find that core motif regions bound by TFs only in a single cell-line show weaker 
negative selection than those bound in multiple cell lines (Data File S2). This is 
consistent with the greater functional importance of ubiquitously bound regions. 
 
We also examine how purifying selection constraints vary amongst coding genes and 
DHSs with tissue-specific activity (Fig 1B). We find pronounced differences between 
tissues, with brain- (p value = 5.08e-10) and ovary- (p value = 6e-03) specific genes 
showing significantly higher selection constraints than other genes (Fig 1B and Table 
S2). Of tissue-specific DHSs, the strongest signal of purifying selection is in connective 
tissue, foreskin and spinal cord. Our results suggest that deleteriousness of both coding 
and regulatory variants depends not only on how they affect the function of the cell, but 
also on which tissues are affected.  
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Purifying selection in the human proteome and regulome 
 
Genes do not act in isolation, but interact with each other to perform specific tasks. Here 
we investigate the interplay between gene interactions and selection. 
 
Relationship with network connectivity 
We find a significant negative correlation between the DAF of SNPs and the degree 
centrality of genes in physical protein-protein interaction (PPI) (rho = -0.05; p value < 
2.2e-16) and regulatory networks (rho = -0.02; p value = 7.3e-10). Thus, consistent with 
previous studies, we find that in general hub genes tend to be under stronger negative 
selection constraints (24, 25). Indeed, we find that centralities of different gene 
categories in the PPI network follow the same trend as differential selection constraints 
for SNPs: causal cancer genes show the highest connectivity and LoF-tolerant genes 
show the least with GWAS genes in the middle (Figs 1A and 3A). These results show 
that the interactions of a gene likely influence the strength of purifying selection acting 
upon it. 
 
Strong selection at interaction interfaces 
Hub proteins tend to have more interaction interfaces in the PPI network (26). Hence a 
corollary of the above is that interaction interfaces are themselves under strong 
selection, in turn leading to stronger constraints on hub proteins. Indeed, we find that 
SNPs disrupting interaction interfaces are enriched for rare alleles compared to all 
missense SNPs (p value < 2.2e-16) (Fig 3B). To further substantiate this conclusion, we 
test a specific case of Wiskott-Aldrich syndrome protein (WASP) using yeast two-hybrid 
(Y2H) experiments (27). We find that all three single nucleotide variants (SNVs) at 
WASP interaction interfaces disrupt its interactions with other proteins (Fig 3C).  This 
observation provides biochemical support for the observed statistical trend of strong 
selection at interaction interfaces. 
  
Relationship of functional elements with indels and larger SVs  
 
Next we analyze the relationship of small indels (<50 bp) as well as SVs (large deletions) 
with functional annotations. Similar to the results for non-synonymous SNPs, we find that 
genes linked with diseases show stronger selection against indels while LoF-tolerant 
genes show weaker constraints (relative to all genes), with a consistent trend for indels 
overall and frameshift indels in particular (Fig 4A, Fig S10 and Table S1). 
 
The wide range of SV sizes (from ~50 bp to ~1Mb) leads to their diverse modes of 
intersection with functional elements; for example, a single SV breakpoint can split an 
element, a smaller SV can cut out a portion of a single element, or a large SV can engulf 
an entire element. To analyze the diverse effects of SVs, we computed the number of 
SVs that overlap with each functional category relative to a randomized control set. As 
expected, we find that coding genes (both coding sequences and gene elements 
including UTRs and introns) are depleted for SVs, suggesting that SVs that affect gene 
function are in general deleterious in the genome (Fig 4B) (11). However, when we 
further break down the mode of SV intersection with genes into partial (where an SV 
breakpoint splits a gene) and whole (where SV engulfs the entire gene), we find that, 
surprisingly, SVs are enriched for whole but depleted for partial gene overlap. This 
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suggests that partial gene overlaps with SVs are under stronger selection than whole 
gene overlaps, possibly since whole gene deletions and duplications may facilitate gene 
shuffling in the genome. Furthermore, another category of gene-related elements, 
pseudogenes, is enriched for SV intersection, consistent with pseudogene formation 
mechanisms by either duplication or retrotransposition.  
 
Consistent with our expectations from analysis of SNPs, we find that SVs tend to be 
depleted for non-coding regulatory elements such as binding site motifs and enhancers 
(Fig 4B).  However, surprisingly, enhancer elements are enriched for SVs formed by 
non-allelic homologous recombination (NAHR). This observation is further supported by 
high aggregation signal of activating histone marks (which are associated with 
enhancers, e.g. H3K4me1) around NAHR breakpoints (Fig 4C and Fig S11). The 
association of enhancers and NAHR deletions may be explained as follows: the 3D 
chromosomal structure in the nucleus brings enhancer elements into close proximity with 
the transcription start site of a gene (involving DNA “looping”) – if these two ʻnon-allelicʼ 
loci contain homologous sequences, is favorable for NAHR to occur. 
 
 
Functional implications of positive selection amongst human populations 
 
Negative selection is widespread in the genome and few regions escape its influence; 
nevertheless, some positions within negatively selected regions also experience positive 
selection (13). We have previously identified and experimentally validated one category 
of variants that are strong candidates for positive selection: sites at which pairs of 
continental populations show extreme differences in the frequency of the derived allele 
(HighD sites) (22). Here we examine the functional signatures of positive selection in the 
same fashion as we have done for negative selection – in coding genes, non-coding 
regulatory elements and networks of gene interactions. We note that the functional 
analysis of positive selection using highly differentiated sites is limited to SNPs, due to 
the low numbers of such indels and SVs in functional categories. 
 
Positive selection in coding genes 
Among coding elements, we observe enrichment of HighD sites in missense SNPs and 
UTRs (Fig 5A). Next, we examine different gene categories and observe that some 
disease gene groups (those in the OMIM, HGMD and GWAS catalogs) are enriched for 
HighD SNPs (Fig S12). Mutations in disease genes are likely to have strong phenotypic 
impacts and it is possible that some of these mutations confer advantage for local 
adaptation. For example, while loss-of-function mutations in ABCA12 lead to the severe 
skin disorder Harlequin Ichthyosis (28), we find that a SNP within the second intron of 
this gene is a HighD site (DAF >90% in Europe and East Asia; 13% in Africa), possibly 
reflecting adaptations of the skin to lower levels of sunlight outside of Africa.  
 
Positive selection in non-coding regulatory regions 
Similar to our analysis of negative selection, we analyzed the enrichment of HighD sites 
in broad as well as specific non-coding categories. We find that HighD sites are 
significantly enriched in many non-coding categories (Fig 5A). These include regions of 
open chromatin in multiple cell-lines (cell-line non-specific DHSs), distal DHSs and 
binding sites of sequence-specific TFs (specifically those in ZNF and NR families). 
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Positive selection and gene interaction networks  
We find that, as expected, coding genes with HighD SNPs tend to have lower degree 
centralities in both PPI and regulatory networks (although the small number of these 
cases does not give rise to statistical significance) (Fig 5B and Fig S13) (25). The 
availability of a comprehensive genome-wide catalog of HighD sites also allows us to 
relate positive selection in TFBSs to the topology of the human regulatory network. In an 
opposite trend to genes (for which positive selection occurs on the network periphery), 
we find that HighD sites in TFBSs tend to occur in hub promoters (p value = 0.02) (Fig 
5B). While it has been proposed previously that mutations in cis-elements in regulatory 
networks might play a significant role in development, our study shows that indeed hub 
promoters have undergone adaptive evolution (29, 30). 
 
Polymorphisms vs. disease variants 
 
One of the major aims of understanding functional properties of sequence 
polymorphisms is to identify disease-causing variants in personal genomes. In this 
section we show how the patterns of selection in functional elements described above 
can practically help in disease genome interpretation. In particular, we summarize our 
results in the form of a workflow for identifying harmful variants in any genome. 
 
Inherited disease mutations 
First, we examine the presence of inherited regulatory disease-causing mutations from 
HGMD in regulatory regions classified as “sensitive” and “ultra-sensitive” (31). We find 
significant enrichment of disease-causing mutations in these regions (compared to the 
entire non-coding sequence, p value < 2.2e-16) (Fig 6A). Thus, these documented 
disease-causing variants provide strong independent validation for the high functional 
importance of sensitive regions. For example, causal mutations in congenital 
erythropoietic porphyria (a rare disorder) occurring upstream of Uroporphyrinogen III 
synthase function through disruption of GATA1 binding motif, classified as sensitive here 
(32). Similarly, the well-known disease-causing ncRNA RMRP is in the binding site of 
BRF2, classified as ultra-sensitive here (33). 
 
Somatic cancer variants 
After validating the importance of sensitive regions using known inherited disease 
mutations, we examine the functional properties of somatic cancer variants. Since 
somatic variants from diverse cancer types might exhibit very different sets of properties, 
we analyzed variants from a wide range of cancer types:  prostate, breast and 
medulloblastoma (34-36). 
 
(a) Prevalence in non-coding regions 
We find that an overwhelming number of somatic cancer variants occur in non-coding 
regulatory regions, including TFBSs, ncRNAs and pseudogenes (Fig S14). Indeed, we 
find that some non-coding elements from our functional categories show recurrent 
mutations (occurring in multiple samples), pointing to the possible role of these 
mutations as drivers  (i.e. mutations providing a selective advantage to the tumor cells) 
(Fig S15). For example, the pseudogene RP5-857K21.6 is mutated in three prostate 
cancer samples, and the promoter of RP1 is mutated in two prostate cancer samples. 
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(b) Enrichment of deleterious mutations  
Analysis of healthy and cancer tissues from the same individuals shows that somatic 
variants tend to show an enrichment of missense, LoF, sensitive and ultra-sensitive 
variants (Fig 6B, Fig S16 and Table S3). Moreover, consistent with this trend, we find 
higher TF-motif-breaking/conserving ratios for somatic variants than germline variants 
across many different samples and cancer types (Fig 6C and Table S4). Thus, somatic 
cancer variants are generally enriched for functionally deleterious mutations. 
            
Functional interpretation of disease genomes 
This enrichment of functionally deleterious mutations amongst somatic variants is likely 
because they are not under organism-level natural selection (unlike inherited disease 
mutations, including GWAS variants). Indeed, amongst all somatic mutations, those 
most deviating from patterns of natural polymorphisms are most likely to be cancer 
drivers. Consistent with this reasoning, our analysis has shown that amongst all disease 
mutations, those causing cancer occur in genes under strongest negative selection (and 
with highest network connectivity) (Fig 1A and Fig 3A). Based on this, we argue that 
somatic variants in non-coding elements under strongest selection (and those 
associated with hubs) are also likely to be cancer drivers. Thus, cancer variants provide 
a particularly suitable case study to contrast with trends of selection in functional 
elements observed here and identify the most deleterious variants. Below we discuss 
filtering of thousands of somatic variants to pick candidate drivers for further 
experimental follow-up.  
 
Our general workflow is as follows:  

Step I. Screening somatic variants against 1000 Genomes variants since driver 
mutations are not likely to be present as polymorphisms.  

Step II. Filtering out the variants that are not functionally annotated and dividing 
the remaining ones into coding and non-coding.  

Step III. Picking those that occur in regions under strong negative selection and/or 
are particularly disruptive (for example, LoF and motif-disrupting SNVs).  

Step IV. Retaining those in a network hub (for coding) or associated with a hub (for 
non-coding).  

Step V. Further prioritizing recurrent mutations (where the same functional 
element is mutated in multiple cancer samples). 

 
We demonstrate the application of this scheme to two sets of somatic variants from 
breast and prostate cancer (Fig 6D). In a breast cancer sample, this approach yields one 
non-coding SNV that is likely to have strong phenotypic consequences due to the 
following reasons: (1) It occurs in a region classified as ultra-sensitive (BRF2 binding 
site). (2) It breaks a PAX-5 TF binding motif. (3) It is associated with a network hub 
(Specifically, this locus has been annotated as a distal regulatory module with three 
potential targets genes, out of which one is a hub in the PPI network (ERCC1, degree 
centrality = 63)) (37). (4) It is recurrent – i.e. the regulatory module contains somatic 
mutations in multiple breast cancer samples. 
 
A similar approach applied to a prostate cancer sample points to two non-coding SNVs 
predicted to have strong functional consequences (Fig 6D). One of these variants in the 
ultra-sensitive category (FAM48A binding site) lies in the promoter of the WDR74 gene 
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(a hub in PPI network with degree centrality = 56). We further tested the presence of 
mutations in this binding site by PCR followed by Sanger sequencing in an independent 
cohort of 19 prostate cancer samples (38). Interestingly, we find that one sample in the 
cohort also harbors mutations in this region (Fig 6E and Fig S17). Due to the rarity of 
recurrent mutations in prostate cancer samples, this finding provides strong support for a 
likely functional role of the FAM48A binding site. 
 
 
Discussion 
In this study we present a comprehensive functional characterization of a wide spectrum 
of genomic sequence variants – ranging from SNPs to large SVs. By using 
polymorphisms from 1,092 individuals forming Phase 1 of the 1000 Genomes Project 
(22), we are able to discern patterns of natural selection in functional regions. These 
patterns can then be used to infer functional consequences of variants discovered in 
personal genomes. Our approach is especially useful for non-coding regions because of 
the vast landscape of regulatory variants and lack of standard ways to prioritize them in 
disease studies. Since somatic cancer variants are not under organism-level natural 
selection, they are particularly informative cases to demonstrate the utility of our 
approach. 
 
Firstly, we identify the specific regulatory regions under very strong selection in humans: 
the “sensitive” and “ultra-sensitive” elements. These regions comprise ~0.4% and 
~0.02% of the genome and show strong enrichment of known, inherited disease-causing 
mutations. Since they cover a small fraction of the entire genome, we propose that these 
regions can be easily probed alongside exome sequences in clinical studies. Secondly, 
we find that functionally disruptive mutations tend to be under strong selection: in an 
analogous manner to LoF variants in coding genes, variants which break motifs in TF 
binding sites are selected against. Thirdly, there is a close relationship between 
connectivity in biological networks and negative selection: higher connectivity is 
generally associated with stronger selection.  
 
We find that overall, selection against indels and large SVs acts in similar ways as 
against SNPs, though the large size of SVs sometimes leads to a complex relationship 
with functional elements. For example, though overall, functional elements are depleted 
for SVs – whole gene deletions and certain enhancer deletions are enriched. 
 
Finally, in addition to examining trends of negative selection in various functional 
elements we also analyze the occurrence of positive selection.  We find that many 
functional categories, in particular certain regulatory regions, are enriched for potentially 
positively selected SNPs. Positive selection in regulatory regions is understandable: 
mutations in cis-regulatory regions are likely to alter the binding of few specific TFs -- 
often in a tissue-specific manner, thereby modulating gene expression -- as opposed to 
mutations in the coding sequence, which generally tend to have ubiquitous and 
disruptive consequences. In personal genome studies, variants in these positively 
selected regions may be probed further for their functional and possibly advantageous 
roles. 
 
Based on the patterns of selection in functional elements, we develop a practical 
workflow for personal genome interpretation.  Application of this workflow to breast 
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cancer and prostate cancer genome leads to identification of candidate driver mutations, 
particularly in non-coding regions. Sanger sequencing of an independent cohort of 
prostate cancer samples provides further support for a regulatory variant identified as a 
possible driver. Though we use cancer genomes as specific case studies, the workflow 
presented here can be broadly used to identify the most harmful non-coding variants in 
the multitude of personal genomes expected to be sequenced in the near future. 
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Figure legends 
 
Figure 1. Fraction of rare (DAF<0.5%) SNPs in coding genes. (A) In various gene 
categories. (B) In DHSs and coding genes which show tissue-specific behaviour. 
Matching tissues for which both DHSs and gene expression data are available are 
shown in the same colors: with shades of green for endodermal, grey for mesodermal 
and blue for ectodermal origin of tissues. Error bars in both (A) and (B) denote 95% 
binomial confidence intervals. 
 
Figure 2. Fraction of rare SNPs in non-coding categories. Red dotted line represents 
genomic average. Error bars denote 95% binomial confidence intervals. (A) Broad 
categories. “Ultra-sensitive” and “sensitive” regions are those under very strong negative 
selection. TFSS, Sequence-specific transcription factors. (B) Example of specific high-
resolution categories: TFBS binding motifs separated into 15 families. “e” (superscripts in 
red) denote the enrichment of eQTLs in TFBSs of specific families. (C) Examples of 
TFBSs included in “ultra-sensitive” category. (D) SNPs which break TF motifs show an 
excess of rare alleles compared to those that conserve motifs. Examples of motifs for 
two families are also shown. (E) SNPs which do not show allele-specific behavior (-) 
show enrichment of rare alleles compared to SNPs which show allele-specific behavior 
(+). Red dotted line represents genomic average of fraction of rare SNPs in NA12878 
genome. 
 
Figure 3. SNPs in protein-protein interaction (PPI) network. (A) Degree centrality of 
coding gene categories in PPI network. (B) Fraction of rare missense SNPs at protein 
interaction interfaces is higher than all rare missense SNPs (error bars show 95% 
binomial confidence intervals) (C) Effects of SNVs at interaction interfaces on 
interactions of WASP with other proteins tested by Y2H experiments. Wild-type (WT) 
WASP interacts with all proteins shown, while each SNV disrupts its interaction with at 
least one protein. 
 
 
Figure 4. Functional annotations of indels and SVs. (A) Fraction of rare indels in coding 
gene categories. (B) Enrichment of the number of SVs intersecting each category of 
functional annotation is computed relative to a randomized background. Enrichments are 
shown in green and depletions in red. Asterisks indicate significant enrichment or 
depletion with p value < 0.05 after Bonferroni correction for multiple hypothesis testing. 
SVs intersecting various functional categories in different modes (e.g. whole/partial) are 
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shown in the schematics on the right. SVs are broken into four different formation 
mechanisms: NAHR (non-allelic homologous recombination), NH (non-homologous), TEI 
(transposable element insertion) and VNTR (variable number of tandem repeats) (C) 
Aggregation of histone signal around breakpoints of deletions formed by different 
mechanisms. Breakpoints are centered at zero. Aggregation for upstream/downstream 
regions corresponds to negative/positive distance. Signals for an activating histone mark 
(H3K4me1) and a repressive mark (H3K27me3) are shown.  
 
Figure 5. Functional characterization of positive selection. (A) Left panel shows 
frequency of HighD sites vs. matched sites for various categories. Right panel shows the 
ratio for TFBSs of specific TF families. Asterisk denotes significant enrichment after 
Benjamini-Hochberg correction for multiple hypothesis testing in both panels. “e” 
(superscripts in red) denote the enrichment of eQTLs. (B) Top left panel shows that the 
in-degree of genes with HighD missense SNPs is lower than that of all genes. Bottom 
left panel shows that in-degree of genes with HighD SNPs in their promoters is higher 
than all genes. Right panel shows the human regulatory network with edges in grey. 
Edges of some TFs are colored in light yellow for visualization. Blue nodes represent 
genes with HighD SNPs in their promoters and red nodes represent genes with HighD 
missense SNPs. Size of nodes is scaled based on their degree centrality. Nodes with 
higher centrality are bigger and tend to be in the center while those with lower centrality 
are smaller and tend to be on the periphery.  
 
Figure 6. Functional interpretation of disease variants. (A) Enrichment of HGMD 
regulatory disease-causing mutations in ultra-sensitive, sensitive and annotated regions 
compared to all non-coding regions. (B) Enrichment of functional mutations amongst 
somatic SNVs compared to germline SNVs. Mean values from seven prostate cancer 
samples are shown (variation shown in Fig S16). (C) Ratios of number of SNVs that 
conserve vs. number of SNVs that break TF-binding motifs are depicted for NA12878, 
average of 1000 Genomes Phase I samples and the average of somatic and germline 
samples from a few different cancers. Error bars represent one standard deviation. MB, 
medulloblastoma. (D) Filtering of somatic variants from a breast cancer (left) and a 
prostate cancer (right) sample leading to identification of candidate drivers. A part of the 
FAM48A binding site sequenced by Sanger sequencing in an independent cohort of 19 
prostate cancer samples is shown in green (with the coordinates of mutations observed 
in one sample).  
 
 
Supplementary Materials 
Details of all the materials and methods can be found in the Supplementary material. 
The Supplementary file also includes Figures S1 to S17 and Tables S1 to S4. Data files 
S1 to S4 are provided separately. 
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Figure S5 Broad and high-resolution categories. The numbers of sub-categories within 
each category are shown in brackets. 

 
 
 
 

 
 
 
Figure S6 Schematic randomization procedures. Null distribution is obtained by sliding 
category coordinates along the genome for 1,000 times.   
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Figure S16 Distributions of per sample ratios for somatic and matching germline SNVs 
in various functional categories across seven prostate cancer samples. 
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Supplementary Tables 

 
Table S1 Binomial test p values for comparison of different gene categories with all 
genes. Significant p values are colored in grey. 
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