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Comparison of human, worm, and fly3 metazoan transcriptomes
* Abstract
The ENCODE and modENCODE consortia have generated large amounts of RNA -sequencing data and annotation to comprehensively describe the transcriptomes of three highly divergent animals: human, worm (C. elegans), and fly.  The (D. melanogaster).  These three organisms have remarkablyfairly consistent gene structure in terms of overall statistics related to gene structure and the usage of alternative splicing events.. Clustering thegene expression levels in the three organisms consistently reveals a number of conserved modules shared between the organisms that are highly enriched in developmental genes.  Moreover these conserved modules can be used to align the stages in worm and fly development, finding the normal embryo-to-embryo and larvae-to-larvae pairings in addition to a novel pairing between worm late-embryo and fly pupae.  We find the gene expression levels in the organisms can also be predicted quite consistently based on their upstream histone marks or, surprisingly, just a few of their upstream-binding transcription factors. For the In fact, for histone marks a "universal model" with a single set of cross -organism parameters can predict expression level for both protein coding genes and ncRNAs. A principal difference between the organisms is in their pseudogene repertoire, which reflectsreflecting their different histories. The human has many more pseudogenes. Most of these , most of which are recently processed and stem from highly expressed genes, whereas (e.g. metabolic and ribosomal proteins). In contrast, the worm and fly have fewer pseudogenes, often from highly duplicated, environmentally responsive gene families. However for the pseudogenes in all the organisms there is consistent fraction with residual biochemical (transcription and upstream binding) activity.
===========================================

* Introduction
An understanding of the transcriptome is fundamental to genome annotation and to interpreting the binding events and epigenetic modifications to the genome.  Furthermore, changes in the transcriptome are closely coupledessential to interpreting the differences between cell types. 

Over the past decade there has been an explosion in information related to the transcriptome. ENCODE (Encyclopedia of DNA Elements) and modENCODE (Model Organism Encyclopedia Of of DNA Elements) are two consortia that have recently published detailed individual-organism focused transcriptome analyses of focused on the human, worm (C. elegans), and fly transcriptomes(D. melanogaster) \cite{22955616,21177976,21179090,21177974}.

In this paper Here, we compare the transcriptomes of the these three organisms using further comprehensive and matched data generated by these the two consortia to identify organizing principles of transcription shared among all three organisms as well as those that are not.. In parallel, similar analyses comparing the chromatin organization \cite{mod2} and regulatory programs \cite{mod3} across human, worm, and fly are presented. These three phylogenetically distant metazoans are separated by >500 million years from a common ancestor. Since direct comparison using synteny is not possible at this distance, comparisons are made in terms of distant orthologs and overall principles of transcription.
 In particular, here we investigate:

PROTEIN CODING GENES & SPLICING. We compare protein coding gene annotation across the three organisms. In relation to this, we have comprehensively and uniformly annotated and quantitated alternative splicing. Alternative splicing greatly expands the number of potential protein products encoded in genomes \cite{20110989,21177976,21179090,22955616,21177968,18978772,18978789}, and this phenomenon has evolved rapidly in the vertebrate lineage perhaps contributing to greater anatomic and functional complexity \cite{23258891,23258890}. We find that the relative prevalence of the types of splicing events is broadly consistent between the three organisms but there are differences in the degree to which events change between cell-types, or states. 

PSEUDOGENES. Often referred to as “genomic fossils” \cite{17568002,16574694}, pseudogenes are disabled copies of a parent protein-coding gene. However some can be transcribed \cite{22951037,17382428}, perhaps playing regulatory roles \cite{20577206,21816204}. Previously, pseudogenes have been characterized within individual genomes \cite{17099229,22951037,11160906,12560500,15860774,12083509,16925835}. Here, based on uniform cross-organism annotation, we show that the pseudogene repertoire is quite different between human, worm, and fly and that this has important implications for genome evolution. We also highlight the a similar fraction of residual, pseudogenic biochemical activity of pseudogenes in all three organisms.

NCRNAs & NON-CANONICAL TRANSCRIPTION. A significant portion of the non-genic regions in all three species have been found to be transcribed at a low level. The biological relevance of this "non-canonical" transcription (outside of annotated protein-coding or annotated ncRNA loci) is debated \cite{15539566,15998911,20502517,21765801}. Here, we investigate the amount of this transcription and find a small but roughly comparable fraction in the three organisms.

CO-EXPRESSION MODULES. Clustering analysis on expression profiles has been useful in identifying functional modules of genes with an individual organism \cite{9843981,19114008,17021160,21177976}. Here, we develop a novel way of carrying out clustering in a coordinated fashion across species. We find that the resultant clusters fall into two categories: (1) highly conserved modules, associated with development, and (2) species-specific modules. Furthermore, we find that expression clustering, particularly based on the conserved modules, is able to "align" developmental stages in worm and fly.

EXPRESSION MODELING. Previous studies have shown that upstream transcription factor binding and histone modification signals are statistically predictive of gene expression levels \cite{22955978,22955616,22950368,21926158,21324173,20133639,19995984}. However, the generality of this result is unclear, i.e. does it represent ancient relationships or does each histone mark function in an organism specific fashion?  Here, we show that the histone modifications and transcription factor binding upstream of each gene are comparably predictive of the level of gene expression in human, worm, and fly. Moreover, we have constructed a universal model  (comprising a small number of cross-organism parameters) that works for both protein coding genes as well as ncRNAs in all three organisms.
* Transcriptome Data and Annotation
** Functional Genomics Data Sets Used
We have generated a wide range of data sets to sample the organisms’ transcriptomes broadly, so as to most comprehensively annotate all the transcribed products and estimate the changes in their expression (Fig 1; see Suppl). Briefly, the modENCODE data for worm and fly are derived from multiple time-points in their the developmental life cycle, different environmental conditions and from whole organisms, various tissue preparations, whole organisms and isolated tissues, and from cell lines. The human ENCODE data sets were produced from cell lines including those derived from primary tissues and embryonic stem cells. In addition, for a number of selected analyses, we have made use of the BodyMap 2.0 data, consisting of gene expression from 16 human tissues \cite{bodymap}. The entire data set encompasses many RNA types, including poly(A)+, poly(A)- and total RNA; both short (<50 nt) and long RNA (>200 nt); and CAGE data. In this study, we focus on whole-cell poly(A)-selected RNA-Seq data for athe most uniform comparison of the transcriptomes of the three organisms., we focus on whole-cell poly(A)+ RNA-Seq data. This “matched-compendium” includes 571 data sets with >20 billion total aligned reads in human, worm, and fly. This extremely large collection of data sets provideprovides power to detect many different classes of transcribed elements, including ncRNAs (see Suppl.). Furthermore, we selectively integrate the matched compendium with datasets of other RNA types.

In addition to the transcriptome data, incorporating histone modification data and transcription-factor binding data allows for a more comprehensive interpretation of transcription. A large number of such data sets have been generated for human, worm, and fly under similar matched conditions asto those used for transcriptome profiling \cite{mod2,mod3} and we integrate these in our analyses. For embryonic tissue, in particular, many matched factor-binding and chromatin data sets are available, so these were a particular focus for integration. The human data are derived from H1-hESC, an embryonic stem cell line, and the data for worm and fly are derived from whole embryos and their tissues.(For worm and fly, the embryo data are derived from whole embryos and their tissues, and for human, from H1-hESC, a stem cell line.)
** Annotation Sets Used
Over roughly For the last half decade the ENCODE and modENCODE projects have supported annotation efforts in the human, worm, and fly genomes.  These annotation efforts have drawn on a variety of evidence sources, primarily mRNAs and ESTs supplemented by RNA-Seq data in human, the converse in worm and fly, to annotate To annotate protein coding and non-coding regions, these efforts draw upon a variety of evidence sources (e.g. RNA-seq data and ESTs) and synthesize the results of computational pipelines with a substantial amount of manual curation.  For the protein coding and non-coding regions of the genome.  This multi-year process required the synthesis of computational pipelines with a substantial amount of manual annotation. For this comparison here, we used GENCODE v10, the output of a subproject of ENCODE, for human. For worm and fly we developed annotation sets that are based on the full RNA-Seq data sets produced by the modENCODE consortium as well as other available data. These annotations were related to WormBase WS220 and FlyBase 5.45 but extend beyond them.

The annotation of protein coding genes is currently fairly stable, whereas the annotation of non-coding elements is more fluid.  In particular, with each iteration of the annotation, the overall number of protein coding genes has not substantially changed. For instance, for the human, the number of protein coding genes was 19,599 in the first version of GENCODE and five years later is now is 20,007  (Fig S1). In contrast, the numbers of non-coding loci in the corresponding gene-sets have increased considerably. Given this fact, we have taken a two-pronged approach to comparing across organisms. For protein coding genes, we have used the current annotations and compared them without modification. However, for non-coding and pseudogene loci, we have uniformly reprocessed and harmonized the annotations to make them more comparable between organisms.

 Finally, to facilitate direct comparisons between the three species, we utilized sets of protein-coding gene orthologs with varying stringency in our analyses \cite{mod14} (see Suppl.). These include triplets of 1-to-1-to-1 orthologs as well as one-to-many and many-to-many orthology relationships.
* Comparison of Protein-Coding Genes
** Overall Characteristics
We began our comparisoncomparisons of by examining the basic characteristics of the protein -coding gene sets of the three organisms by examining their basic characteristics repertoire (Fig 2). Human and worm have ~20,000 genes whereas fly has only about 2/3 of that number. Fly and worm genes span similar genomic lengths but human genes span much larger regions (Fig 2B). While much ); most of this difference is due to the greater length size of human introns, but longer human CDSs are also longer.contribute. Individual exon lengths, however, have similar distributions between human and worm with fly having some larger exons. Human differs most obviously from fly and worm, however, in the number of exons per gene. This is also reflected in the human genome containing more than twice as many coding bases and 5’ UTR sequence as worm or fly despite having the same number of genes.

Given the difference in CDS size and exon complexity between the organisms, we revisited the question of domain complexity raised in the initial genome papers \cite{11237011,11181995}. We found that <10% of the Pfam protein domains found in fly and worm were specific to each phyla, whereas nearly 20% of human protein domains were not found in the two model organisms (models (see suppl., Fig 2C, S1S2 and Associated Data File). This is presumably shaped by both the acquisition of vertebrate-specific domains as well as the loss of ancestral bilaterian domains in fly and worm (it could also reflect ascertainment biases toward the study of human domains.) While overall most domains are shared, we found that unique combinations of domains have substantially increased in human, with only 32% of human domain combinations shared by the other two organisms (Fig 2C), whereas the corresponding numbers for fly and worm are 64% and 54%.

In analyzing the mapped RNA-Seq reads, we found that overall the distribution of reads is quite similar in fly and worm with ~95% of the reads mapping to annotated protein coding genes (CDSCDSs + UTRs). The majority of reads in human also derive from protein -coding genes, but thisthe somewhat smaller fraction (78%) perhaps reflects the fact that there is much more sequence in human outside of protein coding segments as compared to worm and fly. The RNA-Seq data also reveals the fraction of genes broadly expressed across cell lines, tissues and developmental stages. Overall, we have identified 6,912 (38%), 5,180 (25%) and 5,288 (38%) broadly expressed protein coding genes in human, worm, and fly respectively (Table S1, Suppl. and Associated Data File). Across all three organisms, the broadly expressedthese genes tend to be more highly expressed than genes specifically expressed in different cell types, and to have certain characteristic housekeeping functions, such as RNA processing, protein transport, and protein localization (see Table S1 and Fig S2).
** Comparison of Splicing of Orthologs
We next compared alternative splicing between the three organisms. Our short RNA-Seq reads can define individual splice junctions and exons, but do not allow unambiguous definitions across whole transcripts. Accordingly, we focus our analysis on these individual features.junctions and exons.  Overall, we do not find a strong conservation of splicing between orthologs, with no examples of orthologs that preservepreserving complete splicing structures across the three organisms. Moreover, there are only a few preserved splice sites in all three organisms (573 out of 37,517 unique splices in orthologs)  (Table S2). Fig 3A depicts an example, the orthologous genes KCNMA1 (human), slo-1 (worm), and slo (fly). The exon/intron organization of the genes differs significantly between the three species, and there are no orthologous alternative exons in the three genes.. 
** Comparison of Splicing in Annotation Sets
Using the protein-coding gene annotation sets described above we compared the number of annotated isoforms per gene in the three organisms (Fig 3B). (Note, by design the three annotation sets used give a conservative estimate of the number of alternative splicing events for a given gene.. See Suppl.) Consistent with recent reports \cite{18978772,18978789} we find that ~81% of human protein-coding genes express multiple mRNA isoforms. The numbercorresponding fraction is similar in worm (~74%), but less in fly (~47%). However, fly has the greatest number of "outlier" genes that potentially express a large diversity of isoforms; in particular, it has 100 genes with >50 isoforms. An extreme case is Dscam, which has over >38,000 potential isoforms \cite{10892653}.

Overall, human has the greatest number of alternative splicing events (88,492), worm has an intermediate number (30,625) and fly has the lowest number (25,756). There are many varietiesclasses of alternative splicing (e.g., exon skipping, intron retention, and alternative 5' splice sites, etc.). We determined the number each of 9 classes of alternative splicing event annotated in each species (Table S2 and Fig 3 and S2). Overall, human has the greatest number of alternative splicing events (88,492), worm has an intermediate number (30,625) and fly has the lowest number (25,756). The proportions of the different classes are broadly similar between the three organisms.). The proportions of the different classes are broadly similar between the three organisms (Table S2 and Fig 3 and S2). However, skipped exons are most abundant in human while retained introns are most abundant in fly  (Fig 3C). This may relate to differences in the splicing mechanisms.:  In human, with their large introns, exon definition predominates in which , and the splicing machinery recognizes splice sites on either side of an exon \cite{7852296}.  In fly, intron definition predominates, in which the splicing machinery coordinately assembles on the splice sites on either side of an intron \cite{8164690}.

Another difference between the three species relates to mutually exclusive splicing. In fly, there are 12 mutually exclusive splicing events that each involveinvolving more than two exons. These range from clusters of 3three alternative exons to as many as 48 alternative exons in Dscam, for a total of 128 exons.. In contrast, all mutually exclusive splicing events in human and worm involve only two exons. The mechanisms required to faithfully splice clusters of mutually exclusive exons containing only 2two and more than 2two exons are distinct \cite{18380340}, suggesting another fundamental difference in the splicing machinery of fly compared to that of human and worm.
** Comparison of Splicing Quantification
We next investigated how alternative splicing varies quantitatively between samples (distinct  conditions, tissues or developmental stages) and organisms. Because of the limitations of short-read RNA-Seq noted above, we have only quantified individual splicing events consisting of an alternatively spliced exon and its immediate flanking constitutive exons. Furthermore, we only analyzed unambiguous splicing events in which other annotated transcripts could not confound the interpretation and sites involvingthe events involve only two possible alternative splice-forms. To facilitate a consistent quantification, we uniformly processed the matched compendium with a splicing focused pipeline (see Suppl.), calculating the percent inclusion of the alternative exon in each sample. The majority of events in each species are either primarily included or skipped (Fig 3D). However, when examining each individual event class, there are some distinctions. For example, most skipped exon events in each organism have one splice-form that greatly predominates, though the nature of that differs between organisms. In particular, skipped exons are most often absent in fly and present in worm (Fig 3D). For tandem UTR events, human has a striking peak at an inclusion value of ~50% indicating that the long and short forms of the UTRs are expressed at equal levels on average. Worm also has a peak inclusion of ~50% for tandem UTRs though it is less clearly defined than in human, while most tandem UTRs in fly have an inclusion rate of  >75%.

We next examined the dynamics of alternative splicing for each splicing event by calculating the maximal change in percent inclusion over all pairs of samples for each species. We call this quantity the "switch score" and binned the splicing events into those that varied strongly (switch score >50%), moderately (25-50%), or weakly (0-25%). The majority of splicing events in fly and worm change dramatically between samples (Fig 3E).

Finally, we examined the conservation of the sequences associated with splicing, specifically skipped exons and their flanking introns. In all three species, the strongly varying exons (those associated with the highest switch scores) and the adjacent portions of their flanking introns are more conserved than moderately varying exons, and the exons that vary the least are also the least conserved (Fig 3F). This is consistent with more information content in the sequences of exons and their flanking regions for alternatively spliced exons compared to constitutively spliced ones. [[JJL: original text here is “functional sequence elements involved in regulating alternative splicing being present more commonly in exons that change dramatically, while such elements are not required to be present in exons that are constitutively included.”]]
* Pseudogenes
One particular type of non-coding element that is directly related to protein coding genes is the pseudogene. We uniformly annotated and compared the pseudogenes in all three organisms using a combination of automated pipelines and manual curation (see Suppl.). We then analyzedcompared the pseudogenes on a number of levels ranging from biotype distribution to transcription.
** Large Differences in Pseudogene Complements Reflect Evolutionary History
[[CSDS: Changed Great Differences to Large Differences + small edits]]
Overall, the pseudogenes differ greatly between the three organisms, reflecting the unique evolutionary history of each (Fig 4). It is of importance to note that the The human genome has ~12x-fold more pseudogenes than worm, which has 8x~8-fold more than fly; ratios that do not match their relative genome sizes or gene counts. Pseudogenes are classified into two groups, duplicated and processed, basedBased on their mechanism of formation (Fig 4A, Table S3a) \cite{12034841}, pseudogenes can be classified into two groups, duplicated and processed, with the later resulting from retrotransposition. We found that processed pseudogenes are enriched in human, whereas there are more duplicated pseudogenes than processed pseudogenes in worm and fly. The later enrichment of duplicated pseudogenes in fly and worm can be related to the relatively high gene duplication rate in the two species worm and fly \cite{11861885,11230161,21295484}. PreviousMoreover, previous studies \cite{12572619,1806330,9402741} suggest that the scarcity of fly pseudogenes can be explained by the high rate of DNA loss inherent to the fly genome \cite{12572619,9501496}. [[CSDS in response to MP suggestion that this can be related to the “missing” paralogs in fly, I think this would not bring any new support in trying to explain the scarcity of fly pseudogenes. Still looking for a reference though regarding the missing paralogs.]]

WeUsing sequence similarity to parent genes, we inferred the time of origin of pseudogenes, using the sequence similarity to parent genes..  Most informative is the fraction of processed of the total number of pseudogenes at different ages (see Fig 4B and Table S3). In humans, a prominent peak of processed pseudogenes fraction at 93% sequence similarity corresponds to burst of retrotransposition events ~40 million years ago, at the dawn of the primate lineage when the bulk of human pseudogenes were created. By contrast, in worm, older pseudogenes (~45% similarity) tend to be processed, whereas younger ones are more likely to be duplicated. This preponderance of recently duplicated pseudogenes in the worm relative to the human, might be related to a predisposition of the worm relate to large block duplication events in the recent evolutionary history of the worm \cite{19622155,19289596,11230161,11861885}. Moreover, the comparative analysis of chromosomal localization of pseudogenes (see Fig 4C) shows that the majority of worm pseudogenes are located near the telomeres. This  (Fig. 4C), a location is characterized by a high number of recombination events and rapid gene evolution. In ; in contrast, the human pseudogenes (both duplicated and processed) are evenly distributed along the length of the chromosome.

Our analysis showsWe find that pseudogenes arise from different progenitors in the three organisms. By In particular, by analyzing pseudogenes associated with those parents that are 1-1-1 orthologs, we observe that there is no similarity in the pseudogene complement of orthologous genes. In fact, nnot one of thethe triplets of 1-1-1 orthologous genes have associated pseudogenes in all three species (see Associated Data Files, Fig S3). An example is shown in Fig 4D: the number of RpS6 pseudogenes varies significantly among the analyzed genomes, with human having 25 mostly processed pseudogenes spread randomly over the whole genome, fly having 3 three duplicated pseudogenes clustered around the location ofnear the RpS6 gene and worm having no RpS6 pseudogenes at all.

We next studied the lineage specificity of pseudogenes in terms of their parent gene families \cite{18957444}. We next generalized this analysis from 1-1-1 orthologs to parent gene families (see Suppl. and Fig. S3). Fig 4E shows that different families dominate the pseudogene repertoire in different specieseach of the organisms, with only three families being amongst the largest in all three species -- -- kinase, histone and P-loop NTPase. For instance, fly is dominated by motor protein genes. dominate fly.  Worm tends to be dominated by chemoreceptor pseudogenes, perhaps reflecting the many duplications of this family in nematode evolution \cite{19289596,18837995} and the fact that this family is rapidly evolving \cite{11961106}.  Human also has a 7-TM family as a top pseudogene family, reflecting the duplication and divergence of the olfactory receptors.  However, the human pseudogene set tends to be dominated overall by pseudogenes of ribosomal proteins and of metabolic enzymes, ; these genes that are highly expressed, making them likely targets of retrotransposition \cite{16504170}.  Specifically, the distribution of ribosomal pseudogenes reflects the general burst of retrotranspositional events, with an enrichment in the number of pseudogenes at 93% sequence similarity corresponding to the burst of retrotransposition (see Fig  40 million years ago (Fig 4B)), and these pseudogenes tend to be more recent than those of olfactory receptor genes (Fig S3).
** Pseudogene Activity
In addition to examining their evolution, we looked for signs of biochemical activity for the pseudogenes.each pseudogene. First, we computed an expression value based on RNA-Seq data for each pseudogene annotation. We and obtained 1,441, 143, and 23 potentially transcribed pseudogenes in human, worm, and fly respectively (see Suppl., Fig 4A), representing a consistently 15% of the total.). This represents a fairly consistent fraction of the total pseudogene complement in each organism. Interestingly, we found a subset of these (~13% in human and ~30% in worm and fly) that have discordant transcription patterns with their parent genes over multiple samples (see Fig S3). The results also indicate that the transcription of pseudogenes are much more cell-type specific less broadly transcribed than protein coding genes –. Specifically, only 5.1%, 0.69%, and 4.6% of all the pseudogenes are broadly expressed in human, worm, and fly, respectively (see Suppl.suppl. and Tabletable S1);). Moreover, a largesubstantial number of pseudogenes are expressed specifically in only a single cell line or developmental stage (Fig S3).[[CSDS - in reply to BW suggestion that :”this a reflection of the loss of TF binding sites, so expression becomes more limited? Or the Finally, we found that the parent genes of broadly expressed pseudogenes tend to be broadly expressed as well (Fig S3).
movement of coding sequence next to other promoters?” I had a quick look at the distribution of TFBS in different developmental stages at it seems that indeed there is a decrease in the number of TF sites when going from embryo-larvae-pupae-adult but I am
There are a number of additional indicators of pseudogene biochemical activity, including the presence of active TF and RNA Polymerase II (Pol II) binding sites in their upstream regions of and proximal regions of "open chromatin" (as determined from histone modification data).  We thus integrated the transcriptional information with these other data to create a comprehensive map of pseudogene activity (Associated Data Files, Fig 4A and S3), grouping pseudogenes into different categories. At one extreme, completely "dead" pseudogenes -- not sure if we should speculate that the expression cell/developmental stage specificity is related to the variation in the number of TFBS. See Figure: https://www.dropbox.com/s/y47lrgbmnrzfc03/FlyTFBSvsDevStages.png ]] Also, we found that the parent genes of broadly expressed pseudogenes tend to be broadly expressed too (see Fig S3).

There are number of additional indicators of pseudogene biochemical activity, including the presence of active TF and RNA Polymerase II (Pol II) binding sites in the upstream regions of the pseudogenes and proximal regions of "open chromatin."  We integrated the transcription information with these other signs of activity to create a comprehensive map of pseudogene activity (Associated Data Files, Fig 4A, S3), grouping the pseudogenes into different categories. On one extreme, there are pseudogenes that are completely “dead”, meaning that they are not transcribed and they lack, lacking any evidence of TF and Pol II binding and active chromatin marks. They -- represent ~20% of the total pseudogenes in each of the three organisms.  On the other extreme, there are very few pseudogenes (98 in human, 40 in worm, 6 in fly) that are both transcribed and simultaneously exhibit all other active activity features (namely open chromatin, transcription factor and Pol II binding), despite the presence of mutations that disrupt the protein coding sequence. We label these pseudogenes as “highly active”.  However theThe majority of pseudogenes are intermediate between these two states. We refer to them here as "zombie". (see Fig 4A). Such pseudogenes have only a few of the classic indicators of activity. Most zombie pseudogenes are probably in the process of losing signs of biochemical activity. Importantly, because of their residual activity, zombie pseudogenes could potentially give rise to functional genomic elements, such as regulatory ncRNAs \cite{20577206}.
* ncRNAs & Non-Canonical Transcription
Unlike pseudogenes, ncRNAs are not defined in terms of proteins. Here we divide the potential ncRNAs produced by the genome into two groups: (1) those that correspond to well-known and annotated classes of ncRNAs (e.g. micro-RNAs) or (2) those that arise from regions previously un-annotated as producing mature transcripts (“non-canonical transcription”) \cite{22955620,17567993}. To consistently characterize the annotated ncRNAs in first group across the three organisms, we took the perspective that, unlike protein coding genes, only a subset of ncRNAs, are annotated consistently across organisms.  Thus we first built a subset of the annotations ("the comparable ncRNAs") that is directly comparable between the organisms. Next we added onto this set other ncRNAs that are well defined but inconsistently described between organisms. Finally, after removing all of these from the genome, as well as the exons from protein coding genes and pseudogenes, we have the fraction of the genome that is effectively un-annotated with respect to transcription, except for potentially being part of an intron. To find out how much transcription from the matched-compendium exists in this fraction we subjected each genome to uniform computational pipelines.
** Uniform Comparison of Annotated ncRNAs
The ncRNAs consistently annotated between the three organisms are shown in Fig 5C (more details on this subset in the Suppl.). ThereIn particular, there are comparable numbers of tRNAs in humans and worms with about half as many in fly. The number of lncRNAs in human is considerably greater than in worms and flies but the percentage genomic coverage percentage in the three species is, in fact, similar (0.37%, 0.18% and 0.68% for human, worm, and fly). Finally, humans have considerably more pre-miRNAs, snoRNAs and snRNAs compared to either worm or fly. Pre-miRNAs are cleaved from longer primary-miRNA (pri-miRNA) transcripts, which are either part of protein-coding genes (where the pre-miRNAs are spliced out of introns) or comprise distinct intergenic non-coding loci. Pri-miRNA transcripts are incompletely annotated at present; however, comparison of a small but similar number of examples indicates that intergenic pri-miRNA transcripts are substantially shorter in worm (~0.37kb) as compared to fly (7.4kb) or human (20kb).
Overall, the annotated ncRNAs comprise a smaller fraction of genomic coverage and RNA abundance (fraction of reads) relative to protein coding genes (Fig 5A, Table S4); the annotated ncRNAs (dominated by miRNAs and lncRNAs) are also less broadly transcribed (only 4.4%, 3.6% and 7.8% in human, worm, and fly respectively, Table S4).

The well-known ncRNA classes that are not comparably annotated include ribosomal RNAs, which are inconsistently represented in the underlying genome sequence due to their repetitive structure (see Suppl.), and piRNA precursors, which appear to be fundamentally different in the three organisms. ComparisonIn particular, comparison of piRNA precursors reveals a small number of well-annotated loci in fly and human \cite{16751777,16751776,17346786}, which can, nevertheless, occupy large genomic spaces (many >50kb). In contrast, each worm 21U locus generates 26 nt transcripts that are processed into 21 nt products, with >35,000 21U genes recognized \cite{23260138}. Interestingly, while 21U genes are very short in worm, their aggregate genomic length is within ~2-fold of the well-annotated intergenic piRNA clusters in fly and human.
** Uniform Quantification of Non-canonical Transcription
After removing all annotated ncRNAs as well as exons of protein coding genes and pseudogenes, we are left with regions of each genome that that are not transcribed into annotated, processed RNA.s. A considerable number of reads map into these "unannotated" regions (Table S4), and we uniformly processed them to identify transcriptionally active regions (TARs) (connected clusters of reads, also known as transcribed fragments or “transfrags” \cite{15539566,15998911}), using a minimum-run/maximum-gap algorithm with consistent parameters chosen for the three organisms (Fig 5C, Suppl.). We found that a significant portion of all three genomes gives rise to detectable "non-canonical" transcription; roughly an additional one-third (32 to 37%) of each genome is transcribed at above threshold levels (see Fig. 5A). Much of this occurs in the introns of annotated genes; the remaining transcription detected (201 Mb, 16 Mb, and 14 Mb in human, worm, and fly) is intergenic and occurs at low levels, comparable to the levels of transcription detected in introns in the matched compendium (see Table S4). In addition, only ~1% of the TARs are found to be broadly expressed in each of the three organisms (see Table S1). Overall, the total fraction of the genome that is transcribed -- including intronic, exonic, and non-canonical transcription -- is consistent with that previously reported for human in Djebali et al. \cite{22955620} despite the methodological differences in the analysis pipelines (see Suppl. and Fig. S4).

Finally, we identified the subset of the TARs that are most similar to existing annotated ncRNAs by applying a supervised machine-learning approach \cite{21177971} (see Suppl.), which.). Our machine-learning classifier integrates expression from multiple RNA-Seq experiments (beyond those in the matched compendium) with other features such as RNA secondary structure, sequence conservation, and chromatin modification and transcription factor binding. It was is trained on a gold-standard set of annotated ncRNAs (essentially the comparable ncRNAs, above), producing predictions that are conservative extrapolations from these. In worm, many of the supervised ncRNA predictions have been previously validated \cite{21177976,21177971}. Here, we carried out analogous validations in fly embryos and various human tissues using RT-PCR (see Suppl.). Moreover, further validations of similar ncRNAs predictions have also been carried out independently in flythese organisms as well \cite{16951679} and human \cite{,22955620,23104886}. Overall, the number of supervised ncRNA predictions is only a very small fraction of the set of all TARs. Since these represent a fairly conservative set of novel ncRNAs that appear similar to the annotated ncRNAs, it may be that the majority of ncRNAs similar to those annotated have been identified.
** Analysis of Antisense Transcription
So far, the detected non-coding transcription has, by definition, been restricted to avoid overlapping annotated transcription on the opposite strand. While a fully strand-specific analysis is not possible across all three species, we can identify orthologous loci that exhibit conserved antisense transcription, including the well-studied mammalian loci Dicer-1 and CTCF. While the protein coding genes tend to be well-conserved across manydiverse phyla, "positionally equivalent" (relative to positions in an ortholog gene) antisense transcripts are often poorly conserved even between closely related mammals \cite{16290135, 16683030}.

We identifyidentified 1,629 human, 303 fly and 18 worm protein-coding genes with annotated transcripts antisense to a mature RNA (see Associated Data Files). We find that for these human genes there is a significant enrichment of orthologs (619) with worm and fly (see Suppl.). There are no protein-coding genes that None of these orthologs have antisense annotations that are positionally conserved across all three organisms. WeHowever, we do find that 27 cases of the 619 human orthologs that have positionally conserved antisense annotations in fly. These represent a conservative estimate of the amount of antisense transcription as they rely only on annotation. We scanned for further cases of antisense transcription by identifying TARs in fly strand -specific RNA-Seq data \cite{mod9} (see Suppl.). We found 1,721 fly protein-coding genes that exhibited antisense transcription in a testes sample that was enriched for orthologs (127 out of 1,721) with positionally conserved transcription in human (28% enrichment).

** Relationship of HOT Regions and Enhancers to non-coding Non-canonical Transcription
TF binding sites distal to genes have been associated with RNA expression, also outside of annotated genes. \cite{20463730}. We determined the degree to which the characterized non-canonical transcription contributes to this effect in enhancers \cite{mod2,22955620} and distal HOT (high-occupancy target) regions \cite{mod3}. HOT regions have an overrepresentation of different transcription -factor binding sites \cite{21177976,21177974,22950945} and have previously been suggested to be associated with transcription; distal HOT regions are the subset of HOT regions that are not in promoters. We overlapped both distal HOT regions and enhancers with our TARs and supervised ncRNA predictions and found a strong, statistically significant overlap in all three organisms, compared to a randomly shuffled control (see Fig 5C, Suppl. and Table S4f). This could represent "enhancer RNAs", i.e. RNAs that are independently transcribed from enhancer regions \cite{20393465}. Moreover these results are consistent to those found in \cite{mod2} based on a different analysis with GRO-seq data.
[bookmark: _GoBack]* Expression Clustering
** Simultaneous Clustering of Expression Profiles in the 3 Organisms
We have now describedWith the three main elements of the transcriptome and the annotation; -- genes, transcripts, pseudogenes and ncRNAs. Here -- uniformly characterized, we endeavorare now in a position to characterize the manner in whichstudy how these elements function together as evinced from expression correlations over our many samples. To detect such functional co-expression modules consistently across the three species, we developed a novel method that combines co-expression profilescorrelations, which represent association between genes within an organism, and orthologous gene pairs, which represent evolutionary associations. We separately construct co-expression networks for each of the three species (see Suppl.) and then combine them via connecting orthologs from different species to form a multiplex network. We searched for densely connected modules in the this multiplex network, which could be genes in a single species connected by expression edges or genes across species connected by orthologous edges.ortholog relationships. Our algorithm is based on a q-state Potts model \cite{15601068} with an energy function that takes into account both the co-expression and ortholog links (see Suppl., Fig S5b-c). The assignment of nodes to different modules is given by the minimal energy state of the system, which was obtained by simulated annealing \cite{17813860} (see Suppl.). The procedures were We repeated the procedure multiple times to ensure the assignment of modules is robust (see Suppl).

The cross-species modules found using our method include genes from human, worm, and fly; the relative abundance of genes from each species varies from module to module. As shown in Fig 6A, there are modules dominated by genes from a single species as well as modules with genes from all three species.. As expected, the latter have more orthologs than the former and therefore are more conserved. This conservation is further supported by a more comprehensive phylogenetic analysis in which genes from the modules were compared across 55 animal species (Fig 6A) and by analyzing the GO terms of the modules each module for cross-species consistency (see Suppl. and Fig S5d1). After deriving our initial cross-species clustering, we refined it by doing an additional level of performing a clustering on just the conserved orthologs. This gave rise to 16 conserved modules (see Table S5) with at least 30 orthologous genes in each (10 orthologous triplets). These, see Table S5). Each of these modules are is enriched in variety of distinct functions, ranging from RNA processing to protein catabolism to nervous system development (see Fig S5d2).
** Using Expression modules Modules to Annotate ncRNAs
Like conventional clustering analysis, our cross-species modules can be used as an anchor for inferringto infer biological roles for genes (see Fig S5a). By Furthermore, we assigned thousands of ncRNAs and TARs to the conserved modules by correlating and anti-correlating their expression valuesprofiles with the orthologous genes in the conserved modules, we assigned thousands of ncRNAs and TARs in human, worm, and fly to the cross-species modules. Specifically, the 16 conserved modules cluster with 8641, 4931706, 79, and 5279701 annotated ncRNAs and 11410, 31993, 145818598, 9029, 4750 TARs in human, worm, and fly respectively (see Suppl. for details). The co-expression of these ncRNAs and TARs with orthologous genes suggests that they might play related functional roles. (We provide module annotations and the associated GO terms for ncRNAs and TARs for  in the three organisms in the Associated Data Files.)


For instance, our clustering includes the annotated ncRNA mir-10, which regulates neighboring HOX genes in fly and human \cite{21210939}. In our analysis, weWe found that primary transcripts for mir-10 in fly and hsa-mir-10a in human both were highly correlated with the orthologous HOX genes (Dfd in fly, HOXB4 in human) in the same co-expression module (Fig 6B). We found no analogous miRNA from worm in the same module with Dfd, HOXB4, and the worm ortholog lin-39, but found several novel worm TARs that are highly co-expressed with lin-39. In another example, we identified TARs both anti-correlated and correlated  (Fig 6B and S5e) with the sarcoglycan complex subunit gene (SGCB in human, sgcb-1 in worm, and Scgbeta in fly), which is part of a conserved module (#5) enriched for larval locomotory behavior. 


** Conserved Modules Exhibit "Hourglass Pattern" Expression Patterns
We further investigated the conserved expression modules in the light of the "hourglass hypothesis". This " that posits that all organisms go through a particular stage in embryoembryonic development (the tight point of the hourglass or the "phylotypic" stage) in which expression differences (across related organisms) among between orthologous genes are the smallest \cite{21150996,22560298,21150997}.

We examined the expression divergence between genes in D. melanogaster and their orthologs in closely related fly species \cite{21150996}.. Using microarray data \cite{21150996}, we found that, in 12 out of our 16 conserved modules, the expression divergence during the phylotypic stage is narrower (see FigureFigures 6C, Figure  and S5g). This is consistent with the canonical observation of the hourglass hypothesis, but we now at the levelsee it in terms of theour 16 modules, derived from our cross-species clustering. Most Moreover, most strikingly, during periods consistent with the documented phylotypic stages of worm and fly \cite{21150996,22560298}, the expression of genes in our 16 modules are the most tightly coordinated, as  with a single organism. This observation is evident from the high expression correlation observed between modules in worm, and the narrow expression difference between modules in fly (see Figure 6C). This observation It suggests that each of the 16 modules has its own expression profile before and after the phylotypic stage whereas the modules follow a similar expression pattern during the phylotypic stage. As Moreover, as the observation isdoes not madearise from a cross-organism comparison but from within our RNA-Seq datasets and conserved modules, it opens a new way to interpreting the hourglass hypothesis by analyzing the functional in terms of the coupling of highly conserved genes within a species.an organism. Finally, it is worthwhile to notice that, apart from protein coding genes, ncRNAs and TARs exhibit similar hourglass behavior in their expression, highlighting the a potential functional nature of developmental role for these non-coding elements (see Fig S5f).
** Expression Modules in Developmental Time-Course
** Aligning Stages in Development with Conserved Modules
Additional insight into the relationship between the conserved modules and the hourglass hypothesis can be obtained from comparing the stages in the developmental time-courses in detail.  In particular, by comparing the expression profiles of orthologous genes, we are were able to align the developmental stages in of worm and fly. To do this, we first identified stage-associated genes, genes highly expressed at a particular developmental stage but not always highly expressed across all stages, for every fly and worm developmental stage (see Suppl.). Then for every possible pair of fly and worm stages, the number of orthologous gene pairs amongst their stage-associated genes were counted. A statistically significant maximal overlap is used to align the stages.  We found that the worm stages are mapped to two sets of fly stages (Fig 7). In the first set, worm development is matched in the expected one-to-one fashion to the fly (i.e. embryos to embryos, larvae to larvae, etc). In the second set, most strikingly, worm late embryos embryonic stages are matched to the pupaefly pupal stages of the fly, suggesting , strikingly, a shared expression program between late embryogenesis and metamorphosis.

We then repeated the stage mapping analysis using just the genes in from our conserved modules exhibiting the hourglass pattern. We found that the stage-mapping alignment observed above intensifies becomes stronger (exhibiting more significant P-values. See Suppl. and Fig S5i). Moreover, the alignment based on the hourglass genes showedshows a gap, perfectly matching the phylotypic stage (Fig 7). ThisThis gap is understandable in terms of the finding above that at the phylotypic stage the expression values of the genes in the conserved modules converge, i.e. suggesting that none of them would be phylotypic stage specific. Finally, by excluding thosethe conserved modules enriched in housekeeping genes, we foundgot proportionately an even stronger resultsignal (Fig S5i). These observations indicate that the importance of a number of the conserved modules to development (in particular, Modules 2,4,5,11 and 12 from table S5).
* Modeling Gene Expression
Levels of expression are related to binding of TFs and the modification of histone proteins in the upstream region of genes. In this final section, we quantitatively integrate the transcriptome data with TF binding and chromatin data, in the upstream region of genes, trying to find  searching for statistical relationships between them. To allow for more precise matching across organisms and for better integration with the factor binding and histone modification data, we focus on the embryo, for which we havehas the best matched data-sets.
** RNA Polymerase II vs Gene Expression
First, to examine the relationship between polymerase binding and gene expression we plotted the levelvalues of Pol II bindingthese two quantities against expression using the matched embryonic datasets each other for every gene (Fig 8A, Fig S6). WeOverall, we found a substantial correlation (Spearman r=0.67 in human, 0.62 in fly, and 0.64 in worm). Despite the overall positive correlation, we found genes with abFor the majority of the orthologs (~75%) this "normal behavior; some “stalled-like”  (high levels of Pol II binding and low gene expression) and others “burst-like” (high expression and low binding). However, for the majority of the orthologs (~75%) there" was a consistent normal behavior observed consistently in all three organisms (Fig 8B), irrespective of the actual amount of expression and binding (see Suppl. and Fig S6b). However, a number of the genes deviated substantially from the trend, exhibiting in at least one organism “stalled-like” or “burst-like” behavior (high levels of Pol II binding and low gene expression or high expression and low binding). 
** TFs vs Gene Expression
We next looked for correlations between gene expression and the binding of the analyzed TFs (see Suppl.). For regions centered on the TSS, we calculated the correlation between the expression level of the downstream gene and the degree of upstream TF binding (in terms of average signal;). Fig 8C shows some examples of these correlations).. We found in general that this correlation is the greatest in magnitude, either positively for activators or negatively, for repressors at the TSS, and declines sharply away from it.

To investigate the correlations more systematically, we built a statistical model in each of the three organisms for predicting gene expression using the binding . The model integrates binding signals upstream of genes of many different TFs upstream of genes (see Suppl.). The model integrates binding information for the available TFs and to predict gene expression. It shows a high accuracy in predicting on both protein-coding genes and annotated ncRNA expressionncRNAs (see Suppl. for details on the methods and ncRNA setsncRNAs used) (Fig 8D top). As expected, the regions around the TSS contribute most to the predictionmodel, and this effect is most evident in human, perhaps reflecting its more precise TSSs. (Note, in the worm precise TSS definition is hampered by presence of splice leaders in worm transcripts.)

Surprisingly, only a relatively small setnumber of TFs are necessary for predicting expression (Fig S6). In particular, while there are ~1400 total TFs in human TFs, ~900 TFs in worm, and ~750 in fly \cite{19274049,16420670,16613907}, we find that most models with only a small number of TFs (as few as 5) are very TFs make successful in predicting gene expression.predictions. This presumably reflects the fact that the binding patterns of different TFs are not independent of each other; i.e. there exists an intricate inter-correlated structure to regulation, indicating the giving rise to a redundancy of most TFs for statistically predicting gene expression. In Fig 8E we compare our prediction model betweenmodel success across the three organisms. By examining the number of TFs required to achieve 90% prediction accuracy of the a full (>30 TF) model, we find fewer TFs are needed to do so in human than in worm or fly, perhaps reflecting that TF binding has an even more correlated structure in human (in the samples studied).
** Histone Marks vs Gene Expression
We performed an analysis similar to our "TF-model" using histone marks. Overall, these have similar correlation patterns with gene expression in all three species, exhibiting a complex spatial structure around the TSS (Fig 8C). In all three organisms, H3K4me1, H3K4me2, H3K4me3 and H3K27ac are positively correlated with gene expression, whereas H3K27me3 shows a negative correlation. In contrast, H3K36me3 shows positive correlation in worm and fly, but a weak negative correlation, particularly at the TSS, in human. (In worm and fly, high positive correlation of H3K36me3 with expression was achieved mainly in the gene body downstream of the TSS.)

We then integrated the histone marks in each organism in order to develop statistical models to predict gene expression (see Fig S6c). Overall, each model achieved high cross-validated accuracy on protein coding genes (Pearson's r of 0.81 in human, 0.73 in worm, and 0.84 in fly) (Fig 8F). The models did almost as well on ncRNAs (Fig 8D). As for the TFs, we analyzed the contribution to the model of each upstream location (Fig 8) and computed the relative importance of different histone marks to each model; similar patterns were observed in the three species (Fig 8E). For example, the promoter-associated histone marks, H3K4me2 and H3K4me3, achieved the highest relative importance in all three organisms.

Comparing the TF and histone mark models, we find the relative importance of the various upstream locations are more peaked near the TSS for the TF model, presumably reflecting the fact that histone modifications can be spread over wide regions, including the gene body, whereas functionally important TF binding is more confined to the promoter regions.. This fact is further manifest in the relative success of both classes of models in predicting protein -coding genes vs. ncRNAs. 

The histone models perform more similarly on protein -coding genes and ncRNAs than the do the TF-models -- an– understandable result, given the greater dependence of the TF model on the exact positioning of the TSS and the more precise TSS annotation of TSSs of for protein-coding genes compared to ncRNAs. Indeed, for many ncRNAs such as miRNAs the primary transcript is not annotated. at all.  In addition, there mightmay be some TFs specifically regulating non-coding RNAs (e.g. analysis of the targets of GEI-11 \cite{mod3} show that it mostly binds near ncRNAs.)
** An Organism-Independent Universal Model
Both the TF and histone-mark models were constructed in an organism-specific fashion, i.e.g. the chromatin features in an organism were used to predict the expression in the same organism. Overall, these organism-specific models achieved the highest cross-validated accuracy (Fig 8F). Nevertheless, given the similarities of the histone models in all organisms, we constructedtried to construct a universal, organism-independent model trained on data from all three organisms. This model (containing a single set of organism-independent parameters) predicts gene expression levels with high accuracy in all organisms, achieving an accuracy comparable to the organism specific models (Fig 8F). In terms of the relative importance of each feature, we found the universal model does not attribute the marks with the same importance as the organism-specific models. As might be expected, histone marks with more consistent relative importance in different organisms tend to be up-weighted in the universal model, whereas less consistent marks tend to be down-weighted.  As a result, promoter-associated marks like H3K4me2 and H3K4me3 achieve the highest relative importance in the universal model. In contrast, the enhancer mark H3K4me1 is down weighted since it shows much lower importance in the human model at the promoter in comparison to the worm and fly models, perhaps reflecting the fact that human enhancers are distant from TSS and thus are not captured by the H3k4me1 signal nearby the TSS. The universal model also down-weights H3K27me3, a repressive mark, consistent with the observation that repressive marks are less consistent in their behavior across the organisms than activating marks \cite{mod2}.

The universal model was also used to predict non-coding RNA expression (Fig 8F) without further alteration, i.e. the same set of organism-independent parameter derived from training on protein coding genes was applied to ncRNAs. (Note, other types of training are also possible: see Fig S6.) The model does quite well in human and fly however in worm the prediction accuracy suffers, perhaps because of less accurate TSS definition.

* Discussion
We compare the transcriptomes of a divergent set of animals -- human, worm, and fly -- revealing aspects of transcription that are conserved over long evolutionary time scales and which that should be fundamental to metazoans. Finding the same general results in human and model organisms provides added confidence in the robustness of the human resultsstudies and provides a rationale for detailed experimental study in the models. Our comparison, of course, also identifies differences, which can be connected to lineage-specific changes.

Starting with the commonalities, the extent of non-canonical transcription is similar in each organism, taking into account the larger size of the human genome. While this transcription represents a considerable fraction of each genome, we observe that the vast majority of these regions are transcribed at much lower levels than protein coding genes or annotated ncRNAs. Biological processes are often noisy. For example, in protein synthesis, mistakes occur about 1 in every 20,000 amino acids \cite{19129838} and DNA polymerases have been postulated to have error rates limited by the power of random genetic drift \cite{20594608}. It seems likely that transcription itself may be imprecise, resulting in some "noise".  On the other hand, some bona fide functional transcripts may be quite rare or present in higher copy numbers but in relatively few cells, especially in multi-cellular samples. Moreover, these genomic regions may represent incidental or opportunistic transcription at locations accessible to Pol II, potentially constituting a substrate for evolution. Alternatively, they may be cell-type or condition specific transcription that we do not yet have the resolution to observe. To establish a biological role for any of these RNAs will require specific efforts.

We find that we can build a simple modelstatistical models that relates the properties of the upstream 5'-endends of genes to the level of gene expression both, in terms of histone modifications and transcription factor binding., to their level of gene expression.  Somewhat surprisingly, it is possible to build an organism-independent statistical model that can predictpredicts transcription in all three organisms with a single set of parameters for both protein coding genes and ncRNAs. In evolutionary terms, the high predictive power of the same set of histone marks for gene expression in all three species implies that a basal transcription machinery involving control of chromatin architecture was established at least as early as the bilaterian common ancestor and has remained relatively stable as metazoans have diversified.since then. Furthermore, the predictive ability of the "TF-model" with only a few TFs underscores the correlated nature of upstream binding by many TFs .

Clustering of gene expression over developmental time courses in worm and fly and across all samples in humanthe matched compendium reveals a conserved set of modules consisting of protein-coding genes and ncRNAs, which carry out similar expression programs. There is suggestive evidence that many of these modules may be connected to the hourglass model of transcription in embryo development, highlighting their importance developmentally. Furthermore, expression clustering, particularly with the conserved, "hourglass" modules, can be used to align the developmental stages in the worm and fly, revealing the expected pairing (i.e. embryo-to-embryo and larvae-to-larvae) and also a novel second additional one between worm late embryo and fly pupae.

One big difference between the organisms is in their pseudogenes. In particular, there is very little commonality in the pseudogene repertoire across organisms, reflecting their very different histories over the past few hundred million years.. In particular, most human pseudogenes arose from a relatively recent burst of retrotranspositional activity. In contrast, the worm and fly pseudogenes reflect more the dead by-products of rapidly evolving and highly duplicatedduplicating families (e.g. the chemoreceptors in the worm.) However, all these organisms have a roughly similar fraction of transcribed pseudogenes that appear to be active, perhaps hinting at a similar rate of decay for pseudogenic activity.

Our comparison connects the human genome to worm and fly, where powerful experimental approaches allow for functional tests. Overall, it underscores the importance of using a range of model organisms., as this enables us to disaggregate lineage-specific adaptations from conserved biological principles.  We imagine this type of comparison could be extended in the future to encompass additional model organisms.models. 
Figure Captions
Fig 1 - Data Sets
Transcriptome profiling data have been generated for human, worm, and fly across a variety of tissues, cell lines, and developmental stages. The availability of these data sets for each organism is indicated by colored symbols next to the corresponding developmental stages and/or tissues. The symbol color represents organism (human: red, worm: green, fly: blue), whereas the shape represents different origins of the data set (circle: whole organism, square: tissues, triangle: cell line). Each symbol is followed by the number of data sets generated in that category. A detailed description of the complete data sets can be seen in the Suppl.
        	
Fig 2 - Summary Statistics for Protein-coding Genes
All data in this figure is based on the GENCODE v10 annotation for human and on the modENCODE annotations generated for this paper for worm and fly.Summary statistics for the protein coding gene annotations. (A) (top) Number of bases in 5’ UTRs (5’), 3’ UTRs (3’), coding exons (C), and introns (I), in millions of bases (black, left) and as percentage of the genome (grey, right). (bottom) Number of mapped reads in the same categories as above, in millions of reads (black, left) and as percentage of the total number of mapped reads (grey, right). For both tables, relative fractions in each category are visualized in radar plots (right). (B) Distributions of key summary statistics; note that the x axes are in log scale. (C.) (left) Venn diagram of protein domains (from the Pfam database version 26.0, \cite{22127870}) present in annotated protein-coding genes in each species. (right) Shared domain combinations. (For more information on domain combinations, see Fig S2a.)

Fig 3 - Alternative Splicing in Human, Worm, and Fly
(A) Orthologous genes do not share the same exon/intron structure or alternative splicing. (B) Distribution of the number of isoforms per gene. (C) Comparison of the fraction of various alternative splicing eventsevent classes in human, worm, and fly. Skipped -- skipped exons “SE”, retained introns “RI”, alternative 3' splice sites “A3SS”, alternative 5' splice sites “A5SS”,  alternative first exons “AFE”, alternative last exons “ALE”, tandem 3' UTRs “TandemUTR”, coordinately skipped exons “CSE”, and mutually exclusive exons “MXE”. (D) Minor isoforms Percent inclusion for different events per species. (Selected events are shown. All events are in the Fig S2f.) (E) Switch scores per species. (See text for definition.) (F) ConservationSequence conservation of intron-exon junctions in various switch -score classesgroups in human, worms, and flies.

Fig 4 - Pseudogenes
Triway comparison of pseudogenes in human, worm, and fly. (A) Pseudogene statistics. The pie charts show the pseudogene distribution as function of biotype in the three organisms.  There are three classes: processed, duplicated, and ambiguous pseudogenes (the biotype could not be determined based on the available data) . The tree charts differentiate the pseudogenes in human, worm, and fly based on their transcriptiontranscriptional evidence and additional activity features (namely TF binding, Pol II binding, and active chromatin). The pseudogenes are classified in three groups: “highly active” (are transcribed and have all the additional activity features), “zombie” (can be either transcribed and nontranscribed and have only some of the additional activity features), and “dead” (are nontranscribed and have no additional activity features). A detailed description of the different activity classes is shown in the shadow Fig S3. (B) Sequence analysis of pseudogenes. Step plot of the relative fraction of processed pseudogene as function of age. The pseudogene age is defined by the percentage sequence similarity to parent gene. See Fig S3 for additional information regarding the differential age binning in the three organisms. (C) Distribution of pseudogene pseudogenes as function of chromosomal localization (end/telomeric site vs centre/centromeric site). The chromosome centre in human was selected as the centromere, while in worm and fly, it was defined by the geometric centre. (D) Orthology. Distribution of RpS6 pseudogenes by biotype in human, worm, and fly. The three 1-1-1 orthologous RpS6 parent genes are depicted as grey ovals. (E) Pseudogene distribution in the top protein families (PFAM) for human, worm, and fly. The full description of the family types and the PFAM IDs are shown in Fig S3.
Fig 5 - ncRNAs and Non-canonical Intergenic Transcription
Summary of the number of annotated ncRNAs, supervised ncRNA predictions and the estimates of the amount of non-canonical transcription in each of the three genomes. (A)  Table of annotated ncRNAs (miRNAs, tRNAs, snRNAs, snoRNAs,  lncRNAs and piRNAs). We also present estimates for the amount of non-canonical transcription detected (TARs) as well as supervised ncRNA predictions in each of the three organisms. This transcription is also subdivided into the fraction that occurs within introns of protein-coding genes as well as the fraction that overlaps transposable elements. See Table S4 for a shadow version of this table which includes the fraction of read counts that map to each of these elements.  (B) ROC -like plots for predicting the amount of non-canonical transcription using the sets of expressed annotations for each organism as a gold standard. The red (fly), green (worm), and blue (human) distributions show the exon discovery rate and novel TAR discovery rate for the full set of parameters using a minimum-run/maximum-gap/threshold algorithm. (C) Graph showing the overlap of enhancers \cite{mod2} and distal HOT regions \cite{mod3} with supervised ncRNA predictions and TARs in human, worm, and fly. We find that all overlap of enhancers and distal HOT regions with respect to both supervised ncRNA predictions as well as TARs are significantly enriched compared to a randomized expectation (see Suppl.). (D) Positionally conserved antisense transcription in human, worm, and fly. Antisense transcription at a monocarboxylic acid transporter locus in a, human (top) and b, fly. (bottom). In human and fly antisense transcription appears specific largely to the testes and is due to the independent transcription of a long non-coding RNA. In a, the testes-specific exons of the antisense lncRNA are indicated by red boxes.
Fig 6 -  Expression Clustering
Multi-species gene expression clustering, gene expression patterns of hourglass during embryo development, identification of intra-species ncRNAs/TARs that potentially function similarly. (A) Gene-gene co-association matrix for human, worm, and fly genes. The matrix elements represent the frequency in at which two genes are assigned to the same module in the multiple runs of the integrated clustering algorithm. Blocks along the diagonal represent modules of human, worm, and fly genes. Blocks from different species with high co-appearance frequency (off-diagonal positions) form cross-species modules. Isolated blocks form species -specific modules. A high fraction of genes in the conservative modules have orthologous partners among 56 Ensembl species. Species-specific modules, on the other hand, have few orthologs across the 56 species. (B) Two examples of standardized gene expression across stages/samples for mapped ncRNA/TARs (dashed lines) and orthologous genes (solid lines). The left figure shows ncRNA/TARs highly correlated with corresponding HOX genes orthologs in worm (lin-39), fly (Dfd) and human (HOXB4). The expression of ncRNA, mir-10, correlates strongly with Dfd in fly (r=0.66, p<6e-4 in fly)), and the expression of hsa-mir-10a highly correlates, with HOXB4 expression level (in human (r=0.88, p<2e-9).  A novel TAR (chrIII:8871234-2613) strongly correlates with lin-39 (r=0.91, p<4e-13). The right figure shows three novel TARs in human (chr19:7698570-7701990), worm (chrII:11469045-440), and fly (chr2L:2969620-772) that are negatively correlated with the expression of three orthologous genes: SGCB in human (r=-0.91, p<3e-16), sgcb-1 in worm (r=-0.86, p<2e-7), and Scgbeta in fly (r=-0.82, p<4e-8). (C) The hourglass patterns of conserved modules. In the top panel, the expression levels of a conserved module in D. melanogaster and its orthologous counterparts in other 5 flyDrosophila species are plotted against time. The x-axis represents the middle time points of two-hour periods at fly embryo stages. The boxes represent the log10 modular expression levels from microarray data of 6 Drosophila species centered by their median.s. The modular expression divergence (inter-quartile region) becamebecomes minimal during the fly phylotypic stage (brown), 8-10 hours.). In the middle panel, the boxes  show the log10 modular expression levels of 16 conserved modules in D. melanogaster fly using only. modENCODE RNA-seq data. The modular expression levels have the minimal variance across 16 conserved modules at the phylotypic stage (brown) in the single species.D. melanogaster. The bottom panel shows the modular expression correlations perover a sliding 2-hour window (Pearson correlation per 5 stages, middle time of two-hour period in x-axis) among 16 modules in worm. We found that the modular correlations (median shown as bar height in y-axis) achieved are highest during the worm phylotypic stages (brown), 6-8 hours. (More details on all parts of this in Figure S4.)

Fig 7 -  Worm & Fly Developmental Stage Mapping between Worm & FlyAlignment 
(A) Alignment of worm and fly developmental stages based on all worm-fly orthologs. Two sets of matching are exhibited. (B) Alignment of worm and fly developmental stages based on hourglass genes only. The alignment exhibitedexhibits a gap, perfectly matching the phylotypic stage . Part (C) shows the key aligned stages from parts (A) and (B). Worm “early embryo” and “late embryo” stages are matched with fly “early embryo” and “late embryo” respectively in the 1st“lower diagonal” set of matching (lower panel)matches, and they are also matched with fly “L1” and “prepupa-pupa” stages respectively in the 2nd“upper diagonal” set of matching (upper panel).  Additionally, worm “dauer” is matched with fly “L1” and “L3”, matches.  

Fig 8 – TF and worm “adult” is matched with both fly “early embryo” and “female adult”.

Fig 8 - Histone and TF Models for Gene Expression
TF and histone models for predicting gene expression. (A) Correlation around the TSS between gene expression and the signals for RNA Polymerase II binding signal/or H3K4me3 signal around TSS.. (B) Genes are categorized into stalling (high binding, low expression), bursting (low binding, high expression) and normal (the rest). The grid shows the distribution offor orthologous genes.The ; the majority of them (7675%) are normal across all three organisms. (C) Heat map showing the normalized correlation of binding with expression for various histone marks and transcription factors. For each of the three organisms, correlations are reported in 100 bp bins in a +/- 2kb window centered on the TSS for the same histone marks and two representative TFs. (D) The accuracy the TF model and histone-mark (HM) model for predicting expression of protein-coding genes and non-coding RNAs in the each of 40 bins. (D centered around the TSS. (E) The relative importance of seven histone marks in organism-specific HM models and in the universal HM model. The prediction accuracy of the TF model is also presented as a function as the number of independent TFs that are included. (EF) Cross-organism prediction accuracy of the HM models and prediction accuracy of the universal HM model in human, worm, and fly.
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The ENCODE and modENCODE consortia aim to identify all gene features and build the encyclopedia of DNA elements for the three distant metazoans - human, worm, and fly. In this paper, we made use of all data from the consortia for an integrative comparison of transcriptomes in these three species. Through uniform analysis, we were able to identify comparable elements among different species, as well as distinguishable features uniquely belonging to a specific species. More details of the dataset and the uniform analysis are presented in this Supplementary Information. The main content are summarized as below:  

Note that the supplement is laid out in a parallel fashion to the main text, as much as possible sharing common headings. Where an outline heading is exactly parallel, it is prefixed by "More Detail on" and then has its section name from the main text “quoted and underlined”. 
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I. Acknowledgements
J. Associated Data Files at Paper Website
K. Online Data [[Add by GF]]

We made comprehensive analyses of a large amount of genomic data across three species. This paper, including this supplement, can be viewed as a hierarchical information structure, designed to present both data and results in an organized fashion. In the hierarchy, the “main" text sits at the top, synthesizing everything broadly. It then points to more detailed descriptions of our methods and data, which were divided into sections A-K and indexed above. Sections B-H each addresses one coherent aspect of the analyses, with the order of appearance concordant with the main text. Each of these individual sections often refers to a huge amount of supplementary calculations and data sets. Moreover, the data sets to which the paper refers the most are usually not the actual raw data per se, but subsidiary analysis products that summarize the data (e.g., RPKM and modules). Some of the datasets are presented in formal paper supplements, while others are on our paper website (Section J). Contact person(s) for specific datasets are also listed. At the bottom of the hierarchy, section K, is the actual underlying raw data (usually RNA-Seq reads), stored in central repositories (such as the short read archive (SRA)). Raw data files are usually huge and unwieldy. Consequently, it makes most sense to approach the information in a particular freeze from the top down.

[bookmark: h.f4dlswpa9d0k]B. Information on Data Production
RNA-Seq libraries were constructed for human, worm, and fly across a broad range of cell lines, tissues and developmental stages. This includes many different RNA-Seq libraries for different RNA preparations including short total RNA-Seq, long total RNA-Seq, long Poly(A)+ RNA-Seq and long Poly(A)- RNA-Seq. For human this also includes RNA-Seq preparations from different subcellular localizations (e.g. cytoplasm). Many of the analyses included in this paper focus primarily on the long Poly(A)+ RNA-Seq prepared from whole-cells which are most comparable across the three organisms when used collectively. There are some analyses (such as the supervised ncRNA predictions) that make use of all the available RNA-Seq data. The sample preparation methods in each organism and the scope of the data generated are detailed as follow. A complete list of the data sets can be seen in Associated Data Files, where the accession numbers of all the data are also included.
[bookmark: h.bqoovsywa8ma]B.1. ENCODE Human RNA-Seq Data Generation
We performed subcellular compartment fractionation (whole cell, nucleus and cytosol) before RNA isolation to interrogate the human transcriptome. For the K562 cell line, we also performed additional nuclear subfractionation into chromatin, nucleoplasm and nucleoli. The RNAs >200 nucleotides from each of these subcompartments were prepared in replica. Long RNAs were further fractionated into polyadenylated and non-polyadenylated transcripts. The RNAs were depleted of rRNAs and libraries were prepared using the dUTP protocol \cite{19620212}.  Libraries were sequenced in mate-pair fashion on the Illumina GAIIx or Hi-Seq to an average depth of 100 million mate pairs per replicate.  Additional information related to sample preparation can be obtained in the reference \cite{22955620}. Detailed protocol information is also available by downloading the Production Documents for libraries of interest from GEO, Accession # GSE26284. 
  
Totally 205 RNA-Seq libraries were constructed from 42 cell lines with different subcellular compartments and RNA populations. For details of data sets, see Associated Data Files.
[bookmark: h.y4rbvg4pijz3]B.2. Worm RNA-Seq Data Generation
We have used RNA-Seq to capture information about the transcribed genome of C. elegans.  To increase the detection of stage/condition specific transcripts we have assayed animals in biological replicates from all the major stages of the life cycle (early embryo, late embryo, L1, L2, L3, L4, young adult, old adult, dauer entry, dauer, dauer exit, male enriched embryo, L4 male and adults lacking germline). In addition, we developed improved embryo synchronization methods and assayed embryonic development at higher resolution (25 samples every 30 minutes across embryonic development). To look for genes that might be involved in the response to pathogens, we assayed adults exposed to a variety of different bacteria for different lengths of time. These libraries were constructed using poly(A) enriched RNA populations and were not oriented with respect to the strand of the transcript (although that could be inferred for most transcripts from the inherent strandedness of features such as splice junctions, splice leaders and poly(A) tails). Total RNA-Seq libraries were also constructed from various tissues (muscle, neuron, skin, pharyngeal gland, embryonic seam cells, sheath cells and epithelial cells) and life stages (early embryo, late embryo, L2, L4 and young adult).

For details of data sets, see Associated Data Files.
[bookmark: h.rqbdadr3y667]B.3. Fly RNA-Seq Data Generation
Dissected organ systems were extracted from Oregon R larval, pupal and adult staged animals synchronized with appropriate age indicators. To detect RNAs not observed under wild-type conditions we used environmental perturbations to challenge a population of mixed adult males and females with temperature variation, heavy metals, drugs and pesticides. Larvae were treated with the heavy metals, drugs and the pesticide rotenone. In addition to the previously described cell lines \cite{21177962} we have sequenced three adult ovary-derived lines OSS, OSC and fGS. RNA was isolated using TRIzol (Invitrogen), DNased, and purified on a RNAeasy column (Qiagen). poly(A)+ RNA was prepared from an aliquot of each total RNA sample using an Oligotex kit (Qiagen). For complete details see Brown et al., (2013) \cite{mod9}.
 
Strand-specific libraries were generated and sequenced on an Illumina HiSeq2000 using paired-end chemistry and 100 bp cycles. Sequencing was of poly(A)+ RNA isolated in biological duplicate. Sequences are available from the Short Read Archive and the modENCODE website (http://www.modencode.org/).
The reads were aligned to the Drosophila genome as previously described \cite{21179090}.

For details of data sets, see Associated Data Files.
[bookmark: h.vv4hqyn256a0]C. More Details on “Protein Coding Genes”
Evolution of protein coding gene annotation in human, worm, and fly have been summarized in Fig S1a. Length of genes are defined from the start of the message to the poly(A) site. For more details on cross-species orthologs and domain combinations please see immediately below.
[bookmark: h.a9u354i5wufl]C.1. More Details on Human-Worm-Fly Orthologs
We have compiled a complete list of ~28k triplets of orthologous genes among human, worm, and fly (6353 unique genes in human, 5083 unique genes in worm, 4839 unique genes in fly) for the purpose of this paper. The list is merged from the MIT list \cite{mod14} and Ensembl. It contains all one-to-one, one-to-many and many-to-many orthologous relationships. In particular, there is a subset of ~2000 triplets of orthologous genes among human, worm, and fly which includes one-to-one orthologous relationships only. The list of orthologs can be found in the Associated Data Files. 
[bookmark: h.244u8scak0qe]C.2. More Details on Domain Combinations
All proteins from human, worm, and fly transcriptomes were assigned protein domains using version 26.0 of Pfam domains using HMMER3 \cite{22127870} (see Fig S1b). Domains with independent E-values greater than 10-3 were filtered. Overlapping domains with same start sites or stop sites were filtered by removing the domain with the higher E-value. To determine the domain structure complexity of each organism, we described each protein-coding transcript as a linear combination of domains, arranged by start sites of the domains determined by HMMER3. For example, for three distinct domains A, B and C, each combination A-B-C, A-A-B, C-A-B and A-A-A were considered as distinct domain combinations while the combinations A-B-C and C-B-A not being the same.
[bookmark: h.84x9b99raze3]C.3. More Details on Broadly Expressed Protein-Coding Genes
We used RPKM values from 19 human cell lines, and 30 fly and 35 worm developmental stages to identify broadly expressed genes. Briefly, we calculated the coefficient of variation of logged normalized RPKM values for each gene. A threshold was determined using a common approach for the three species based on the distribution of the coefficient and genes with variability less than this threshold were identified as broadly expressed.
 
In different samples, the numbers of expressed genes are likely to differ leading to differences in the absolute RPKM values assigned to a given expression level. We sought to normalize the RPKM values in each sample to account for this effect, under the assumption that a large number of broadly expressed genes will have on average the same expression levels in any two samples. First, the average RPKM value for each gene across different samples was determined. Next, we calculated the log-fold difference in RPKM values for each sample relative to the average, for genes that have RPKM>0.1 across all the samples. The distribution of the log-fold difference values was fit by a Gaussian within -1.5<log2(FD)<1.5. The scale for each sample was then determined as s=2(Gaussian fit mean value). As an example, the determination of the scale factor for HeLa-S3 cells is presented in Fig S1. Finally, the normalized RPKM value for each gene is given as: nRPKM = RPKM/s. It should be noted that this normalization approach would give the same results for two samples where one has twice as high expression as the other for all genes. However, it is technically not possible, and for our purposes not desirable, to account for changes in genome-wide transcription level. We find that this normalization procedure improves the sensitivity of broadly expressed genes identification (See Fig S1, Table S1 and discussion below).
 
We have assigned eight different scores to each gene and assessed the sensitivity of these scores on identifying broadly expressed genes:
1. The minimum RPKM value across all samples,
2. The coefficient of variation of RPKM values across samples,
3. The coefficient of variation of log2(RPKM+1) values,
4. An entropy score defined as: , where , and i  denotes different samples,
5-8: the same scores as 1-4, based on nRPKM values, instead of raw RPKM.
 
We have used chromatin features in mixed cell samples as an independent validation set in assessing these scores. Tri-methylation of lysine 36 on the histone H3 tail (H3K36me3) is an epigenetic mark associated with active transcription. Conversely, H3K27me3 is a mark that is associated with PolyComb mediated silencing. Therefore, genes expressed in the majority of cells in a mixed cell sample tend to show H3K36me3 enrichment and H3K27me3 depletion. However, for genes that are expressed in only a subset of the cells, the H3K36me3 signal may be washed out and these genes may be repressed in the majority of cells and enriched for H3K27me3 mark (cite Ho et. al.). We assigned genes enriched in H3K36me3 or depleted in H3K27me3 in fly and worm L3 samples as broadly expressed and vice versa. Even though, this classification may not be completely accurate, it allows an assessment of different broadly expressed gene definitions. In particular, it provides a comparison of expression based scores obtained from whole animals during developmental stages to a data set that is sensitive to tissue specific variation in a given stage. For both marks and both species, we found that the coefficient of variation of log2(nRPKM+1) showed the best performance in classifying broadly expressed genes (Fig S1).
 
As an additional check, we investigated how stable different scores are depending on which RNA-seq samples are used. We calculated all eight scores described above for additional modENCODE RNA-seq samples which were not included in this study. These sets include 72 strand-specific samples including cell lines and tissues for fly, and 45 samples including different treatment conditions for worm. We calculated the spearman correlation for each score between the developmental stages studied and these additional samples. For both species, we observed that the coefficient of variation of log2(nRPKM+1) has the highest correlation between two independent sample sets. The degree of correlation observed suggests that the list of genes we identify as broadly expressed using developmental stages is indeed a generally applicable list.
 
Based on the above observations, we define broadly expressed genes based on the coefficient of variation of log2(nRPKM+1). The distribution of the coefficient shows a large peak at small variability for all three species (Fig S1). Empirically, we found that the distribution around this peak is well described by a skew normal function for all three species shown in black dashed lines in Fig S1. We set a threshold at the coefficient value where the area under the skew normal fit drops to 99% of the area under the actual distribution of the coefficient of variation and define the genes with variability less than this threshold as broadly expressed. The threshold for each species is marked with a vertical colored line in Fig S1.
 
Gene Ontology (GO) terms for broadly expressed protein coding genes was determined for each species using the getEnrichedGO function in R/bioconductor package ChIPpeakAnno. p-values were adjusted for multiple hypothesis testing using the Benjamini & Hochberg step-up FDR-controlling procedure: (multiAdj = TRUE, multiAdjMethod = "BH"). The minimum number of terms for each GO category is set at 100: (minGOterm = 100). Terms for which the product of p-values for the three species is less than 10-100 and the individual p-values are all less than 0.01 are reported as top common GO terms.
 
The nRPKM scale and the threshold on the coefficient of variation, which were identified using coding genes, were applied to non-coding genes, pseudogenes and TARs directly to identify broadly expressed genes in these classes.
[bookmark: h.bivwi02bhr0f]D. More Details on “Splicing”
With the great depth of sequence reads in the data sets, alternative splice junctions that are very rare relative to constitutive junctions are detected, perhaps reflecting imprecision in the splicing machinery; by design the annotation sets used give a conservative estimate of the number of alternative splicing events for a given gene. 
[bookmark: h.yvk7sp1149yw]D.1. More Details on “Comparison of Splicing of Orthologs”
[bookmark: h.a9681pvcw0x9]D.1.1. Splicing Alignment Pipeline 
We first aligned all poly(A)+ whole-cell RNA-Seq data for human, fly and worm using a uniform pipeline. Briefly, TopHat (version 1.4.1) \cite{19289445} was used to align all reads to the transcriptome of each species to report uniquely aligned reads and not allowing for novel junctions to be identified. This included 22 cell lines and 16 tissues for human, 30 
developmental time points, 29 tissues and 25 cell lines for flies, and XXX samples for worm. [[MG: XXX ask Brenton]]

We used TopHat (version 1.4.1) to align the fastq files from all poly(A)+ whole cell RNA-Seq data from human, worm, and fly. The reference genome assemblies used from human, worm, and fly were hg19, ce6 and dm3, respectively. We restricted the set of splice junctions that could be aligned to those present in the human, worm, and fly annotation freezes. The command line parameters that were used for all alignments were -p 8 -z0 -a 6 -m 0 --min-intron-length 28 -g 1 -x 60 -n 2 --no-novel-juncs. In addition, the --library-type parameter was set individually for each library as appropriate. Furthermore, the --transcriptome-index parameter was set to the annotation gtf file for human, worm, or fly. After the alignments were completed, the bam files from biological replicates were merged using samtools \cite{19505943}. In addition, all bam files for all samples for each organism were merged into a single bam file that was used to generate the data in Table 1. BedGraph files were generated using BedTools \cite{20110278}. 
[bookmark: h.nyllk1y0wf4t]D.1.2. Splicing Orthologs Across Species
To examine the conservation of splicing structures (see Table S2b-d), we considered the preservation of splice sites in orthologs across 3 species. We started with 1935 1-1-1 orthologs, of which 1803 have isoform structure annotations. For each gene, nucleotide sequences of each transcript annotated in each species were extracted, and aligned by Clustal Omega with default settings \cite{21988835}. Splice sites in each transcript were then mapped onto the alignments. A splice site is considered as conserved between two species if its acceptor and donor positions in the multiple alignment are the same between at least one isoform of each species. 

[bookmark: h.nyhrccqgti9]D.2. More Details on “Comparison of Splicing in Annotation Sets”
[bookmark: h.222hqgkbox0z]D.2.1. Splice Event Parsing
MISO \cite{21057496} is a Bayesian probabilistic framework that quantitates the expression level of alternatively spliced genes from RNA-Seq data. We invoke MISO in its alternative splicing event level mode (“exon-centric” analysis) to gauge the relative frequency of splicing choices made within windows containing and defining various splice-event types; e.g., skipped exons, alternative first exons, etc. 

From each coding-only GTF annotation file (for human, worm, and fly), we construct GFF3-based alternative event files for each event type (as required by MISO), where alternative events are defined by an enumeration of each alternative set of resultant, spliced exons within an event window.

In parsing GTF annotation files to construct specific event type alternative event files it is convenient to first extract certain information from the GTFs that can facilitate the parsing task. This includes constructing ordered lists of distinct exon and intron coordinates for each gene and collateral lists of Boolean strings for each gene, where each string indicates which exons and introns of the gene are present in a given transcript. Another useful derived list is constructed by conceptually projecting all exon boundaries of a given gene to the genomic coordinate axis. This partitions the gene extent into intervals (“gene features”) that are either included or not in each of the gene’s spliced transcripts—inclusion/exclusion status is recorded as a list of isoform Boolean strings for each gene along with feature-interval coordinates.

What follows is a very high-level description of our event parsing strategy. Rigorously defining the various splicing event types can be a challenging task in itself, with experienced researchers often disagreeing as to whether a specific scenario qualifies as a particular event-type instance or not—to our knowledge there does not currently exist a set of generally-agreed-upon legalistic event definitions of the sort that can be trivially converted to scripts. Through a process of iterative refinement we have converged to, what we believe to be, a reasonable set of operational definitions that have been implemented as event-parsing scripts, though this continues to be an ongoing process and in some cases we have retained multiple parsing implementations so as to accommodate contrasting event-type definitions. Note that the resulting set of parsed events is neither exhaustive nor unique with respect to the exon set; exons may participate in more than one event type or none at all.
[bookmark: h.6ntc404cdvzf]
[bookmark: h.qcig644mr9y6]Skipped Exon (SE)
We have implemented two definitions (“conservative” and “liberal”) for the cassette exon case. The conservative interpretation makes use of the derived gene-feature representation and searches for instances of an alternative exon feature directly-flanked on either side by a constitutive intron feature and a bounding constitutive exon feature. The terms “constitutive” and “alternative” are interpreted with respect to all isoforms containing a given feature and are derived by considering column sums of the Boolean gene feature matrix over a subset of its rows. Conceptually, the script drags a skipped exon event recognition template over (an appropriately row-summed version of) gene features. Finally, the bounding constitutive gene features are extended (flanking constitutive exon features are grown) to fill their maximal common constitutive extent.

The liberal interpretation makes use of the Boolean exon and intron feature representations and coordinates. For each isoform of a given gene, our script considers each consecutive intron pair. For each other isoform it checks for the existence of an intron in its intron set corresponding to the excision of the exon implied by the original intron pair.

The conservative implementation entails a relatively strict definition of constitutive flanking regions and alternative skipped exon, while the liberal case may be regarded as being consistent with the terminology “skipped exon.”[[JJL: need to specify when each of these two definitions are used.]]
[bookmark: h.apj0nvkjkjln]
[bookmark: h.yhlowet7jbif]Mutually Exclusive (MXE)
Generally, this event is defined by a window bounded by two constitutive exons, where the window’s interior contains two or more alternative exons, with exactly one of these exons appearing in any particular isoform. Our implementation makes use of the Boolean exon feature representation and coordinates for each gene. With windows defined by consecutive constitutive exons (determined by summing over rows of the Boolean exon feature matrix), the script considers alternative (as indicated by Boolean row-sum values) exons within the window interior and checks, using the Boolean exon feature matrix, that exactly one alternative exon within the window appears in each isoform (for each row, the sum of the Boolean exon feature matrix over the cluster-exon columns is equal to 1).
A “strict” interpretation further requires that the alternative exons within a window cluster be mutually disjoint, while a more-liberal interpretation allows the cluster exons to overlap (though with distinct start and end coordinates).[[JJL: when are “liberal” and “strict” def. used?]]
[bookmark: h.omf0ljsc1yqs]
[bookmark: h.pci5r2sz3ko3]Coordinate Skipped Exon (CSE)
This event may be viewed as a generalization of the skipped exon event to multiple exons, or as a dual event to the mutually-exclusive case—all exons in a window flanked by constitutive exons are either included or not. Our implementation is a simple modification of the mutually exclusive script to require that, in each isoform, all alternative exons within a constitutive-exon-flanked window be either all included or all excluded.
[bookmark: h.r9762ocxcqn1]
[bookmark: h.ys5zf76dfpxw]Retained Intron (RI)
Our implementation uses the Boolean exon feature representation and coordinates for each gene. For each distinct exon for a given gene (call this exon “exon*”), we note its start and end coordinates. Then for each isoform we check to see whether there exists an exon with the same start coordinate as exon* and with end coordinate in the interior of exon* AND another exon (from the same isoform) with the same end coordinate as exon* and with start coordinate in the interior of exon*.
[bookmark: h.f4yk4zxhonnx]
[bookmark: h.x0zevxy0le1h]Alternative 5’/3’ Splice-site (A5SS and A3SS)
Our implementation uses the Boolean exon feature representation and coordinates for each gene. Without loss of generality, it suffices to consider the case of Alternative 5’ splice-site for a positively-stranded gene—the other cases follow by symmetry.
For each gene, the script loops through its isoforms, and for each exon-exon splice, it enters the two exons’ start and end coordinates into a hash, resulting in a list of all distinct exon-exon splices (distinct with respect to participating exon start and end coordinates).
The keys of the hash are ordered {start1}{start2}{end1}{end2}, where exon1 is genomically located to the left of exon2. Then, for each start1 key fixed, we consider each start2 key and cases in which the number of end1 keys (for fixed start1 and start2) is greater than 1—these multiple end1 keys are taken to be the alternative 5’ splice-sites. The minimum end2 associated with these fixed start1 and start2 and multi-end1 splices is taken to be the right endpoint for the event window (start1 is the window left starting point).
[bookmark: h.oxhv9fjjvlhc]
[bookmark: h.rw8qyuemc2tu]Alternative First/Last Exon (AFE/ALE)
Our implementation uses the Boolean exon and intron feature representations and coordinates for each gene. Without loss of generality, it suffices to consider the case of Alternative First Exon for a positively-stranded gene—the other cases follow by symmetry.
The script begins be constructing a hash that, for each gene, associates introns to their left and right exons—hash keys are ordered {intron_start}{intron_end}{left_exon_start}{left_exon_end} {right_exon_start}{right_exon_end}. We also construct a hash of first-introns—where hash keys are ordered {intron_end}{intron_start}.
For each first-intron intron_end, if there exists more than one associated intron_start, then for each intron_start from the intron_to_left_and_right_exon hash consider each associated left_exon_start and right_exon_end, and accumulate the max left exon start and min right exon end. These coordinates define the boundaries of the event window. The events identified were then further filtered for those that had at least two unique start (AFE) or end (ALE) sites.
[bookmark: h.2h8jovr0jbo4]
[bookmark: h.p1u7xh2he9sn]Tandem UTR
Without loss of generality, it suffices to consider the case of Tandem 3’ UTR for positively-stranded genes, with the negatively-stranded case following from symmetry. Our implementation uses the Boolean exon feature representation and coordinates for each gene.
For each gene, the script constructs a hash of distinct rightmost exon start and end coordinates over all isoforms. The hash keys are ordered {exon_start}{exon_end}. For each fixed exon_start, we register Tandem UTR events simply as cases where there exist multiple associated exon_ends. 
[bookmark: h.lhezjmgjuy5b]D.2.2. Splicing Quantitation
We used MISO /cite{21057496} to quantitate the percent inclusion for all alternative splicing events described above (e.g., cassette exons, alternative first exons, etc.) in all three species. Briefly, the GFF3 files for each splicing event described above were indexed using the index_gff.py script from MISO, quantitated using the run_events_analysis.py script in single read mode, and summarized using the run_miso.py script with the --summarize-samples option. 
[bookmark: h.l7lnqbyht7en]E. More Details on “Pseudogenes”
[bookmark: h.xxg6enmxfbxy]E.1. More Details on Pseudogene Annotation
The pseudogene annotation has been conducted using a combination manual annotation and in silico pipelines. The annotation files are available online (see Associated Data Files). 
Human pseudogenes are manually annotated on the basis of homology to protein data from the UniProt database, which is aligned to the individual bacterial artificial chromosome (BAC) clones that make up the reference genome sequence using BLAST \cite{9254694}. Gene models are created on the basis of these alignments by annotators using the ZMAP annotation interface and the otterlace annotation system \cite{15123593}. Alignments were navigated using the Blixem alignment viewer \cite{7922687}. Visual inspection of the dot-plot output from the Dotter tool \cite{7922687} is used to resolve any alignment with the genomic sequence that is unclear in, or absent from, Blixem. A model is defined as a pseudogene if it possesses one or more of the following characteristics unless there is evidence (transcriptional, functional, publication) showing that the locus represents a protein-coding gene with structural/functional divergence from its parent (paralog): (1) a premature stop codon relative to parent CDS - can be introduced by nonsense or frame-shift mutation; (2) a frame-shift in a functional domain - even where the length of the resulting CDS is similar to that of the parent CDS; (3) a truncation of the 5' or 3' end of the CDS relative to the parent CDS; (4) a deletion of an internal portion of the CDS relative to the parent CDS. Processed pseudogene loci lacking disabling mutations are annotated as 'pseudogene' when they lack locus-specific transcriptional evidence. 

Pseudogenes are classified as 'processed' where they have lost the parental gene structure and conversely 'unprocessed' ('duplicated') pseudogenes retain the same exon-intron structure as their parent loci. Where ambiguities arise other features are used to resolve the provenance of the pseudogene. Where the pseudogene represents a fragment of the parent, and the homology ends precisely at a splice junction the pseudogene is called as unprocessed (duplicated) and conversely, where the fragment contains the fusion of two or more exons the pseudogene is called as processed. Where the parent has a single exon CDS, the presence of parent gene structure in the 5' UTR region (identified by alignment of mRNA and EST evidence) allows the pseudogene to be called as unprocessed (duplicated) while the presence of a pseudopoly(A) signal (the position of the parent poly(A) signal at the pseudogene locus) followed by a tract of A-rich sequence in the genome (indicating the insertion site of the polyadenylated parental mRNA) indicates a processed pseudogene. Where all other evidence is unable to resolve the route by which the pseudogene was created, the position of the pseudogene relative to its parent is used. Processed pseudogenes are reinserted into the genome with an approximately random distribution while unprocessed (duplicated) pseudogenes tend to be more closely associated with the parent locus. Parsimony therefore suggests that pseudogenes which lie near to the parent locus are more likely to have arisen via a gene-duplication event than retrotransposition, and this is used as tie-breaker in calling pseudogene biotype.

Fly pseudogenes were annotated in a very similar way to human with two notable differences necessitated by creation method of the two pseudogene sets; human pseudogenes being identified de novo (though informed by the Pseudopipe set) and fly pseudogenes being annotated in the presence of existing pseudogene sets from Pseudopipe and FlyBase. Firstly, while Uniprot proteins are used to support annotation of a pseudogene, the CDS sequences of the parent gene loci predicted by Pseudopipe and/or FlyBase were also used as to build pseudogenes. Where the parent CDS was not clear, homologs of the pseudogene sequence were identified using BLAST. Secondly, where a parent CDS sequence was used to investigate a pseudogene it was aligned to the genome using Exonerate \cite{15713233} before being assessed using Blixem and Dotter.

Worm pseudogenes we annotated following a similar mechanism: using a combination of automated (Pseudopipe) and manual annotation (WormBase). The Pseudopipe pseudogene set was intersected with the manually annotated one. All the pseudogenes passing the treshold of 80% sequence overlap between the two datasets were selected as part of the high confidence dataset. Further we manually analysed the biotype annotation.

[bookmark: h.g3kys1wg0d6y]E.2. More Details on Pseudogene Age, Family Membership & Orthology
[bookmark: h.izqthh1rwniu]E.2.1. Age 
Given the large differences in the number of pseudogenes in the three organisms it is difficult to bin them consistently. Thus we divided the pseudogenes based on their sequence similarity to parents in 11, 6, and 2 bins for human, worm, and fly respectively, such that on average, in each human bin are 1200 pseudogenes, in each worm bin are 100 pseudogenes, and in each fly bin are 50 pseudogenes. This division maintains on average 10% pseudogenes in each bin in human and worm. Due to the low numbers of pseudogenes in fly we chose only 2 bins each containing on average 50 pseudogenes (See Table S3, Fig S3).
[bookmark: h.stl8yzduexi]E.2.2. Family Membership 
We grouped all the pseudogenes in the three organisms in families according to their parents appartenance to a family in the Pfam database. We ranked the families based on the number of corresponding pseudogenes (see Associated Data Files). We grouped the top families containing 25% of the total number of pseudogenes in each organisms based on their biological relationship. 
[bookmark: h.bsc9ytqz3pr3]E.2.3. Orthology  
We inferred orthologous relationship between pseudogenes from the orthology relationship of their respective parent genes. We used 1935 1-1-1 orthologs and annotated the genes with their correspondent pseudogenes (see Associated Data Files). 

For summary of the results, see Table S3 and Fig S3.
[bookmark: h.m3t17s1usa6n]E.3. More Details on Transcribed Pseudogenes
In order to determine the list of potentially transcribed pseudogenes, we checked the RPKM values of each pseudogene annotation with the following method. Within this list, we also identified pseudogenes with discordant expression patterns with their parent genes, using the PseudoSeq method.
[bookmark: h.mg3cl6jgcd8x]E.3.1. RPKM Method
We identified the transcription activity for each pseudogene annotation with the following steps.  First, we filtered out pseudogene regions whose mappability is lower than 1. The mappability at each nucleotide position is calculated as 1 over the number of matches found in the genome for the 75 bp sequence starting at that position, up to 2 mismatches. Mapability being one means the mapping is unique. Second, we discarded the pseudogene regions shorter than 100 bp after the mappability filtering. Third, we calculated the RPKM value of each remaining pseudogene region. Any pseudogene transcript with RPKM value greater than 5 was considered as transcribed unless its parent gene has more than 10 times higher expression value. We used RPKM value 5 to be consistent with the GENCODE convention. RPKM value 5 equals DCPM value 0.175 with window size as 35 bp. 
[bookmark: h.2d03bonwu7go]E.3.2. PseudoSeq Method 
PseudoSeq is a computational pipeline that makes use of RNA-Seq data from multiple tissues or developmental stages to identify the transcribed pseudogenes \cite{22951037}. The pipeline maps RNA-Seq reads to reference genome in conjunction with a splice junction library using Bowtie \cite{19261174} and RSEQtools \cite{21134889}. The signal tracks of the reads mapped to each pseudogene and its parent are generated across all the samples. A pseudogene is called transcribed if it has a discordant expression pattern from its parent gene across the analyzed samples. This pipeline alleviates the possibility of a pseudogene being called as transcribed because of reads mis-mapped from the parent to the pseudogene.
[bookmark: h.vgnlbtody1dq]F. More Details on “ncRNAs & Non-Canonical Transcription”
[bookmark: h.lc7jpvnfvzg5]F.1. More Details on “Uniform Comparison of Annotated ncRNAs” 
To consistently characterize the annotated ncRNAs and un-annotated transcription in the 3 organisms we took the perspective that only a subset of ncRNAs, unlike protein coding genes, are annotated consistently across organisms.  Therefore we defined five bioytypes for gold-standard annotations, which are coding sequence (CDS), un-translated region (UTR), canonical ncRNAs (include miRNA, tRNA, rRNA, snRNA, and snoRNA), long non-coding RNAs (lncRNA), ancestral repeats for human, unexpressed intergenic for worm and fly.

We made efforts to restrict the types of ncRNAs taken forward for further analysis mostly based on the consistency and comprehensiveness of their annotation across the three organisms. For human, most of these annotations correspond to GENCODE v10 \cite{16925838}, except for miRNAs, which are based on modified annotation derived from miRBase version 18 \cite{21037258}, see below. Ancestral repeats between human and mouse were extracted from 46-way vertebrates multiple alignment file using bespoke software.  For worm and fly, gold standard ncRNA sets were obtained from the June 2012 data-freeze, again with the exception of miRNAs, which are based on a modified annotation derived from miRBase version 18, see below.  

For detailed summary see Table S4 and Fig S4a.
[bookmark: h.ca0jun911xdz]F.1.1. IncRNA
Human lncRNA sequences are annotated as ‘lincRNA’ by GENCODE, but we found these could further divided into several subtypes depend on their genomic locations. lncRNAs overlapping a pseudogene or transposable element by more than one nucleotide were re-classified according to the overlapping RNA type. Antisense lncRNA are those for which greater than 50% of the lncRNA overlaps a known coding transcript on the opposite strand. Intronic ncRNA fragment refers to a ncRNA fragment fully embedded within a the intron of a protein-coding gene on the same strand. lncRNAs found to overlap a known biotype but not fulfill the criteria for re-classification above, are referred to as ambiguous lncRNA. All remaining IncRNAs, which do not overlap any of the above are by definition intergenic lncRNAs.

Worm lncRNAs were obtained from \cite{22707570} while fly lncRNAs were extracted from FlyBase annotation “ncRNA” (with score > 0, meaning they were cDNA sequences or EST supported longer than 200 nt). Worm and fly lncRNAs were assigned subtypes in the same manner as the human IncRNA. We also counted the nucleotides covered and assigned the gold standard annotations to bins similar to the process in our previous work and count the corresponding bin numbers (Table S4) \cite{21177971}.
[bookmark: h.c4v0m85e298i]F.1.2. miRNAs
Diverse pathways generate short regulatory RNAs that associate with Argonaute effector proteins \cite{21116305}, including small interfering RNAs (siRNAs), microRNAs (miRNAs), and piwi-interacting RNAs (piRNAs). As clade-specific pathways generate many classes of siRNAs that are not directly comparable across these species, we focus our comparison on miRNAs. There are currently approximately 8 times as many pre-miRNAs annotated in humans (1,756) compared to either worms (221) or flies (235).

Human/fly/worm pre-miRNA hairpins were taken from miRBase v18 \cite{21037258} and supplemented with human mirtrons annotated from \cite{22955976}. Primary miRNA (pri-miRNA) transcript annotations were collected from the literature and revised as necessary based on evidence. In many cases, the full pri-miRNA coordinates are not known, with the 3’ end of the pri-miRNA beyond the mature miRNAs often incomplete. Our comparisons focused on intergenic "stand-alone" pri-miRNA transcripts, and excluded intronic miRNAs whose primary transcripts might be coincident with protein-coding genes. However, it should be noted that many intronic miRNAs have been suggested to be transcribed from internal promoters, independently of their host mRNA \cite{16330759,18981266}.

Human pri-miRNA annotations were from RefSeq and \cite{18692474}. The latter study inferred miRNA TSS from ChIP-seq data of chromatin marks, and therefore do not define pri-miRNA TTS. We defined start positions from the midpoint of the TSS range. In case the middle point is larger than miRNA hairpin start position, a minimum value of the TSS range was used. The end positions are the 3’ end of miRNA hairpin bounded by the mature miRNAs. If a pri-miRNA loci was annotated by both RefSeq and \cite{18692474}, the RefSeq annotation was used. We manually inspected and removed loci lacking compelling support from ENCODE RNA-Seq and Chip-Seq data.

Fly pri-miRNA annotations were from \cite{18172161,18559475,19223442,21179090}; start and end positions are the annotated TSS and TTS. Most of these annotations come from RNA-seq data from total ribominus embryonic RNA \cite{21179090}. As 3' Drosha cleavage products appear to be much less stable than 5' Drosha products, the latter are poorly represented in these annotations. A few other pri-miRNAs were identified from directed cloning \cite{18559475} or inferred from in situ hybridization evidence \cite{18172161}. We supplemented these with additional miRNA clusters that define minimum portions of other pri-miRNA transcripts \cite{17989254}; start and end positions are the 5'-most and 3'-most positions of encoded miRNA precursors.

Worm pri-miRNA annotations were from \cite{15337850,23260138}. In the work of Gu and colleagues, TSS were annotated mainly by CapSeq analysis, with CIP-TAP used if no CapSeq data was available. The TSS with the maximum CapSeq/CIP-TAP reads (and which is upstream of the miRNA hairpin 5’ start position) was taken. The end positions were defined as the 3’ ends of the miRNA hairpin from miRBase stem-loop annotation.
[bookmark: h.ypivdxjsy3vo]F.1.3. Other Short non-coding RNAs
Transfer RNA, tRNA, sequence annotations were obtained directly from each of the organism’s annotation sets described above; these tRNA annotations are produced by the tRNAscan \cite{9023104} and are consistent between human, worm, and fly.  Similarly small nucleolar RNAs, snoRNAs were obtained from the GENCODE, WormBase, and FlyBase annotations and are based on annotations derived at least in part from \cite{16381836,12372436,15987805}.  Small nuclear RNAs, snRNAs, are sufficiently well annotated \cite{3837186,2579339,2339054,17095541} in the three organisms to warrant inclusion in this analysis.
 
[bookmark: h.dt6v4lh2d76o]F.2. Non-comparable ncRNA Annotation
Several types of non-coding RNA were considered for consideration in terms of the 3 species analysis, but were ultimately not used due to non-trivial differences in the extent of the completeness of their annotation in one or more species.  Such RNAs are biologically interesting and are worthwhile to study within the context of a single organism, however we deemed that there is currently either too little or too non-comparable annotation of the ncRNA types (including miscellaneous ncRNAs, mitochondrial RNAs, piRNAs, rRNAs, and Y RNAs) to be of significant value to this investigation.

F.2.1. Ribosomal RNAs 
The sequence and structure of the human, worm, and fly ribosomal RNAs (rRNAs) have been known for some time \cite{6954460,3960722,3136294} however the conventions adopted in annotating rRNAs in these genomes is inconsistent due to the large numbers of repeats of these sequences throughout the genome.  For example, the human 45S rRNA precursor is annotated in UCSC on a clone contig (chrUn_gl000220) that cannot be confidently placed within the context of the canonical set of chromosomes, while it is known that there are multiple tandem repeats of the 45S precursor on several chromosomes in the human genome.  Sequences for the human 5S rRNA, however, are comprehensively annotated in NCBI, UCSC, and GENCODE, with information about the coordinates of most, if not all, of the tandem repeats.  As a result of this inconsistency of rRNA annotation between the species, we decided to omit analysis of rRNAs in this work for fear of being unable to confidently assign reads mapping to these variably annotated repetitive regions.
[bookmark: h.qvj9z9okut2v]F.2.2. piwi-interacting RNAs
We performed a cross-species annotation of piRNAs by taking human intergenic piRNA clusters defined in previously reported annotations \cite{16751777,16751776}. As these were originally annotated from modest small RNA-Seq data (<50K reads) we inspected and re-annotated these loci with respect to ~100M human testis small RNA reads \cite{22208850,23034410} (GEO accession: GSM995304 and SRP006043). The original piRNA cluster annotations were deleted or refined to ensure that the called locus generated a majority of piRNA-sized reads from total RNA (i.e., >25 nt), and that there was nucleotide coverage of at least 40% of the inferred cluster by piRNAs. Finally, in order to focus the analysis on intergenic non-coding piRNA clusters, we subsequently removed clusters that could be attributed to 3' UTRs, or likely extensions of 3' UTRs \cite{20022248}. Fly piRNA master loci were annotated from \cite{19395010}. Worm 21U RNAs were annotated from \cite{17174894,18571452,23260138}. All coordinates were converted (using UCSC liftOver and WormBase remap_gff_between_releases.pl) to hg19, dm3, and ce10 if different assemblies were used in the literature.
 
Using this procedure, we were able to confidently assign 88 human loci, 27 fly loci, and 35329 loci as piRNA clusters.  The reason for the disparity in the numbers of observed loci stems from the fact that the molecular pathways that generate piRNAs (small RNAs associated with Piwi-class Argonautes  \cite{23124062}) are similar in flies and mammals, but radically different in nematodes. In the former, piRNAs are derived from long non-coding transcripts, transposable elements, and mRNA 3' UTRs, whereas in the latter, piRNAs ("21U" RNAs) are the products of extremely short transcription units.  Given this difference in piRNA characteristics in the worm, as compared to human and fly, we felt it prudent to exclude piRNAs from further cross-species analysis.

F.2.3. Y RNAs
A study in which a homology search for Y RNAs was performed across 27 species identified very small numbers of Y RNAs in human and worm, and inferred evidence for Y RNAs in fly \cite{17470436}.  However Y RNAs are currently not officially included in either the WormBase or FlyBase annotation sets so Y RNAs were excluded from downstream analysis.
[bookmark: h.1p4kgm3fdrjq]F.3. Consistent ncRNA Pipeline Processing
In order to avoid biases introduced because of differences between samples and varying sequencing depth for datasets from each the three organisms, we developed a methodology for uniformly identifying the unannotated transcribed regions. It is, however, not straightforward to do this comparison since the organisms are substantially diverged from each other. In addition, the conditions, developmental stages, and cell types are not directly comparable between the organisms. Finally, it is necessary to correct for the read coverage differences between different RNA-seq experiments.
 
In order to perform this comparison we start with all the available Poly(A)+ whole-cell RNA-Seq data that was generated for worm, fly and human by the ENCODE and modENCODE consortia (see Associated Data Files). We start with the RNA-seq reads and uniformly align them using Bowtie \cite{19261174} against the reference sequence and splice-junction library for each organism. In each organism we pool the aligned reads across all experimental conditions (i.e. cell lines, developmental stages).

In order to assess whether our use of Poly(A)+ library prep for RNA-Seq analysis would limit our ability to observe non-coding elements of the human, worm, and fly transcriptome, we leveraged matched human RNA-Seq data derived from Poly(A)+ and long/short total-RNA preps produced as part of the human ENCODE phase 2 project.  Specifically, GM12878 and K562 while-cell RNA-Seq data were obtained from the ENCODE RNA dashboard (http://genome.crg.es/encode_RNA_dashboard/hg19/).  BAM files containing uniquely mapped reads from Long Poly(A)+, Long TotalRNA, and Short TotalRNA sample-preps were downloaded and intersected with pre-miRNA, tRNA, snRNA, snoRNA, lincRNA, and exonic-mRNA coordinates derived from the GENCODE v10 annotation.  Read-counts for each sample were simply normalised to total number of uniquely mapped reads (reads-per-million); we decided against normalising to RPKM as a comparison between annotated features within each dataset was not required.  The distributions of lengths of each type of RNA assessed (Supp fig ?) were used to determine the ‘optimal’ method of sample prep that one would typically choose to assess its expression.  For miRNA, tRNA, snRNA, and snoRNA, with lengths averaging 100nt, the optimal sample prep would be short-totalRNA; for longer and not necessarily polyadenylated lincRNAs the optimal prep is long-totalRNA; and for mRNAs either long-totalRNA or poly(A)+.  An assessment of the variability in expressions measured between the K562 and GM12878 cell lines from data prepared in the ‘optimal’ manner for each RNA type is provided, for reference, in Supp fig ?.  

The effect of poly(A)+ RNA purification during sample-prep on our ability to detect coding and non-coding RNAs in the K562 cell line (Supp fig ?) and in the GM12878 cell line (Supp fig ?).  It is clear in both cell lines that Poly(A)+ RNA-Seq performs very poorly, compared to short-total RNA-Seq, at detecting miRNAs, tRNAs, and snRNAs.  However, the poly(A)+ RNA-Seq expressions obtained for snoRNAs, lincRNAs, and mRNAs correlate much better with abundance estimates obtained from short-totalRNA, and long-totalRNA sequence data.  Given this result we proceeded with calling TARs and further characterization of lincRNAs in the three species using the poly(A)+ data available.

[bookmark: h.d7jo7gcay84x]TAR Calling
We first started with the pooled RNA-Seq datasets derived from only polyadenylated RNAs. Reads that mapped uniquely were used to generate the signal tracks. The signal tracks are then segmented into TARs using thresholding and filtered as per min-run parameter and merged using a  maximum gap parameter. We covered a large range of values for the 3 parameters so as to identify a large set of TARs with different coverages.

In order to identify the best set of parameters for TAR calling, we built receiver operating characteristics (ROC) curves to visualize the dependency between the fraction of the detected exons versus the fraction of the unannotated transcription. To compute these quantities for each TAR set, we used following procedure: As a ground truth of the known expression, we used the protein coding exons with expression higher than 0.01 RPKM [[MG2AH: justify]] so as to exclude the exons that are not expressed. For each parameter set, we overlapped the corresponding TARs with the ground truth set of exons to identify the discovered exons. The fraction of coverage of discovered exons to all ground truth set is the exon discovery rate. Next, we subtracted the set of exons of known protein coding genes, pseudogenes, and non-coding RNAs from TARs to identify the unannotated transcription. The fraction of coverage of the unannotated transcription to the whole non-heterochromatin genome size is used as the fraction of unannotated transcription. Since different parameter sets may yield the same exon discovery rate, we selected the TARs with the smallest coverage (smallest unannotated transcription rate) to have the most conservative set of TARs. 

The ROC curves are plotted for the three species and are shown in Fig S4b. For generating a comparable set of TARs between all species, we selected a conservative and a relaxed exon discovery rate (90% and 98%) and identified the unannotated exon discovery rates for these parameters. 
[bookmark: h.ccquostoq1cp]F.4. Consistency with Previous ENCODE Estimates
[bookmark: h.qdbfuh2jvunz]F.4.1. Consistency of ROC Analysis and IDR Thresholding
Since we did not have replicate information for worm and fly, we performed this analysis only in human samples where we have biological replicates. Our results show a significant reproducibility of the TARs in human.

The differences in coverages calculated using contigs from IDR and ROC based TAR method are due to the fact that the ROC based method used only whole cell A+ samples, while the IDR method used all samples from human Jan-11 freeze. We have re-calculated the contigs’ coverage values in Table S10 from Djebali et al. 2012 \cite{22955620} using just the whole cell poly(A)+ samples. If we take 5 reads per contigas a cutoff (corresponding to IDR<0.1), we get 42.8% coverage by contigsfrom whole-cell poly(A)+ samples  compared to 66.0% for all samples. Note, that 3.3% of the coverage is overlapping with annotated exons, so the unannotated contigs coverage is 39.5%. This is fairly close (albeit still higher) than the 32.3% of “all-inclusive” (98%) TAR coverage from exhibit 5A. We think the remaining discrepancy is mostly due to the difference in methodology used to do the calculation. Since our method first pools the reads from all samples before making TARs, we expect to find fewer cell line specific TARs than methods which do not pool the reads beforehand, like in Djebali et al 2012. This was actually confirmed by comparing our TARs to their contigs on the same set of poly(A)+ whole cell samples. While our TARs are almost entirely a subset of their contigs (91.4% of our TARs overlap their contigs), our TARs are less cell line specific. Indeed if we partition their contigs into the ones overlapping our TARs and the ones not overlapping our TARs, we find that 36.3% of the first set is found in only 1 cell line, while 91.4% of the second set is found in only 1 cell line.  

We estimated the reproducibility of the TARs identified with the relaxed threshold (98% exon discovery rate) via IDR analysis \cite{23104886}. For the IDR analysis, we utilized the replicates for 19 human samples. For each cell line, we computed the expression levels (RPKM) of the TARs using the RNA-Seq data for the replicates then we performed IDR analysis on all the pairwise combinations of the replicates, resulting in total XXX IDR computations. The TARs for which smallest IDR among all the pairwise computations is smaller than 0.1 are flagged as passing the IDR filtering. We identified that with this filtering, 97% of the TARs (in coverage) pass the IDR filtering and are reproducible. For worm and fly, we did not have the replicate data for all the datasets thus we were not able to perform the reproducibility analysis. The estimate of reproducibility for human TAR regions, however, should be a surrogate for the reproducibility for worm and fly TARs.
[bookmark: h.gzcin3s3ja1]F.4.2. Increase in Coverage Using Total RNA and Compartments
In this paper we focused on data that was comparable across the three organisms, focusing on long poly(A)+RNA-Seq data from whole cells. The results of Djebali et al used many more datasets than those used here. When they only include the poly(A)+ RNA-Seq used here they only got 42.8%, however, when all the data including cellular compartments and total RNA is included it increases to 66%. The estimation of the amount of unannotated transcription represents a lower bound on the amount of transcription in all three genomes.

[bookmark: h.n5q2uhns8d0g]F.5. Supervised ncRNA Predictions  
We applied a previously developed machine learning method (Fig S4c1) \cite{21177971},  to the whole genomes of human, worm, and fly. The supervised ncRNA prediction method performs very well in all three species (the AUC of ROC is 0.97~0.99), either using canonical ncRNAs or lncRNAs as the positive training set (Fig S4c2, S4c3). The predicted novel ncRNA candidates from the supervised ncRNA models (Table S4b) were classified as ncRNA Type 1 (trained on canonical ncRNAs) and ncRNA Type 2 (trained on lncRNAs from the gold-standard sets). The lncRNA predictions were not as accurate as canonical ncRNAs because the current lncRNA gold-standard annotations were mostly derived from RNA-Seq assemblies or cDNA libraries, which were not fully studied or confirmed as noncoding transcripts. 
[bookmark: h.hufxovkml8n5]F.5.1. Details on Producing the Gold Standard ncRNA Datasets
The following genomic elements are selected as gold-standard annotation sets for supervised ncRNA prediction models: confirmed coding sequences (CDS), un-translated regions (UTR), canonical ncRNAs (i.e. miRNA, tRNA, rRNA, snRNA, and snoRNA), long noncoding RNAs (lncRNA), ancestral repeats and unexpressed intergenic regions.
 
In human, the gold-standard annotations come from GENCODE v10, in addition to the miRNA annotations from miRBase V18. The ancestral repeats between human and mouse were extracted from 46-way vertebrates multiple alignments in UCSC genome browser.
 
In worm and fly, the ncRNA annotations come from the June 2012 data-freeze, in addition to the miRNAs from miRBase V18. In addition to these, we added novel worm lncRNAs from \cite{22707570}. The gold-standard long ncRNAs (> 200nt) of fly were extracted from the ncRNA annotations supported by cDNA or EST (Fly Base score > 0).
 
The ncRNAs can be further grouped into sub-classes. If more than 50% of a ncRNA is overlapped with coding exons on the opposite strand, it will be grouped into antisense ncRNAs. If a ncRNA is fully embedded in a coding gene’s intron on the same strand, it will be grouped into intronic ncRNAs. If a ncRNA is overlapped with any known genomic elements (i.e. CDS, UTR etc) but did not fulfill the cutoff above, it will be grouped into ambiguous ncRNAs. The remainders will be grouped into intergenic ncRNAs. 
[bookmark: h.netor2dhwsd1]F.5.2. Data Sets and Predicted ncRNA Filter, Annotation and Validation
Many high throughput data sets from ENCODE and modENCODE consortia were integrated in the supervised ncRNA prediction models: all available expression data which includes poly(A)+ RNA-Seq, poly(A)- RNA-Seq, small RNA-Seq; histone modification ChIP-seq or ChIP-chip data including various modification types (i.e. H3K4me3, H3K36me3,H3K27me3, etc). Subsequently, the predicted novel ncRNAs from the supervised ncRNA predictions were further merged and filtered. First, we removed the predictions overlapped with the exonic regions on the same strand or with known ncRNAs on either strand. Secondly, we classified the novel ncRNA candidates into several types based on their genomic locations: antisense, intronic, ambiguous and intergenic ncRNAs (Table S4c). Moreover, we also compared the current supervised ncRNA predictions trained on the whole genome with the previous incRNA predictions trained on the conserved regions of worms. The current supervised ncRNA predictions covered most of the previous predictions (Table S4d-e). To further validate the predictions, we carried out RT-PCR experiments in both fly embryos as well as various human tissues, and found most of the candidates were expressed (Fig S4c4, S4c5).

[bookmark: h.1wwg3ykz2vc2]F.6. More Details on “Analysis of Antisense Transcription”
Scanning for antisense transcription: For annotated exons of protein-coding genes, we took the minimum read coverage in each 100 bp window, and then took the maximum over these minima.  This minimax procedure is designed to avoid the detection of antisense transcription in the tightly packed worm and fly genomes at loci where high-expression genes are convergent with, but do not overlap low expression genes on the opposite strand. Each exon received a minimax score for each strand. In a given sample, we selected loci where the antisense score was at least 10% the sense score. 
[bookmark: h.ledunv2l128y]F.7. More Details on “Relationship of HOT Regions and Enhancers to Transcription”
Many of the novel TARs and ncRNA predictions overlap with identified potential enhancers. Specifically, we found that 128,400 predicted enhancer regions in human overlap with novel TARs, and 15,863 and 10,380 enhancer regions in worm and fly overlap with TARs. To test whether these overlaps are statistically significant in each organism, we randomly shuffled all the enhancer annotation within the genome, and examined how many randomized regions overlap with TARs. This procedure was repeated for 1000 times. We then compared the observations from the real data with the randomization results, and calculated the z-scores and associated p-values of the observations. This test shows in all three organisms, the enhancers are significantly enriched for novel TARs (see Fig 5B). Similarly, we found the enhancer regions are significantly enriched for ncRNA predictions as well  (14,357, 590 and 229 enhancers overlap ncRNA predictions in human, worm, and fly, respectively. See Fig 5B). These novel TARs and predicted ncRNAs could represent the so-called enhancer RNAs, i.e. RNAs that are independently transcribed from enhancer regions \cite{20393465}.

We also studied the overlap between the novel TARs and ncRNA predictions with the HOT (high-occupancy target) regions, which are regions that have an overrepresentation of different TFs binding sites \cite{21177976,21177974,22950945}. In particular, we focused at the distal HOT regions, which are beyond 1kb upstream of the annotated transcription start sites. This is to avoid the transcription signals from HOT regions coupled with gene transcription. Using the same randomization method as introduced above, we found that the distal HOT regions and significantly enriched for TARs (23,073 in human, 520 in worm and 435 in fly) and ncRNA predictions (4,604 in human, 49 in worm and 7 in fly) (see Fig 5B). 
[bookmark: h.yer4qe4cno5z]G. More Details on “Expression Clustering”
An overall schematic of our clustering analysis and the mapping of ncRNAs is shown in Fig S5a. Here are the details of the procedures.
[bookmark: h.u7i9455ov1n6]G.1. Transforming Expression Profiles into Co-Expression Networks
Co-expression networks were constructed from the Pearson correlation matrices of the three species. We employed a local rank based algorithm  \cite{20122284}. Given a N by N correlation matrix (Pearson correlation) for N genes in a species, each gene is connected to the top d genes with the highest values (absolute value) of correlation. If d is very small, the resultant network cannot form a giant connected graph. The value of d is chosen to be 5, which is the minimal number such that all three networks form a connected graph. Under this construction, though the number of nodes and edges in the three networks vary, the average number of links per node is similar (8.2 for human, 8.0 for worm and 8.2 for fly). In this analysis, the co-expression networks are not weighted, but we allow the edges to have positive and negative signs. For a given edge, either a positive (+1) or a negative sign (-1) were incorporated based on the sign of the Pearson correlation between two genes.  
[bookmark: h.xfzxidp7w9ws]G.2. More Details on the Potts Model
We mapped our multiplex network to a coupled Potts model in which nodes can take spin values from 1 to q, standing for labels of different modules. q is a parameter chosen at the beginning as the maximum number of modules allowed. An energy function is defined as the negative of a generalized modularity, written as 
[image: ]

Here, S1, S2, S3 stands for human, worm, fly respectively. The expression inside the curly bracket is the modularity function for an individual signed expression network \cite{16723398,19905188}, where A+ and A- are the adjacency matrix representing positive and negative links of a co-expression network. i is the spin state of the node i. pij is a null model of interaction, commonly defined as  , where m is the number of edges. The extra terms represent the coupling (with coupling constant κ) between human-worm, human-fly, and worm-fly respectively (see the determination of κ in the next paragraph). A high value in such a generalized modularity means that the three individual networks have high modularity, and nodes from different species in the same modules tend to form orthologous pairs. To take into account of the fact that many orthologous pairs are not one-to-one but many-to-many, the contribution of a pair of orthologs to the generalized modularity function is not 1, but normalized by the number of orthologs. For example, if gene W from worm is orthologous to gene H from human together with two other human genes, while at the same time gene H is orthologous to W as well as three worm genes, the weight assigned to the link between W and H will be (1/3+1/4)/2. For simplicity, this modification is not displayed in the above equation.

Every spin configuration correspond to a way of assigning nodes to modules. The optimal assignment is the ground state of the system.

To determine the coupling constant κ, we employed a set of human, worm, fly triplets as a gold standard \cite{12934013}. For each triplet, we examined whether the 3 components belong to a same module. In general, if κ is high, a high fraction of triplets will satisfy the criterion, but the modularity of individual networks will be low. This is because a node is strongly affected by its orthologs, rather than its neighbors in its own network.  On the other hand, if κ is low, the modularity of individual networks will be high but the fraction of triplets satisfying the criterion will be low. By examining a range of values of κ, we balanced the tradeoff.
[bookmark: h.eml7a0b7cyv9]G.3. More Details on Simulation Annealing and Defining Confident Modules
To find the ground state, we employed a standard simulate annealing procedure very similar to one used in \cite{15601068}. Spin values were randomly assigned initially, and updated via a heat bath algorithm. The initial temperature was chosen in a way such that the flipping rate (the probability that a node changes its spin state) is higher than 1-1/q. We lowered the temperature gradually with a cooling factor 0.9, until the flipping rate was found to be less than 1%. The resultant spin configuration was used as an approximation to the actual ground state. Due to the probabilistic nature of simulated annealing, we repeated the annealing process 32 times, and represented the results by a co-appearance matrix as shown in Fig 7A. The matrix element represents the number of times in which a pair of genes (they could belong to 2 different species) are assigned to the same module. A confident score can be defined for a pair of assignment. To ensure the accuracy of the module assignment, we employed a stringent threshold where two nodes are assigned to the same module only if they have the same spin value in at least 95% of trial.  Algorithmically, a module could be obtained by starting from a particular node, iteratively searching for neighbors that co-appear in at least 95% of the trials. 

G.4. More Details on Conservative and Specific Modules
As shown in Fig 7A,  there are conservative modules consisting of human, worm, and fly genes as well as species-specific modules in which most genes from the same species. We analyzed the GO terms of these modules. As shown in Fig S5d1, the GO terms in human, worm, and fly for the conservative module are very consistent. They correspond to fundamental biological processes like cell cycles, DNA metabolism etc. 

The GO terms of a human specific, a worm specific and a fly specific modules are shown in Fig S5d1. The human module shows immune systems related GO terms, while the fly modules show specific processes related to chitin.


G.5. More Details on Additional Clustering of the Conservative Modules
Instead of using all the protein coding genes from the three species, we focused on a set of conservative genes (5575 human genes, 4486 worm genes and 4349 fly genes) that form 1-1-1 orthologs in the three species, as compiled by the consortia. In other words, given a human gene in the set, there exists a worm gene and a fly gene such that the three genes are mutually orthologous to each other. The results of clustering of this set of conservative genes using the same algorithm is shown in Fig S5c. 

Based on the clustering results, we further extracted 16 modules with high fraction of 1-1-1 triplets. In general, modules with high 1-1-1 triplets signify a slow gene duplication rate which means they are more conserved (Fig S5b). The GO terms and details of 16 modules are shown in Table S5 and Fig S5d. 
[bookmark: h.zaqyecrb7mg]G.6. More Details on Mapping ncRNAs and TARs to Modules
Generally, for each species, we mapped its ncRNAs and TARs to modules based on co-expression correlations, and found those highly mapped ncRNAs may function similarly with modular genes so that we can annotate them based on modular functions. We have implemented our study as follows. First, for each module, we mapped the ncRNAs/TARs whose expression patterns are highly correlated or anti-correlated with at least one orthologous gene in the module (see correlation thresholds in Table S5). We then identified ncRNAs/TARs across species are potentially functionally “orthologous” (analogous) by looking for those mapped to ortholog-enriched modules. We found a few examples with biological evidence to support that they function similarly in gene regulation (Fig 6C, S5e).
[bookmark: h.rge1fmhod2rh]G.7. More Details on “Conserved Modules Exhibit Hourglass Pattern”
The modular expression levels are calculated as follows. Given the gene expression matrix (N genes by m stages) in a module, X={xij, i=1,2,…,N, j=1,2,…,m}, we calculated its first right singular vector, {vj,j=1,2,…,m} of X via singular vector decomposition (SVD), which can be considered as a normalized average expression vector with vector norm of one. We then defined the modular expression level at stage j as vj.  We found that the modular expression levels in 12 out of 16 modules are tightly coordinated near the phylotypic stage using the microarray expression datasets of 6 fly species across stages for the fly genes in Module 5 \cite{21150996}. We referred these modules as hourglass modules. We then further examined the expression of ncRNAs and TARs mapped to these modules. We found that expression of ncRNAs and TARs between these modules are tightly correlated during the phylotypic stage. Before and after phylotypic stage, the expression levels are less correlated (Fig S5f-i). 

[bookmark: h.dl6nygfrmd7u]G.8. More Details on “Expression Modules in Developmental Time-Course”
To match the developmental stages of fly and worm, we first estimated the expression levels of orthologous genes between fly and worm at different developmental stages by applying Cufflinks to modENCODE timecourse RNA-Seq data. We next identified stage-associated orthologous genes — genes highly expressed at that stage (z-score>1.5) but not always highly expressed across all stages — for every fly and worm developmental stage.  Then for every possible pair of fly and worm stages, we counted the number of orthologous gene pairs O between m worm-stage-associated genes and n fly-stage-associated-genes, which would be used to test against the null hypothesis that the fly and worm stages have independent stage-associated genes using a hypergeometric test. Bonferroni correction are used to correct the resultant p-values to decide which fly and worm stages “match” (have dependent stage-associated genes). 

In the stage mapping of hourglass genes, for each pair of fly and worm stages, we counted the number of orthologous pairs between m worm-stage-associated hourglass genes and n fly-stage-associated hourglass genes. The subsequent hypergeometric test was performed using hourglass orthologs as background.
[bookmark: h.lqp8cxfnvnak]H. More Details on “Modeling Gene Expression”
[bookmark: h.3q8abvrctq8w]H.1. More Details on Relating Pol II Binding and H3K4me3 with Gene Expression
In order to compare the levels of Pol II proximal to genes (around TSS) with the level of gene expression between organisms, we used the early embryo Pol II ChIP-Seq and matching Poly(A)+ RNA-Seq data for both worm and fly, and compared them against the H1esc (H1 embryo stem cell line) Pol II ChIP-Seq and Poly(A)+ RNA-Seq data for human. We also investigated the levels of H3K4me3 (methylation of histone H3 lysine 4) with gene expression in different species. Histone mark ChIP-Seq data came from embryo stages.

The most obvious and direct correlation to investigate is the rank correlation between different levels. Using the matched embryo datasets, we directly plotted the level of Pol II binding against gene expression (Fig S6). This shows substantial correlation (r=0.67 in human, 0.62 in fly, and 0.64 in worm). Similarly, we also plotted the the level of H3K4me3 around TSS against gene expression. It also shows substantial correlation (r=0.43 in human, 0.77 in fly, and 0.58 in worm). 

We also plotted Q-Q plots to investigate the distribution of levels of Pol II binding and H3K4me3 compared to the distribution of gene expression level (see Fig S6). In worm, by comparing the quantiles, distributions of the three levels are almost linearly related. In human, when the Pol II binding grows over a “threshold”, the quantiles of Pol II binding increases along with gene expression almostly linearly. In fly, the distributions of Pol II binding and H3K4me3 are different from that of gene expression, although the level of Pol II binding and H3K4me3 are positively correlated with gene expression.

In Fig S6b we display the distribution of Pol II vs Expression states compared across the three organisms. For each gene in each organism we compute the value of the average Pol II signal in the promoter regions proximal to the TSS (+/- 1Kb of the TSS), we also compute the RPKM expression value of the same gene using RNA-Seq data for the longest annotated transcript isoform. For each organism the we can separately assign the Pol II and expression values for each gene into high, medium and low values based on quartiles (high = top quartile, medium = intermediate values, low = bottom quartile) of the distribution of all genes. Thus for each gene in each organism have a state corresponding to a Pol II signal of either high, medium or low and an expression value of high, medium or low. We define the state of high Pol II and low expression as corresponding to a gene showing “stalled” behavior, whereas a gene showing low Pol II and high expression is defined as “bursting”. We find that by comparing the Pol II vs expression states between orthologs that orthologous genes showing either “stalled” or “bursting” behavior in one organism (25% of orthologs) do not share this state behavior in either of the other two organisms. If we define the “normal” state of Pol II signal and expression as any gene that is not “bursting” or “stalled” then this “normal” state is shared between 75% of 1-1-1 orthologs across the three organisms. Furthermore if we consider the 7 possible substates (7 possibilities are all 3x3 possibilities excluding the  “bursting” or “stalled” states) of this “normal” state (e.g. high Pol II, medium expression or medium Pol II, low expression) then we find none of the 7 substates of “normal” behavior are preferentially shared between orthologs across the organisms.
[bookmark: h.6w5hpvs94pns]H.2. More Details on the Predictive Model for Gene Expression
[bookmark: h.f09bwndx04zo]H.2.1. Data Preprocessing 
To compare the code for transcriptional regulation in human, fly and worm, we construct predictive models to relate histone modification or TF binding with gene expression. Specifically, we focus on data from H1ESC cell line for human, and data from early embryo cells for fly and worm. In human, we use GENCODE TSS expression data measured by CAGE experiments in H1ESC cell line. The data contain expression profiles for RNA samples extracted from six different cellular components (whole-cell, cytosolic, nuclear, chromatin, nucleoplasm and nucleolus) using four different protocols (Poly(A)+, Poly(A)-, total, and short RNA). In our model, we choose the profile that best correlated with H1ESC RNA Pol II binding data: the one corresponding with Poly(A)+ cytosolic RNA sample. In fly and worm, we use the transcript expression data in early embryo cells measured by RNA-Seq experiments. Expression levels of worm microRNAs are measured by small RNA-seq experiments [[CC2MG: data from \cite{19460142}; fly ncRNA expression are from Celniker_Drosophila_Annotation_20120616_1428_allsamps_MEAN_gene_expression.csv, I am not sure about how the file was generated: was small RNA-Seq data used? ]] For both species, expression profiles at multiple time points are measured and again we choose the one showing highest correlations with embryo RNA Pol II binding. That is, we choose RNA-Seq data for fly embryonic stage 6 - 8 hr and Poly(A)+ RNA-Seq data for worm N2 early embryo, respectively. 

Expression levels are normalized and represented as RPM (reads per million) for human CAGE data, and as RPKM (reads per kilobase per million) for RNA-Seq data.

The genome-wide TF-binding and histone modification data are obtained from ChIP-seq or ChIP-chip experiments. We only include data from the matched cell line (H1ESC for human) or development stage (early embryo cells for fly and worm). Only the sequence-specific TFs are used in our models.

The histone modification and TF binding data are processed in the following ways. We separated the DNA regions around the TSS (4kb centering at TSS) of each annotated gene into small bins, each of 100 bp in size, which results in 40 bins for each gene. To calculate the signal of TF binding or HM, we averaged the coverage (number of reads that cover a nucleotide) of the 100 nt in each of the 40 bins.

[bookmark: h.j8bc50v21bku]H.2.2. More Details on Models for Predicting Gene Expression Levels 
Then, we construct Random Forest models to predict expression levels of genes using the histone modification and TF binding as predictors, respectively. In the TF model, we use the binding signal of the TSS-containing bin of TFs as predictors, since most TFs have highest correlation in their signal with gene expression levels. However, for different histone modifications (HMs) the bin that is most correlated with expression is very different. Thus, we use signals from the most correlated bins of HMs as the predictors in our HM model. 	

To evaluate the performance of a model, we randomly selected 2000 genes as the training data and the remaining as the test data. A model was trained on the training data and applied to predicting the expression levels of genes in the test data. The predictive accuracy of the model is measured by the Pearson correlation coefficient between the predicted values and the actual experimental expression levels. For each model, we generated 10 groups of training and test data, and the averaged correlation is used as the final predictive accuracy.

For each of the three organisms, we construct a TF model and HM model. The models are applied to predict the expression levels of protein-coding genes as well as ncRNAs. The R package “randomForest” is used to implement these models. The relative importance of each predictor is measured as “%IncMSE”, increase of mean squared error. To calculate it, the values of each predictor of the test data are permuted and the prediction error (mean squared error of all genes) in the test data is recalculated using the original model. The increase of prediction error is used to measure the relative importance of predictors in a random Forest model \cite{Breiman2001}. A predictor with higher IncMSE value is more informative for predicting gene expression level.
[bookmark: h.fs6m9kagfsfi]H.2.3. More Details on “An Organism-independent Universal Model”
We construct a universal model in which the predictors are seven histone modifications (H3K4me1, H3K4me2, H3K4me3, H4K20me1, H3K27me3, H3K36me3 and H3K27ac) shared by human, fly and worm. To make the expression levels of genes comparable among different organisms, we normalize log transformed expression levels of all genes by the median in the corresponding organism. We normalize the histone modification as follows:



where  and  are respectively the original and normalized values of the ith histone modification for gene j in organism k; min()  and max() are respectively the minimum and the maximum values of the ith  histone modification in organism k.
The universal model is trained by a data containing equal number of genes from the three organisms, and then applied to predict expression levels in different organisms separately. If a common histone code is used in all three organisms, we expect the universal model result in similar predictive accuracies with those by the organism specific models (see Fig S6).

We test the universal model in three scenarios: (1) train the model on protein-coding genes and apply it to predict expression of protein coding genes; (2) train the model on protein-coding genes and apply it to predict expression of ncRNAs; (3) train the model on ncRNA and apply it to predict expression of ncRNA. In all three sceanrios, the model achieves fairly high prediction accuracy (Fig 6 and Fig S6) [[CC: this new para is moved from main text: Alternatively, we can make a model trained on ncRNAs and then test on them, which also has fairly high prediction accuracy (Fig S6). [[RW: ***Not sure what this says.*** [[mark will explain]]]]]]


[bookmark: h.hkckqe5n98fs]
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[bookmark: h.eug0loo87274]
[bookmark: h.kd61ysqustkg]J. Listing of Associated Data Files 

Files located in the following URL: http://cmptxn.gersteinlab.org
[bookmark: h.yotcdwp8s7cx]J.1. RNA-Seq Datasets
List of all the RNA-seq datasets of human, worm, and fly, produced by the consortium.
Human_RNA-seq.xlsx - data summary table of human RNA-seq datasets, in Excel format,  provided by Carrie Davis, CSHL 
Worm_RNA-seq.xlsx - data summary table of worm RNA-seq datasets, in Excel format, provided by LaDeana Hillier, Washington U St. Louis
Fly_RNA-seq.xlsx - data summary table of fly RNA-seq datasets, in Excel format, provided by Ben Brown, UC Berkeley
Comparative_Datasets.xlsx - datasets used in cross species comparison, in Excel format,  provided by Carrie Davis, CSHL   [[GF2MG: is my understanding of the last file correct? All files are at our project website now]]

 
[[YZ: pls double check providers’ names]]
[bookmark: h.sk4rtqbbkhh5]J.2. Protein Coding Gene Annotation
gen10_CDS+exons_only_protein-coding_only.gtf.gz - Human protein coding gene annotation, in gtf format, from GENCODE v10, provided by Julien Lagarde, CRG Barcelona
AG1201.integrated_transcripts_strictly_coding.ws220.gtf.gz - Worm protein coding gene annotation, in gtf format, from modENCODE June 2012 freeze, provided by LaDeana Hillier, Washington U St. Louis
coding_Celniker_Drosophila_Annotation_20120616_1428.gtf.gz - Fly protein coding gene annotation, in gtf format, from modENCODE June 2012 freeze, provided by Ben Brown, UC Berkeley

J.3. Human-Worm-Fly Ortholog Lists
Modencode.merged.orth20120611_wfh_comm_all.csv - eMIT Human-Worm-Fly Orthologs, provided by Daifeng Wang, Yale and Kellis MIT

[bookmark: h.osl8otjibnqw]J.4. Pseudogene and Noncoding Annotation
List of the pseudogene annotations for human, worm, and fly.

HumanPseudogenes.bed - Human pseudogene annotation, in bed format, relative to GENCODE v10 and hg19, prepared by Cristina Sisu, Yale.
WormPseudogenes.bed - Worm pseudogenes annotation, in bed format, relative to WormBase WS220, prepared by Cristina Sisu, Yale. 
FlyPseudogenes.bed - Fly pseudogenes annotation, in bed format, relative to FlyBase 5.45, prepared by Cristina Sisu, Yale.
strict_noncoding_Celniker_Drosophila_Annotation_20120616_1428.gtf.gz - Fly strict non-coding annotation, in gtf format, from modENCODE June 2012 freeze, provided by Ben Brown, UC Berkeley 
[bookmark: h.3zch71kpigp9]J.5. More Details on Pseudogenes
Statistics of pseudogenes, prepared by Cristina Sisu, Yale.
psiDR file  - containing annotation, parent gene, transcription and additional activity data. Details on the files are provided in the file headers.
Human-psiDR.bed - Human pseudogene decoration resource, in bed format.
Worm-psiDR.bed - Worm pseudogene decoration resource, in bed format.
Fly-psiDR.bed - Fly pseudogene decoration resource, in bed format.

Orthologs-Pseudogenes 
Ortholog-1-1-1-HWF-Pseudogenes.txt - List of 1935 1-1-1 Human-Worm-Fly orthologous genes with their related pseudogenes. 

Pfam-Pseudogenes 
PFAM-familyDistribution-Pseudogenes.txt - Distribution of pseudogene families per organism and pseudogene biotype in human, worm, fly containing Pfam family ID, description, Pfam Clan ID and a detail distribution for human pseudogenes.
[bookmark: h.mln68spnmdn]J.6. More Details on TARs 
Listing of all the TARs locations in the genome, using the chromosome, start and stop. This is prepared by Arif Harmanci and Joel Rozowsky.
human_exon_disc_90_tars.bed - TARS in human at 90% threshold, in bed format. 
human_exon_disc_98_tars.bed - TARS in human at 98% threshold, in bed format.
worm_exon_disc_90_tars.bed - TARS in worm at 90% threshold, in bed format.
worm_exon_disc_98_tars.bed - TARS in worm at 98% threshold, in bed format.
fly_exon_disc_90_tars.bed - TARS in fly at 90% threshold, in bed format.
fly_exon_disc_98_tars.bed - TARS in fly at 98% threshold, in bed format.

[bookmark: h.f1bqmt77j0c9]J.7. More Details on Supervised ncRNA Predictions (novel ncRNA fragments)
The novel ncRNA candidates from the supervised ncRNA predictions. This is prepared by John Lu, Arif Harmanci and Joel Rozowsky.
hg_incRNA_tar98_intersection_50_6Feb13.bed - Human supervised ncRNA predictions Feb 6 , 2013, in bed format.
ce_incRNA_tar98_intersection_50_6Feb13.bed - Worm supervised ncRNA predictions Feb 6 , 2013, in bed format.
dm_incRNA_tar98_intersection_50_6Feb13.bed - Fly supervised ncRNA predictions Feb 6 , 2013, in bed format.

[bookmark: h.ig8mszzd438n]J.8. More Details on Coding Genes 
Listing of all processed values and features associated to coding genes in human, worm, and fly. This includes gene expression levels, TF prediction power and orthology etc. Details on the values and features are provided in excel sheet headers, provided by Gang Fang, Yale.
human_gene.xlsx - Human coding gene details, in Excel format.
worm_gene.xlsx - Worm coding gene details, in Excel format.
fly_gene.xlsx - Fly coding gene details, in Excel format.

[bookmark: h.v0rjyuxsuvm]J.9. Hourglass modules and associated ncRNAs 
Genes and associated ncRNAs and TARs in “hourglass” related coexpression modules, provided by Daifeng Wang, Yale.
HG_module.tar.gz - 16 human, worm, and fly coexpressed modules related with the “hourglass” pattern in embryonic development, tarball of csv files.
HG_module_ncRNA.tar.gz - ncRNAs and TARs associated with the 16 modules in three species, tarball of txt files.


K. Listing of Online data

All ENCODE and modENCODE data and analyses are available online. To explore the underlying details of specific gene transcription in this paper further, we recommend as a first point of reference utilizing the project website at http://www.modencode.org/ and http://encodeproject.org The sites serve as central resources point for accessing all data associated with this paper. We have also stated the WormBase and FlyBase version(s) to which data has been mapped or compared. 
[bookmark: h.brjybdflzqxk]K.1. modENCODE.org & encodeproject.org		
The modENCODE project website, www.modencode.org, and the www.encodeproject.org are the primary entry points for accessing and downloading the entire modENCODE and ENCODE data corpus. 
			
Following the modMine link from the modencode.org provides a searchable interface and easy to explore organization of the datasets. For access to a graphical depiction of the datasets across the chromosomes, follow the “Browse worm Genomes” link to open a GBrowser window The GBrowser enables side by side visual comparison of datasets and provides options to customize, share and export regions of interest.

Following the “Experiment Matrix” link from the encodeproject.org describes all the experiments performed for each cell line. The “Search” and “Genome Browser” links allow examination of specific transcriptions at various scales.
[bookmark: h.oavwhxomgyt0]K.2. WormBase, FlyBase, SRA and Beyond
Finally, modENCODE data and analyses are available through many international repositories in various forms. The primary site to access and download the RNA-Seq sequencing data are available from the GEO (3) and SRA (4) resources. The accession numbers for GEO and SRA data sets can be found linked from the modMine dataset summaries, or the resources can be searched directly for the “modENCODE” project. Interpreted data, including corrected gene models, alternative transcripts, and ChIP peaks, are being incorporated into WormBase and FlyBase. 
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