Role of network topology based methods in discovering novel disease-gene associations

Emre Güney

Structural Bioinformatics Laboratory GRIB, Pompeu Fabra University (UPF) Barcelona, Catalunya, Spain

April 10, 2013

うつん 川田 スポット エット スロッ

Outline

• INTRODUCTION

• Exploiting Networks for Disease-Gene Prioritization

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- Robustness of Prioritization Methods
- Conclusions

INTRODUCTION

No Two Humans Are Identical

$image\ from\ twinsrealm.com$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

INTRODUCTION

No Two Humans Are Identical

image from twinsrealm.com

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- variations in genetic sequence
- environmental factors
- epigenetic differences

From Genotype to Phenotype

Genotype

Inheritable information coded within an organism

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

From Genotype to Phenotype

Genotype

Inheritable information coded within an organism

Phenotype

The physical manifestation of an organism

images from wikipedia.com

Variations in Human Genome

Single nucleotide variant

Insertion-deletion variant

Block substitution

Inversion variant

Copy number variant

ATTGGCCTTAACCCCCGATTATCAGGAT ATTGGCCTTAACCTCCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT ATTGGCCTTAACCC---CCGATTATCAGGAT

ATTGGCCTTAAC<mark>CCCC</mark>GATTATCAGGAT ATTGGCCTTAAC<mark>AGTG</mark>GATTATCAGGAT

ATTGGCCTT<mark>AACCCCCG</mark>ATTATCAGGAT ATTGGCCTT<mark>CGGGGGGTT</mark>ATTATCAGGAT

ATT<mark>GGCCTTAGGCCTTA</mark>ACCCCCGATTATCAGGAT ATT<mark>GGCCTTA----</mark>ACCTCCGATTATCAGGAT

Frazer et al., 2009

・ロット (四) (日) (日) (日) (日) (日)

Human Genetic Variants and Diseases

- cancer
- autism
- diabetes
- asthma
- obesity
- Crohn's disease

- Alzheimer's Disease
- schizophrenia
- Parkinson disease
- haemophilia
- Hunter syndrome
- muscular dystrophy

イロト 不同下 イヨト イヨト 一日 - ろくで

Shastry, 2002, Hirschhorn et al., 2002, Feuk et al., 2006, Eichler et al., 2007, Jr and Scherer, 2008, Stankiewicz and Lupski, 2010

• share structural and sequential features (Furney et al., 2008)

Disease-genes

- share structural and sequential features (Furney et al., 2008)
- coexpressed in the tissues related to the pathology (Goh et al., 2007)

Disease-genes

- share structural and sequential features (Furney et al., 2008)
- coexpressed in the tissues related to the pathology (Goh et al., 2007)
- highly inter-connected with each other and non-randomly positioned in the interaction network (Wachi et al., 2005, Jonsson and Bates, 2006, Goh et al., 2007, Kar et al., 2009)
 - non-essential genetic disease genes are on the periphery
 - essential genes and disease-genes with somatic mutations are central

(日) (日) (日) (日) (日) (日) (日) (日)

Disease-genes

- share structural and sequential features (Furney et al., 2008)
- coexpressed in the tissues related to the pathology (Goh et al., 2007)
- highly inter-connected with each other and non-randomly positioned in the interaction network (Wachi et al., 2005, Jonsson and Bates, 2006, Goh et al., 2007, Kar et al., 2009)
 - non-essential genetic disease genes are on the periphery
 - essential genes and disease-genes with somatic mutations are central
- show dysregulation patterns in the regulatory network (Ergun et al., 2007, Guo et al., 2007, Mani et al., 2008)

• 10% of human genes are estimated to contribute to disease phenotypes (Strausberg et al., 2003, Amberger et al., 2009)

• 10% of human genes are estimated to contribute to disease phenotypes (Strausberg et al., 2003, Amberger et al., 2009)

うつん 川田 スポット エット スロッ

• many interrelated pathways are implicated in complex diseases (Wood et al., 2007, Barabasi et al., 2011)

- 10% of human genes are estimated to contribute to disease phenotypes (Strausberg et al., 2003, Amberger et al., 2009)
- many interrelated pathways are implicated in complex diseases (Wood et al., 2007, Barabasi et al., 2011)
- incorporating relationships between genes at various levels is indispensable to characterize such pathways (*Rhodes and Chinnaiyan, 2005, Joyce and Palsson, 2006*)

うつん 川田 スポット エット スロッ

INTRODUCTION

From Parts to Whole: Systems Biology

System consisting of biomolecules

うつん 川田 スポット エット スロッ

Systems biology studies **interactions between the components** of the biological system within the framework of the biological system as a whole

images from cs.haifa.ac.il/~oren and greenpeace.org

INTRODUCTION

From Parts to Whole: Systems Biology

- metabolic
- regulatory
- genetic
- protein-protein

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Network biology is the study of these **coupled biological networks** giving rise to the behaviour of the cell (Barabasi and Oltvai, 2004)

Protein-protein Interaction Networks

 $image \ from \ bordalier institute.com$

PPI networks are scale-free (Albert et al., 2000, Barabasi and Oltvai, 2004)

- most nodes with small degrees
- a small number of "hubs"
- ultra "small world" property (Barabasi and Albert, 1999)

Robustness of Biological Systems

Tolerance to internal mechanistic failures and external changes (*Kitano, 2004*)

- feedback control (Morohashi et al., 2002)
- modularity and functional decoupling (Hartwell et al., 1999)

うつん 川田 スポット エット スロッ

• redundancy (Agrawal, 2001)

Robustness of Biological Systems

Tolerance to internal mechanistic failures and external changes (*Kitano, 2004*)

- feedback control (Morohashi et al., 2002)
- modularity and functional decoupling (Hartwell et al., 1999)
- redundancy (Agrawal, 2001)

Trade-off between robustness and fragility (Carlson and Doyle, 2002, Kitano, 2004)

ショック 川田 マール オーマット 二日 マーシック

- cancer
- diabetes
- HIV

Prioritize genes using "similarity" to known disease-genes (seeds)

guilt-by-association

image retrieved from relenet.com

guilt-by-association

images from blog.newhumanist.org.uk/2012/08/leonardo-da-vincis-last-supper.html

guilt-by-association

images from blog.newhumanist.org.uk/2012/08/leonardo-da-vincis-tast-supper.html

• direct interaction partners (Xu and Li, 2006, Oti et al., 2006, Lage et al., 2007, Pujana et al., 2007, Aragues et al., 2008, Wu et al., 2008, Ostlund, et al. 2010)

ショック 川田 マール オーマット 二日 マーシック

• direct interaction partners (Xu and Li, 2006, Oti et al., 2006, Lage et al., 2007, Pujana et al., 2007, Aragues et al., 2008, Wu et al., 2008, Ostlund, et al. 2010)

ショック 川田 マール オーマット 二日 マーシック

• clustering based (Milenkovic et al., 2010, Navlakha and Kingsford, 2010)

- direct interaction partners (Xu and Li, 2006, Oti et al., 2006, Lage et al., 2007, Pujana et al., 2007, Aragues et al., 2008, Wu et al., 2008, Ostlund, et al. 2010)
- clustering based (Milenkovic et al., 2010, Navlakha and Kingsford, 2010)
- global topology based
 - calculating shortest distance (Franke et al., 2006, Wu et al., 2008, Kohler et al., 2008, Dezso et al., 2009)
 - weighting by a diffusion kernel (Ma et al., 2007, Nitsch et al., 2010, Qiu et al., 2010)

うつん 川田 スポット エット スロッ

• simulating random walks (Kohler et al., 2008, Chen et al., 2009, Vanunu et al., 2011)

- direct interaction partners (Xu and Li, 2006, Oti et al., 2006, Lage et al., 2007, Pujana et al., 2007, Aragues et al., 2008, Wu et al., 2008, Ostlund, et al. 2010)
- clustering based (Milenkovic et al., 2010, Navlakha and Kingsford, 2010)
- global topology based
 - calculating shortest dista Kohler et al., 2008, Dez
 - weighting by a diff Qiu et al., 2010)
 - simulating random Vanunu et al., 2011)
- candidate gene information (Navlakha and Kingsford, 2010)
 2010,
 - network quality (Erten et al., 2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

Outline

• INTRODUCTION

• EXPLOITING NETWORKS FOR DISEASE-GENE PRIORITIZATION

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

• Robustness of Prioritization Methods

• Conclusions

Outline

• INTRODUCTION

Exploiting Networks for Disease-Gene Prioritization Methods

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

• Results

• Robustness of Prioritization Methods

- Methods
- Results

• Conclusions

Methods

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

GUILD framework

- NetScore
- NetZcore
- NetShort
- NetCombo

GUILD framework

- NetScore
- NetZcore
- NetShort
- NetCombo

- Functional Flow (Nabieva et al., 2005) •
- Random walk with restart (Kohler et al., 2008)
- PageRank with priors (Chen et al., 2009)
- Network propagation (Vanunu et al., 2011)

NetScore

• considers multiple shortest paths in-between the two nodes

 \mathbf{u} $\overline{m_u}$ \vdots m_v

1

$$message = \left\{ \begin{array}{c} source \\ timestamp \\ path_weight \end{array} \right\}$$

Methods

NetScore

11

S

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do $m.source \leftarrow u // source node id$ $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do for each $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do foreach $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

 \mathbf{t}

v

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

METHODS

*/

*/

*/

*/

イロト 不得下 イヨト イヨト

3

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. NetScore for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do $m.source \leftarrow u // source node id$ $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores for each $u \in V$ do foreach $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end S u v m_v^0 $m_u^{\scriptscriptstyle \lor}$ m_{s}^{o} m_{\star}^{o}

initially

Methods

NetScore end end end end end end end end u

 m_u^{\vee}

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do $m.source \leftarrow u // source node id$ $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ /* Update node scores */ for each $u \in V$ do foreach $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$

iteration 1

 $\frac{\mathbf{v}}{m_v^0}$ $\frac{\mathbf{t}}{m_t^0}$

<ロト <回ト < 回ト < 回ト < 回ト = 三 のQ()

Methods

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do $m.source \leftarrow u // source node id$ $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

 m_{\star}^{o}

3

 $\frac{\mathbf{s}}{\begin{array}{c} m_s^0 \\ m_u^1 \\ m_v^1 \end{array}}$

 $\frac{\mathbf{u}}{m_u^0}$

 $\frac{\mathbf{v}}{m_v^0}$ –

・ロト ・四ト ・ヨト ・ヨト

iteration 1
NetScore

iteration 1

u

 $\begin{array}{c} m_u^0 \\ m_s^1 \\ m_s^1 \\ m_t^1 \end{array}$

input: $G = (v, E)$ graph with score property score $v \rightarrow [0, 1]$,
weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration.
Output: $G = (V, E)$ graph with score property $score': V \rightarrow [0, 1]$.
for i=1 to nRepetition do
/* Initialize message arrays */
for each $u \in V$ do
$m.source \leftarrow u // source node id$
$m.timestamp \leftarrow 0 // the iteration when recieved$
$m.path.weight \leftarrow 1 // weights of the traveled path$
$messages(u) \leftarrow \{m\}$
end
for j=1 to nIteration do
/* Digest messages */
for each $u \in V$ do
for each $v \in \{(u, v) \in E\}$ do
for each $m \in messages(v)$ do
/* Do not accept messages from the same node
recieved during previous iterations */
if AcceptNessage(messages(u), m) then
$m.timestamp \leftarrow j$
$m.path_weight \leftarrow m.path_weight * weight(u, v)$
$messages(u) \leftarrow messages(u) \cup m$
end
end
end
/* Update node scores */
for each $u \in V$ do
for each $m \in messages(u)$ do
$score(u) \leftarrow score(u) + m.path_weight *$
score(m.source)
end
$score(u) \leftarrow score(u) / \parallel messages(u) \parallel$
end
end
end

 $\begin{array}{c} \mathbf{S} \\ \hline m_s^0 \\ m_u^1 \\ m_v^1 \end{array}$

 $\frac{\mathbf{v}}{m_v^0}$ $\frac{\mathbf{t}}{m_t^0}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへ(

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

iteration 1 $\begin{array}{cccc} \mathbf{s} & \mathbf{u} & \mathbf{v} & \mathbf{t} \\ \hline \mathbf{m}_s^0 & \mathbf{m}_u^0 & \mathbf{m}_v^0 & \mathbf{m}_t^0 \\ \mathbf{m}_u^1 & \mathbf{m}_s^1 & \mathbf{m}_s^1 \\ \mathbf{m}_v^1 & \mathbf{m}_t^1 & \mathbf{m}_t^1 \end{array} \qquad \begin{array}{c} \mathbf{v} & \mathbf{t} \\ \hline \mathbf{m}_v^0 & \mathbf{m}_t^0 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

イロト イポト イヨト イヨト

ъ

iteration 2

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

イロト イポト イヨト イヨト

э

iteration 2

NetScore

Input: G = (V, E) graph with score property score: $V \rightarrow [0, 1]$, weight property weight: $E \rightarrow [0, 1]$, nRepetition, nIteration. Output: G = (V, E) graph with score property score': $V \rightarrow [0, 1]$. for i=1 to nRepetition do /* Initialize message arrays for each $u \in V$ do m.source ← u // source node id $m.timestamp \leftarrow 0$ // the iteration when recieved $m.path.weight \leftarrow 1 // weights of the traveled path$ $messages(u) \leftarrow \{m\}$ end for i=1 to *nIteration* do /* Digest messages */ for each $u \in V$ do for each $v \in \{/u, v\} \in E$ do foreach $m \in messages(v)$ do /* Do not accept messages from the same node recieved during previous iterations */ if AcceptMessage(messages(u), m) then $m.timestamp \leftarrow i$ $m.path_weight \leftarrow m.path_weight * weight(u, v)$ $messages(u) \leftarrow messages(u) \cup m$ end end end /* Update node scores */ for each $u \in V$ do for each $m \in messages(u)$ do $score(u) \leftarrow score(u) + m.path.weight *$ score(m.source) end $score(u) \leftarrow score(u) / \parallel messages(u) \parallel$ end end end

iteration 2

NetZcore

• checks the "significance" of the neighborhood configuration

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

NetShort

- incorporates "disease-relevance" of a path
- the more seeds the path has, the shorter it is

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

NetShort

- incorporates "disease-relevance" of a path
- the more seeds the path has, the shorter it is

NetShort

ション ふゆ アメリア メリア しょうくしゃ

100

NetCombo

- combines the scores of the three methods
- calculates a z-score for each node using the score distribution of each method
- averages the z-score from all three algorithms for each node

ショック 川田 マール オーマット 二日 マーシック

$$score_{u}^{NetCombo} = \frac{1}{3} * \sum_{\substack{method \in \{NetScore, NetZcore, NetCombo\}}} \frac{score_{u}^{method} - \mu^{method}}{\sigma^{method}}$$

METHODS

Disease-gene Association Data

- OMIM (Hamosh et al., 2002)
 - expert curated human disease mutations
 - disorders merged using the first word
 - use merged sets containing at least 5 genes in the PPI network
- Goh (Goh et al., 2007)
 - 22 disorder classes w.r.t. the physiological system effected
 - manually group disease-gene associations from OMIM
- Chen (Chen et al., 2009)
 - collection of genes for 19 diseases from OMIM and GAD

うつん 川田 スポット エット スロッ

Disease-gene Association Data

- GAD: Genetic Association Database (Becker et al., 2004)
 - $\bullet\,$ disease-gene associations with both high & low significance
- CTD: Comparative Toxicogenomics Database (Davis et al., 2010)
 - direct: manually curated
 - indirect: inferred

Creating Inferred Gene-Disease Relationships

 $image\ from\ ctdbase.org$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

METHODS

Protein-protein Interaction Data

Protein-protein interaction (PPI) data is spread among various repositories

BIANA (Garcia-Garcia et al., 2010)

イロト イポト イヨト イヨト ヨー のくや

EXPLOITING NETWORKS FOR PRIORITIZATION

METHODS

Protein-protein Interaction Data

BIANA (Biological Interactions and Network Analysis)

Garcia-Garcia et al. 2010 ∧

- PPI network
 - human interactome integrated using BIANA

Database	Retrieval date
DIP	January, 2009
HPRD	September, 2007
IntAct	January, 2009
MIPS (MPACT)	October, 2008
BIOGRID	January, 2009

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- PPI network
 - human interactome integrated using BIANA

Database	Retrieval date
DIP	January, 2009
HPRD	September, 2007
IntAct	January, 2009
MIPS (MPACT)	October, 2008
BIOGRID	January, 2009

- bPPI network
 - PPI network excluding interactions detected by pull down methods

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- PPI network
 - human interactome integrated using BIANA

Database	Retrieval date
DIP	January, 2009
HPRD	September, 2007
IntAct	January, 2009
MIPS (MPACT)	October, 2008
BIOGRID	January, 2009

- bPPI network
 - PPI network excluding interactions detected by pull down methods
- Weighted bPPI network
 - bPPI network with edge weights from STRING

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Protein-protein Interaction Data

- Goh network
 - two large scale Y2H data sets (Goh et al., 2007)
- ENTREZ network
 - PPI interactions from BIND and HPRD

Protein-protein Interaction Data

Network	Nodes	Edges	Avg. degree	Highest degree
PPI	12506	205966	32.9	792
bPPI	11250	59220	10.5	475
Goh	7279	21911	6.0	176
ENTREZ	10119	49826	9.8	333

Evaluation of Classification Performance

- five-fold cross validation
- area under ROC curve (AUC)
- sensitivity at top 1%

ショック 川田 マール オーマット 二日 マーシック

Outline

• INTRODUCTION

• Exploiting Networks for Disease-Gene Prioritization

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Methods
- Results
- Robustness of Prioritization Methods
 - Methods
 - Results
- Conclusions

RESULTS

GUILD Predicts Disease-gene Association Better than Existing Network-based Prioritization Methods

Data Set	Metric	NetScore	NetZcore	NetShort	NetCombo	Fune. Flow	PageRank	Random Walk	Network Prop.
OMIM	AUC	67.49	62.99	65.63	72.09	58.55	57.03	55.36	65.97
	Sens.	20.69	19.62	15.41	21.46	22.31	10.76	14.64	23.24
Goh	AUC	67.32	61.45	55.36	67.08	54.78	52.39	49.35	54.74
	Sens.	11.61	11.05	4.88	11.34	6.22	4.00	5.69	8.66
Chen	AUC	75.92	72.80	63.11	78.41	63.56	65.30	61.78	69.07
	Sens.	18.89	12.84	9.06	17.51	12.43	6.00	9.64	15.30

GUILD Predicts Disease-gene Association Better than Existing Network-based Prioritization Methods

Data Set	Metric	NetScore	NetZcore	NetShort	NetCombo	Fune. Flow	PageRank	Random Walk	Network Prop.
OMIM	AUC	67.49	62.99	65.63	72.09	58.55	57.03	55.36	65.97
	Sens.	20.69	19.62	15.41	21.46	22.31	10.76	14.64	23.24
Goh	AUC	67.32	61.45	55.36	67.08	54.78	52.39	49.35	54.74
	Sens.	11.61	11.05	4.88	11.34	6.22	4.00	5.69	8.66
Chen	AUC	75.92	72.80	63.11	78.41	63.56	65.30	61.78	69.07
	Sens.	18.89	12.84	9.06	17.51	12.43	6.00	9.64	15.30

Guney and Oliva, 2012 \sim

Improvement over existing methods is significant

- for NetCombo in all three datasets
- for NetScore in Goh and Chen datasets

RESULTS

Prioritization Accuracy Depends on the Interaction Network Quality

Guney and Oliva, 2012

Prioritization Methods Depend on the Connectedness of Seeds Rather than the Number of Seeds

	Number of seeds	Average number of neighboring seeds	Average shortest path length between seeds
NetScore	-0.01 (0.86)	0.41 (1.1e-6)	-0.43 (2.1e-7)
NetZcore	-0.04 (0.65)	0.45 (6.7e-8)	-0.54 (2.1e-11)
NetShort	-0.38 (7.7e-6)	0.30 (4.8e-4)	-0.65 (6.6-17)
NetCombo	-0.22 (0.01)	0.31 (2.5e-4)	-0.56 (4.9e-12)
Func. Flow	-0.07 (0.43)	0.49 (1.8e-9)	-0.46 (2.4e-8)
PageRank	-0.10 (0.24)	0.53 (8.3e-11)	-0.58 (4.0e-13)
Random Walk	-0.14 (0.12)	0.53 (4.4e-11)	-0.51 (5.1e-10)
Network Prop.	-0.31 (2.5e-4)	0.43 (3.5e-7)	-0.55 (1.3e-11)

Guney and Oliva, 2012

GUILD Scores Distinguish Disease-Genes from the Rest of the Genes

Several Applications of GUILD

- implicating genes in AD (Guney and Oliva, 2012)
- extending apoptosis pathway using GUILD (Planas et al., 2012)
- prioritizing genes in bone metastatic breast cancer (Santana et al., submitted)
- drug repurposing using GUILD
- network-based prioritization of GWAS data
- disease comorbidity through common genes

イロト 不同下 イヨト イヨト 一日 - ろくで

High Scoring Subnetwork Implicated in AD

Extending Apoptosis Pathway Using GUILD

GUILD implicates ERP57 in Bone Metastatic Breast Cancer

Results

GUILD implicates ERP57 in Bone Metastatic Breast Cancer

Santana et al., submitted

ショック 川田 マール オーマット 二日 マーシック

Drug Repurposing using GUILD

イロト イポト イヨト イヨト ヨー のくや

Network-based Prioritization of GWAS Data

HumanNet

3

bPPI network
Disease Comorbidity through Common Genes

High scoring subnetwork イロト 不得下 イヨト イヨト

OMIM seeds

GUILD Web Server

Structural Bioinformatics					
Home Decumentation CUILD BIANA SBI Group					
GLIII Dify Web Server					
alzheimer Homo saplens (* Search in BIANA. Knowledge base					
Try full this for block quartings ("support (Regional Regional Reg					
Powered by Pyramid					

• free text search on UniProt, OMIM databases and GO for a given species

うつん 川田 スポット エット スロッ

- matching genes are retrieved and used as seeds
- the PPI network is compiled from DIP, HPRD, IntAct, MINT, MPact, BioGRID, BIND

GUILDify

GUILDify Web Server - Matching Proteins

35 BIANA entries are found for the query alzheimer in Homo sapiens. 2 of these entries have no interactions (not in the network).

GUILDify! using selected entries below [Options	1
NetScore (Repetition: 3 v Iteration: 2 v)	
NetZcore (Iteration: 5 (V)	
NetShort	[H

BIANA entries in the network

[Select All / None]

GUILDify

GUILDify Web Server - Results

Calculated scores for proteins in the BIANA Homo sapiens interactome: [Download all scores] [Download seed proteins]

		Proteins 21	- 40 of 11238	<< Previous Next >>
Gene ID	UniProt ID	Gene Symbol	GUILD Score	Description
1509	P07339	seed CTSD	0.7507	Cathepsin D Cathepsin D light chain Cathepsin D heavy chain
22943	O94907	seed DKK1	0.7494	Dickkopf-related protein 1
4137	P10636	seed MAPT	0.7436	Microtubule-associated protein tau
4353	P05164	seed MPO	0.7216	Myeloperoxidase Myeloperoxidase Bi kDa myeloperoxidase Bi kDa myeloperoxidase Myeloperoxidase ght chain Myeloperoxidase heavy chain
10059	O00429	seed DNM1L	0.7209	Dynamin-1-like protein
9520	P55786	seed NPEPPS	0.7116	Puromycin-sensitive aminopeptidase
22883	094985	seed CLSTN1	0.7097	Calsyntenin-1 Soluble Alc-alpha CTF1-alpha
3077	Q30201	seed HFE	0.7075	Hereditary hemochromatosis protein
26574	Q9NY61	seed AATF	0.7056	Protein AATF
27122	Q9UBP4	seed DKK3	0.7002	Dickkopf-related protein 3
55103	Q86X27	seed RALGPS2	0.6962	Ras-specific guanine nucleotide-releasing factor RaIGPS
2186	Q12830	seed BPTF	0.6880	Nucleosome-remodeling factor subunit BPTF
4973	P78380	seed OLR1	0.6875	Oxidized low-density lipoprotein receptor 1 Oxidized low-density lipoprotein receptor 1, soluble form
5408	P54317	PNLIPRP2	0.6623	Pancreatic lipase-related protein 2
83999	Q96MU8	KREMEN1	0.6362	Kremen protein 1
1208	P04118	CLPS	0.5428	Colpase
8513	P07096	DKFZp666P126, LIPF	0.5245	Gastric triacylglycerol lipase
10102	P43897	TSFM	0.4981	Elongation factor Ts, mitochondrial
339175	Q96IZ6	METTL2A	0.4968	Methyltransferase-like protein 2A
55798	O6P109	METTL2B	0.4968	Methyltransferase-like protein 2B

Outline

- INTRODUCTION
- Exploiting Networks for Disease-Gene Prioritization

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- Robustness of Prioritization Methods
- Conclusions

Outline

• INTRODUCTION

• Exploiting Networks for Disease-Gene Prioritization

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Methods
- Results

• Robustness of Prioritization Methods

- Methods
- Results

• Conclusions

Investigating Robustness of Prioritization Methods

Evaluation of network-based prioritization methods upon perturbations

- five-fold AUC performance
- bPPI network
- 19 disease phenotypes in OMIM \rightarrow seeds

Investigating Robustness of Prioritization Methods

Three types of perturbation (at various levels; 10% to 80%)

$$AUC_{perturbed}^{D}(p) = \frac{1}{n} \sum_{k=1}^{n} AUC^{D}(N(p,k))$$

イロト 不同下 イヨト イヨト 一日 - ろくで

Identification of Disease Modules

image from stanford.edu/~thkim7

- high-scoring subnetwork: proteins at top 5% and their interactions
- **disease modules**: modules in the high-scoring subnetwork identified by MCL (Enright et al., 2002) that contain at least 2 seeds ショック 川田 マール オーマット 二日 マー

Functional Enrichment Analysis

- GO term enrichment: FuncAssoc2 web service (Berriz et al., 2009)
 - all the proteins in the network used as background
 - proteins mapped to gene symbols using UniProt
 - consider GO terms with *adjusted* p-value < 0.05
- seed GO terms: GO terms enriched among seeds of the disease
- non-redundant GO terms: GO terms at least 90% semantically similar to another GO term are removed using GOSemSim package (Yu et al., 2010)

Differential Network Analysis

- differential network: get interactions from the networks 80% of whose interactions were randomly removed
 - interactions common to two best performing (in terms of AUC) randomly perturbed networks
 - excluding interactions common to two worst performing randomly perturbed networks

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Investigating Network-centric Tolerance of Diseases

Network-centric tolerance of a disease

Incapacity to effect the disease with interventions in the underlying network

• Intervention: perturbations introduced in the interaction network

うつん 川田 スポット エット スロッ

• Evaluation: recoverability of disease genes through prioritization

Investigating Network-centric Tolerance of Diseases

Network-centric tolerance of a disease

Incapacity to effect the disease with interventions in the underlying network

- Intervention: perturbations introduced in the interaction network
- Evaluation: recoverability of disease genes through prioritization

Categorizing diseases w.r.t. network-centric tolerance

Whether the disease can tolerate perturbing 50% of the interactions

Investigating Network-centric Tolerance of Diseases

Outline

• INTRODUCTION

• Exploiting Networks for Disease-Gene Prioritization

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

- Methods
- Results

• Robustness of Prioritization Methods

- Methods
- Results

• Conclusions

Dependence on the Seed Set

Percentage of perturbed seeds

seed swapping

Guney and Oliva, submitted

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Dependence Against Underlying Network

Percentage of permuted interactions

Percentage of pruned interactions

イロト 不同ト イヨト イヨト

interaction rewiring

interaction removal Guney and Oliva, submitted

ъ

Results

イロト 不同下 イヨト イヨト 一日 - ろくで

Existance of Alternative Routes Connecting Disease-genes

The Case of Alzheimer's Disease

interaction removal

AD data from Krauthammer et al., 2004 イロト 不得下 イヨト イヨト

э

Categorizing Network-centric Tolerance of Diseases

NetScore

- good overall AUC performance
- not robust to perturbations in the network

Pathophenotype		AUC	(%)		Pathophenotype	AUC (%)			
	org.	crit.	perm.	del.		org.	crit.	perm.	del.
alzheimer	78.3	64.2	62.5	62.8	lung cancer	85.0	67.5	65.8	68.4
anemia	70.3	60.2	56.4	57.9	lymphoma	79.7	64.9	62.3	71.8
ataxia	62.6	56.3	54.2	53.8	mental retardation	56.3	53.2	46.6	45.3
breast cancer	76.7	63.4	70.7	75.8	myopathy	86.0	68.0	67.3	72.0
cardiomyopathy	69.5	59.8	65.0	70.5	obesity	72.0	61.0	67.4	70.4
cataract	72.0	61.0	53.9	52.8	parkinson disease	80.0	65.0	70.9	78.5
diabetes	61.4	55.7	58.4	63.4	prostate cancer	68.0	59.0	52.7	62.7
epilepsy	62.1	56.1	47.4	47.4	schizophrenia	53.3	51.7	40.9	42.1
hypertension	70.0	60.0	47.7	51.8	systemic lupus erythematosus	86.3	68.2	64.2	72.7
leukemia	84.6	67.3	75.8	81.6					

Comparison Between Diseases

of seeds
$$(P = 0.27)$$

path length between seeds (P = 0.13)

うつん 川田 スポット エット スロッ

Comparison Between Diseases

of seed GO terms per seed $(P = 3.29e^{-3})$

of GO terms in the high-scoring subnetwork (P = 0.03)

GO Terms Common to at Least 4 Diseases

Differential Network in Breast Cancer

cell cycle checkpoint cell cycle process cellular metabolic process cellular nitrogen compound metabolic process cellular response to stimulus cellular response to stress cellular senescence DNA damage checkpoint DNA damage response, signal transduction resulting in induction DNA integrity checkpoint DNA metabolic process DNA recombination DNA repair double-strand break repair double-strand break repair via homologous recombination induction of apoptosis by intracellular signals macromolecule metabolic process metabolic process nitrogen compound metabolic process nucleic acid metabolic process positive regulation of cellular metabolic process positive regulation of cellular process positive regulation of macromolecule metabolic process positive regulation of metabolic process primary metabolic process recombinational repair regulation of apoptosis regulation of cell cycle regulation of cell death regulation of nitrogen compound metabolic process regulation of programmed cell death replicative senescence response to DNA damage stimulus response to stimulus response to stress Module seeds Adule non-seeds

 $(P = 5.97e^{-7})$

→ Ξ →

Outline

- INTRODUCTION
- Exploiting Networks for Disease-Gene Prioritization

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- Robustness of Prioritization Methods
- Conclusions

Conclusions

- GUILD exploits the global topology to rank all the genes in the network
- Prioritization performance is correlated with the connectedness of the seeds
- Existence of alternative paths connecting seeds give rise to robustness of the prioritization methods

うつん 川田 スポット エット スロッ

• Functional diversity plays an important role in defining tolerance against perturbations in the network

Acknowledgements

UPF Baldo Oliva Javier Garcia Joan Planas **Koc U.** Attila Gursoy Ozlem Keskin Nurcan Tuncbag Collaborations Angels Sierra, IDIBELL Arcadi Navarro, UPF Janusz Dutkowski, USCD David Ochoa, CNB-CSIC

sbi.imim.es

Structural Bioinformatics

UNIVERSITAT

Agència de Gestió d'Ajuts Universitaris i de Recerca

At last but not least..

Questions & Comments

Thank you for your attention!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

APPENDIX

- Supplementary Background
- Supplementary Methods
- Supplementary Results
- Bonus Projects
- Future Directions

Associating Human Genetic Variants with Diseases

linkage analysis

Broeckel and Schork, 2004, Carlson et al., 2004

Hirschhorn et al., 2002, Altshuler et al.,

イロト 不得下 不良下 不良下

-

2008, McCarthy et al., 2008

images from Kingsmore et al., 2008, genome.wellcome.ac.uk and wikipedia.com

Associating Human Genetic Variants with Diseases

- confounding genetic factors
- problems with reproducibility
- small effect sizes
- variants not necessarily correspond coding sequence

Missing heritability

Frazer et al., 2009

ショック 川田 マール オーマット 二日 マー

Disease-gene Association Databases

Database	URL				
Short variations					
1000 Genomes	www.1000genomes.org				
dbSNP	www.ncbi.nlm.nih.gov/projects/SNP				
HapMap	www.hapmap.org				
Structural variations					
dbVar	www.ncbi.nlm.nih.gov/dbvar				
DGV	projects.tcag.ca/variation				
DGVa	www.ebi.ac.uk/dgva				
General variants associated with phenotypes					
HGMD	www.hgmd.org				
OMIM	www.omim.org				
SwissVar	swissvar.expasy.org				
$GW\!AS$ and other d	association studies				
dbGaP	www.ncbi.nlm.nih.gov/gap				
EGA	www.ebi.ac.uk/ega				
GAD	geneticassociationdb.nih.gov				
NHGRI GWAS Catalog	www.genome.gov/gwastudies				
Cancer genes and variants					
ICGC	www.icgc.org				
COSMIC	<pre>sanger.ac.uk/genetics/CGP/cosmic</pre>				
Cancer Gene Census	<pre>sanger.ac.uk/genetics/CGP/Census</pre>				
Cancer Gene Index	<pre>ncicb.nci.nih.gov/NCICB/projects/cgdcp</pre>				
TCGA	cancergenome.nih.gov				

Disease-gene Association Databases

-

Database	URL				
Pharmacog	enomic genes and variants				
DrugBank	drugbank.ca				
PharmGKB	www.pharmgkb.org				
CTD	ctdbase.org				
KEGG	www.genome.jp/kegg				
Crowdsource	ced genes and variants				
Gene Wiki	en.wikipedia.org/wiki/Portal:Gene_Wiki				
SNPedia	www.snpedia.com				
WikiGenes	www.wikigenes.org				
Computationally-derived / meta databases					
GeneCards	www.genecards.org				
PhenoGO	www.phenogo.org				
PhenomicDB	www.phenomicdb.de				
DisGeNet	ibi.imim.es/DisGeNET/DisGeNETweb.html				

Capriotti et al., 2012

Disease-gene Prioritization

• Sequence, structure

- sequence conservation
- coding region length
- structural domains
- sequence motifs
- chromosomal location
- protein localization

• Non-human data (Orthology)

- information from other species
- Ontologies
 - gene, disease, phenotype and anatomic ontologies

うつん 川田 スポット エット スロッ

Disease-gene Prioritization

- Literature
 - text-mining
- Mutations
 - existing knowledge / predictions on functional and structural effects of SNPs

うつん 川田 スポット エット スロッ

- Pathway involvement
 - pathways
 - experimental / predicted PPIs
 - functional association links such as gene co-expression

Existing Approaches in Disease-gene Prioritization

Method	URL	Description
aGeneApart	www.esat.kuleuven.be/ageneapart	L
BITOLA	ibmi.mf.uni-lj.si/bitola	L
CAESAR	polaris.med.unc.edu/projects/caesar	ESPNOML
CANDID	dsgweb.wustl.edu/hutz/candid.html	ESPNL
DADA	compbio.case.edu/dada	PL
DomainRBF	bioinfo.au.tsinghua.edu.cn/domainRBF/gene	SOML
ENDEAVOR	www.esat.kuleuven.be/endeavour	ESPNOL
G2D	www.ogic.ca/projects/g2d_2	ESPOL
GeneDistiller	www.genedistiller.org	ESPNOL
GeneProspector	www.hugenavigator.net	SNML
GeneSeeker	www.cmbi.kun.nl/GeneSeeker	NL
GeneWanderer	compbio.charite.de/genewanderer/GeneWanderer	PNML
Genie	cbdm.mdc-berlin.de/tools/genie	ESPNL
Gentrepid	www.gentrepid.org	ESPL
MedSim	www.funsimmat.de	SPNOL
Existing Approaches in Disease-gene Prioritization

Method	URL	Description
MimMiner	www.cmbi.ru.nl/MimMiner	SL
PGMapper	www.genediscovery.org/pgmapper	ESPL
PhenoPred	www.phenopred.org	SPO
PINTA	www.esat.kuleuven.be/pinta	EP
PRINCE	www.cs.tau.ac.il/~bnet/software/PrincePlugin	EP
PolySearch	wishart.biology.ualberta.ca/polysearch	L
PosMed	omicspace.riken.jp/PosMed	L
PROSPECTR	www.genetics.med.ed.ac.uk/prospectr	SNML
SNPs3D	www.snps3d.org	SPNOML
SUSPECTS	www.genetics.med.ed.ac.uk/suspects	ESPNML
ToppGene	toppgene.cchmc.org	ESPNOL
TOM	www-micrel.deis.unibo.it/~tom	EP
VAAST	www.yandell-lab.org/software/vaast.html	EM

Capriotti et al., 2012

Network-based Prioritization of GWAS Data

Common drawbacks in GWAS;

- most SNPs are not causal variants
- rare variants are typically missed

Mapping SNPs to the genes (~functional units) and apply network-based prioritization methods

• Lee et al. 2011, Chron's disease and type 2 diabetes

うつん 川田 スポット エット スロッ

• Akula et al. 2011, height and Chron's disease

Trade-off Between Robustness and Fragility in Biological Systems

Biological systems are robust, however

• prone to be disrupted by certain types of rare but specialized perturbations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Trade-off Between Robustness and Fragility in Biological Systems

Biological systems are robust, however

- prone to be disrupted by certain types of rare but specialized perturbations
- these perturbations leverage the fragility of the system

Carlson and Doyle, 2002, Kitano, 2004

うつん 川田 スポット エット スロッ

SUPPLEMENTARY BACKGROUND

Functional Flow

• Propagates annotation over the edges of the network from higher scored nodes towards lower scored nodes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Nabieva et al., 2005, Bioinformatics

Random walk with restart

• simulates a random surfer model on the network where number of links a node has defines the transition (surfing) probability to that node:

$$p_{t+1} = (1-r) * Wp_t + r * p_0$$

where p_t is a vector where each element *i* holds the probability of being at node *i* of the network at time step *t*, *W* is the column normalized adjacency matrix and *r* is the restart probability.

うつん 川田 スポット エット スロッ

Kohler et al., 2008, Am. J. Hum. Genet.

PageRank with priors

• similar to random walk where a random surfer is more likely to end up in initially relevant nodes:

$$PR_{t+1}(u) = (1-d) * PR_0(u) + d \sum_{v \in Neighbors(u)} \frac{PR_t(v)}{degree(v)}$$

うつん 川田 スポット エット スロッ

where u is current node in consideration, v is a node that gives link to u, d is *damping factor*

Chen et al., 2009, BMC Bioinformatics

Network propagation

• modifies random walk with restart algorithm such that the link weight is normalized not only by number of outgoing edges but also by number of incoming edges:

$$p_{t+1} = (1-r) * W' p_t + r * p_0$$

W is the adjacency matrix whose elements are normalized by the square root of the multiplication of node degrees of the nodes that define the edge at that cell.

うつん 川田 スポット エット スロッ

Vanunu et al., 2011, Plos Comp. Bio.

Supplementary Methods

Evaluation of Classification Performance

• no negative data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Optimization of the Parameters of the Algorithms

ショック 川田 マール オーマット 二日 マー

Five-fold cross validation AUC using text-mining data

- Aneurysm
- Breast Cancer

SCAIView (Hofmann-Apitius et al., 2008)

GO Term Enrichment Analysis

- FuncAssoc2 (Berriz et al., 2009)
- proteins mapped to gene symbols using UniProt
- all the proteins in the network used as background

うつん 川田 スポット エット スロッ

 \bullet consider GO terms with adjusted $p\text{-value} \leq 0.05$

GUILD Framework

- NetScore, NetZcore, NetShort, Functional Flow and PageRank are implemented with C++ using BOOST Graph Library (BGL), with the exception of FFlow which uses a self-implemented graph algorithm
- Random walk with restart and network propagation are implemented in R
- Experimentation setup is written in Python
- R is used for statistical analysis (with ROCR package for ROC curve analysis) (Sing et al., 2005)

(日) (日) (日) (日) (日) (日) (日) (日)

Phenotypic Characterization of Genes through Biological Data Integration

ショック 川田 マール オーマット 二日 マー

Supplementary Methods

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

GUILD Predicts Disease-gene Association Better than Existing Network-based Prioritization Methods

Data Set	NetScore	NetZcore	NetShort	NetCombo	Func. Flow	PageRank	Random Walk	Network Prop.
OMIM	75.50	73.11	69.19	74.57	72.67	70.70	70.82	72.51
Goh	73.64	70.84	66.27	73.05	68.00	68.62	69.09	70.56
Chen	81.27	78.75	68.66	80.59	74.88	76.14	75.81	78.14

Weighted bPPI (bPPI with edge weights from STRING)

OMIM	73.78	72.03	68.69	76.51	62.48	61.73	58.09	69.71
Goh	72.09	66.92	59.81	71.97	59.37	56.01	51.02	57.46
Chen	83.07	80.69	69.16	84.30	69.29	72.09	66.40	73.44
Overall	74.67	71.45	66.09	76.51	62.83	62.08	57.70	66.53

Guney and Oliva, 2012

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Prioritization Methods Depend on the Connectedness of Seeds Rather than the Number of Seeds

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一 のへで

GUILD Scores Distinguish Disease-Genes from the Rest of the Genes

CTD

	Average score of direct association group	Average score of indirect association group	Average score of no- association group	P-value of direct vs indirect $(P \le p)$	P-value of direct vs no- association $(P \le p)$
AD	0.134 (0.093)	0.069 (0.046)	0.054 (0.038)	5.8e-5	2.6e-6
Diabetes	0.089 (0.085)	0.058 (0.035)	0.049 (0.028)	1.3e-3	5.2e-5
AIDS	0.123 (0.075)	0.079 (0.032)	0.071 (0.029)	1.3e-3	2.6e-4

GAD

	Number of top- ranking genes (predictions)	Number of top- ranking genes in GAD	Number of GAD genes in the network	Number of genes in the network	P-value (P ≤ p)
AD	89	13	107	9469	1.6e-11
Diabetes	56	5	183	9432	4.5e-03
AIDS	102	3	11	9477	1.9e-04

Guney and Oliva, 2012

Dependence on the Seed Set - Goh Network

イロト 不同ト イヨト イヨト

3

Percentage of perturbed seeds

seed swapping

Dependence Against Underlying Network - Goh Network

Percentage of permuted interactions

Percentage of pruned interactions

interaction rewiring

interaction removal

э

Modularity and Functional Enrichment of High Scoring Subnetworks

of modules

of seed GO terms in modules

Categorizing Network-centric Tolerance of Diseases

robust

non-robust

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 ● のへで

Comparison Between Diseases

of modules

of alternative paths

ション ふゆ アメリア メリア しょうくしゃ

Functional Similarity Between Diseases

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Supplementary Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

BONUS PROJECTS

Transcription Factors Mediating Human Cell Differentiation

of genes used as centroid

of genes used as centroid (k)

Color Key

Transcription Factors Mediating Human Cell Differentiation

Predicted state

Transcription Factors Mediating Human Cell Differentiation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Prediction of Hot Spot at Protein-Protein Interfaces

Guney et al. 2008 ∧

BONUS PROJECTS

Prediction of Hot Spot at Protein-Protein Interfaces

Interface 1yp2AB:

OVERALL CHARACTERISTICS

Protein 1y	p2: CRYS	TAL STRUC	TURE OF POT	TATO TUBER AI	P-GLUCOSE	PYROPHOSPHORYI
Interface 1yp2AB	# of Residues	# of Hot Spots	# of Conserved Residues	Avg. Conservation Score	Buried ASA (A°²)	
Chain A	34	16	16	6	1401	

 Chain A
 34
 16
 16
 6
 1401

 Chain B
 33
 15
 15
 6
 1410

 Total
 67
 31
 31
 6
 2811

External Links: 1yp2AB @ DAPPI (Interaction information)

C: Contact Residue	ing Interfa	ice	N: Neighb Residue	oring Interfac	e								
Interface	Residue		Conserv	ed Residue		Interface Hot Spot							
yp2A							lyp2B						
Position	Name	Cons. Score	ASA in Chain (A° ²)	ASA in Complex (A ^{o 2})	Туре	Hot Spot	Position	Name	Cons. Score	ASA in Chain (A°²)	ASA in Complex (A°²)	Туре	Hot Spot
47	PRO	7	6.74	6.74	N		47	PRO	7	6.96	6.96	N	
48	LEU	5	2.14	2.14	N		48	LEU	5	2.44	2.44	N	
49	GLY	7	3.86	0.46	С		49	GLY	7	5.21	0.12	С	
50	ALA	8	13.5	9.05	С		50	ALA	8	11.82	8.18	С	*
51	ASN	5	28.55	4.18	C		51	ASN	5	28.13	4.15	С	

Functional Coverages of Protein-Protein Interfaces

Tuncbag et al., 2008

Functional Coverages of Protein-Protein Interfaces

 $\langle \Box \rangle \langle \Box \rangle$ Tuncbaget al = 2008

BONUS PROJECTS

Towards Context-Specific Networks and Their Implications for Network Medicine

Mapping and analysis of chromatin state dynamics in nine human cell types

Jason Ernst^{1,2}, Pouya Kheradpour^{1,2}, Tarjei S. Mikkelsen¹, Noam Shoresh¹, Lucas D. Ward^{1,2}, Charles B. Epstein¹, Xiaolan Zhang¹, Li Wang¹, Robbyn Issner¹, Michael Coyne¹, Manching Ku^{1,3,4}, Timothy Durham¹, Manolis Kellis^{1,2}, & Bradley E. Bernstein^{1,3,4},

Focusing on cell-type-specific patterns of promoters and enhancers, we define <u>multicell activity profiles for chromatin</u> state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a

うつん 川田 スポット エット スロッ

Towards Context-Specific Networks and Their Implications for Network Medicine

Mapping and analysis of chromatin state dynamics in nine human cell types

Jason Ernst^{1,2}, Pouya Kheradpour^{1,2}, Tarjei S. Mikkelsen¹, Noam Shoresh¹, Lucas D. Ward^{1,2}, Charles B. Epstein¹, Xiaolan Zhang¹, Li Wang¹, Robbyn Issner¹, Michael Coyne¹, Manching Ku^{1,3,4}, Timothy Durham¹, Manolis Kellis^{1,2}, & Bradley E. Bernstein^{1,3,4},

Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin, state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a

Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes

Yuanfang Guan^{1,2}, Dmitriy Gorenshteyn^{3,4}, Margit Burmeister^{1,5}, Aaron K. Wong³, John C. Schimenti⁶, Mary Ann Handel⁷, Carol J. Bult⁷, Matthew A. Hibbs^{7,8}, Olga G. Troyanskaya^{3,9}*

phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissuespecific networks as compared to the global functional network. We used a testis-specific functional relationship network to

Towards Context-Specific Networks and Their Implications for Network Medicine

Adding Protein Context to the Human Protein-Protein Interaction Network to Reveal Meaningful Interactions

Martin H. Schaefer¹, Tiago J. S. Lopes², Nancy Mah¹, Jason E. Shoemaker², Yukiko Matsuoka^{2,3}, Jean-Fred Fontaine¹, Caroline Louis-Jeune⁴, Amie J. Eisfeld⁵, Gabriele Neumann⁵, Carol Perez-Iratxeta⁴, Yoshihiro Kawaoka^{2,5,6}, Hiroaki Kitano^{2,7,8,9}, Miguel A. Andrade-Navarro¹*

うして ふゆう ふほう ふほう しゅう
Towards Context-Specific Networks and Their Implications for Network Medicine

Adding Protein Context to the Human Protein-Protein Interaction Network to Reveal Meaningful Interactions

Martin H. Schaefer¹, Tiago J. S. Lopes², Nancy Mah¹, Jason E. Shoemaker², Yukiko Matsuoka^{2,3}, Jean-Fred Fontaine¹, Caroline Louis-Jeune⁴, Amie J. Eisfeld⁵, Gabriele Neumann⁵, Carol Perez-Iratxeta⁴, Yoshihiro Kawaoka^{2,5,6}, Hiroaki Kitano^{2,7,8,9}, Miguel A. Andrade-Navarro¹*

SAPIN: Structural Analysis for Protein Interaction Networks

Jae-Seong Yang¹, Anne Campagna¹, Javier Delgado¹, Peter Vanhee¹, Luis Serrano^{1,2,*}and Christina Kiel^{1,*}

うつん 川田 スポット エット スロッ

identified parts, and (iii) the identification of compatible and mutually exclusive interactions at the network level.

Towards Context-Specific Networks and Their Implications for Network Medicine

- Integration
 - proteomics
 - genetics
 - epigenetics
- Analysis
 - disease modules
 - common dysregulated pathways
 - optimum set of drugs & their targets

うつん 川田 スポット エット スロッ

Network (Poly)Pharmacology

• optimal drug combinations (Vazquez, 2009, Wang et al., 2012)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• disease comorbidity (Lee et al., 2008, Park et al., 2009)

FUTURE DIRECTIONS

Finding Multiple Target Optimal Intervention in Disease-related Molecular Network

 \downarrow \downarrow Yang et al. 2008

Future Directions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

Manuscripts Produced During the Development of the PhD Thesis

Journal Articles

- Guney E., Oliva B. Exploiting Protein-Protein Interaction Networks for Genome-wide Disease-Gene Prioritization., *PLOS One*, 2012, 10.1371/journal.pone.0043557.
- Garcia-Garcia J, **Guney E**, Aragues R, Planas-Iglesias J, Oliva B. BIANA: A software framework for compiling biological interactions and analyzing networks. *BMC Bioinformatics*, 2010, 11:56.
- Planas-Iglesias J, **Guney E**, Garcia-Garcia J, Robertson KA, Raza S, Freeman TC, Ghazal P and Oliva B. Extending signalling pathways with protein-interaction networks. Application to apoptosis. *OMICS: A journal of Integrative Biology*, 2012, 16(5): 245-256.
- Garcia-Garcia J, Bonet J, Guney E, Fornes O, Planas-Iglesias J, Oliva B. Networks of Protein-Protein Interactions: from uncertainty to molecular details. *Molecular Informatics*, 2012, 31(5): 342-362.

Book chapter

• Guney E, Sanz R, Angels S, Oliva B. Understanding Cancer Progression Using Protein Interaction Networks. Systems Biology in Cancer Research and Drug Discovery, Part 2, Springer, 2012, Pages 167-195.

ショック 川田 マール オーマット 二日 マーション

Manuscripts Produced During the Development of the PhD Thesis

In preparation / submitted

- **Guney E**, Oliva B. Robustness analysis of network-based disease gene prioritization methods points to redundancy and functional decoupling in the human interactome. *Submitted.*
- Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, **Guney E**, Oliva B, Clezardin P, Olarte OE, Loza P, Mendez-Lucas A, Perales JC, and Sierra A. A transcriptome-proteome integrated network identifies ERp57 as a hub that mediates bone metastasis. *Submitted*.
- **Guney E**, Garcia-Garcia J, Oliva B. GUILDify: A web server for phenotypic characterization of genes through biological data integration and network-based prioritization algorithms. *In preparation.*

Abstracts

• Guney E, Oliva B. Toward PWAS: discovering pathways associated with human disorders. *BMC Bioinformatics*, 2011, 12(Suppl 11):A12

ショック 川田 マール オーマット 二日 マーション

Manuscripts Produced During the Development of the Masters Thesis

Journal Articles

- Guney E, Tuncbag N, Keskin O, Gursoy A. HotSprint: database of computational hot spots in protein interfaces. *Nucleic Acids Res.*, 2008, 36:D662D666.
- Tuncbag N, Gursoy A, **Guney E**, Nussinov R, Keskin O. Architectures and functional coverage of protein-protein interfaces. *Journal of Molecular Biology*, 2008, 381(3), 785802.

Abstracts / Conference Proceedings

- Guney E, Tuncbag N, Keskin O, Gursoy A. Large Scale Identification of Spatial Motifs in Protein Interfaces. *Proc. of HIBIT'08*, Istanbul.
- Tuncbag N, Gursoy A, Guney E, Nussinov R, Tsai CJ, Keskin O. A New Dataset of Protein-Protein Interfaces. Proc. of the 51st Biophy. Soc. Ann. Meet., 2007.

ショック 川田 マール オーマット 二日 マーション