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1. Details on ʻGenomic elements under strong purifying 
selectionʼ  
 

Metrics used to quantify negative selection 
Common metrics used to quantify negative selection, such as SNP density, 
heterozygosity and evolutionary conservation score (GERP score), are examined in this 
paper. One concern with SNP density is the potential GC bias in low-coverage 
sequencing data. Generally, GC enriched regions have lower sequencing coverage 
compared to GC depleted regions. Thus, the low SNP density in GC enriched categories 
is an artificial effect because of lacking power to detect variants rather than a sign of 
strong negative selection [Supp Figure S 7]. The same bias affects heterozygosity 
metrics. On the contrary, the GC bias has an opposite effect on fraction of rare variants. 
We tend to underestimate fraction of rare variants in GC enriched categories [Supp 
Figure S 8]. From this perspective, using fraction of rare variants is a better metrics to 
quantify recent negative selection in human populations, as we do not tend to have false 
positives. We also compared the fraction of rare variants with average GERP scores of 
underlying sequences and they demonstrate significantly positive correlation (r= 0.49, 
p=3e-4), suggesting the recent negative selection in human populations aligned well with 
evolutionary constraints [Supp Figure S 3]. 

 
Impact of sample size on identification of differential purifying 
selection in various functional categories 
Individuals were randomly selected in sets of 100, 200, 300 ….1000 from the 1,092 
samples. For each set the fraction of rare alleles in various functional categories was 
computed. The calculation was repeated 100 times for each set [Supp Figure S 1]. At 
small sample sizes, it is harder to distinguish between truly common and rare SNPs in 
the general population because the estimate of the prevalence of derived alleles is 
limited by the sample size. Thus, the occurrence of common polymorphisms in the 
population is underestimated in small samples due to incomplete sampling. By sub-
sampling individuals from Phase I samples, we find that different functional categories 
are effected to varying degrees by sample size [Supp Figure S 1]. As sample size 
increases, the fraction of SNPs with low allele count in categories under weak purifying 
selection (for example, pseudogenes) decreases. This is because categories under 
weak selection harbor mostly common SNPs, whose derived allele count is severely 
underestimated at small sample size. In strong contrast, the fraction of rare SNPs in 
categories under strong selection (for example, SNPs introducing prematureStop 
codons) remains relatively constant with increasing sample size. This is because these 
categories harbor mostly rare SNPs whose derived allele count remains largely 
unaffected by greater sampling. As a result, with increasing sample size, the gap 
between the strength of negative selection (fraction of rare alleles) amongst different 
categories increases. The availability of 1,092 samples allows a clear separation of 
functional categories whose differences were either absent or only subtle at smaller 
sample sizes (for example, motifs of TF families HMG and MADs-box). 
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Sources of various gene categories  
Most of the analyses are based on a consistent set of gene categories from a 
defined set of databases and/or references. The ʻLoF-tolʼ gene category is a curated 
list of loss-of-function genes from phase 1 of the 1000 Genomes Project (6) that are 
non-pathogenic even in the homozygous state (hence Loss-of-Function tolerant). 
ʻRecessiveʼ and ʻDominantʼ genes are derived from Blekhman et. al. (7), which are 
curated from the Online Mendelian Inheritance in Man (OMIM) database. The 
ʻGWASʼ genes are extracted from the NHGRI catalog of published genome-wide 
association studies (8). The ʻessentialʼ genes are obtained from the Database of 
Essential Genes (DEG) version 5.0 (9-11). Genes in the ʻCancerʼ category are 
obtained from the Cancer Gene Census (12). 
 
 
Identification of non-coding categories under purifying selection	  
Non-coding functional categories 
Non-coding annotations used include ncRNAs, UTRs, transcription factor (TF) 
peaks, TF motifs, DNase I hypersensitivity sites (DHSs), enhancers and 
pseudogenes. ncRNAs are further divided into miRNA, snRNA, snoRNA, rRNA, 
lincRNA and miscellaneous RNA. ncRNAs, UTRs and pseudogenes are obtained 
from Gencodev7 (1). TF peaks, motifs, DHSs and enhancers are obtained from 
Encode Integrative paper release (2). In total, there are 88 sequence-specific TFs 
(TFSSs), 16 general TFs (like Pol2- and Pol3-associated factors), and 15 chromatin-
associated factors. The classification of TFs into different families is as described by 
Vaquerizas et al and is based on the presence of DNA binding domains from the 
Interpro database (3). Details of the classification are also discussed in Gerstein et al 
(4). A conservative set of enhancer elements is used which consists of intersection 
of those obtained using combined  ChromHMM/Segway segmentation  (2) with distal 
regulatory modules obtained by discriminative training (5). A schema of the various 
sub-categories is presented in [Supp Figure S 2]. 
 

Quantify purifying selection of non-coding categories using fraction of rare 
variants. 
Fraction of rare variants based on 1000 genomes phase 1 SNP data is used to estimate 
recent negative selection in human populations on non-coding categories. Higher 
fraction of rare variants suggests higher selection constraint. To reduce allele frequency 
bias due to sequencing coverage, we limited our analysis to 1000 genomes phase 1 low 
coverage SNPs found in ʻPʼ sites of strict mask (13). Rare variants are defined as those 
with derive allele frequency less than 0.5% (DAF < 0.5%). Fraction of rare variants for 
each category is calculated as number of rare ones divided by total number of variants. 
Variants without ancestral state assignment are excluded from our analysis. 
 
Significance estimation and Randomization 
With the goal of identifying strongly negative-selected non-coding categories, we 
compared the fraction of rare variants with that of non-coding average. In addition to 
directly compare the relative values, the size effect is another important consideration. 
Categories with less SNPs will demonstrate high variation of fraction of rare variants 
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compared to categories with more SNPs. Thus to quantify significance against non-
coding average, a binomial test is used to capture of the effect of data scarcity, 
assuming the possibility of a SNP classified as rare or not following binomial distribution. 
Enrichment of rare variants of 677 categories against non-coding average were tested. 
To deal with multiple hypothesis correction, a randomization procedure was developed 
considering the specific dependency structure of different categories, for example, 
faction of binding peaks of BRF1 overlap with that of ZZZ3. Instead of randomly shuffling 
coordinates, all categories slide together along the genome to retain the relative 
positions [Supp Figure S 4]. For each sliding process, fraction of rare variants is 
recalculated based on the new coordinates for each category. This process is repeated 
1,000 times resulting a distribution of fractions of rare variants for each category. 
Empirical P values were obtained comparing original fraction of rare variants with 
randomized distribution. We found that the randomized P values correlate well with the 
binomial P values [Supp Figure S 5], suggesting the binomial distribution assumption of 
rare variants is appropriate. 
False discovery rate of the multiple hypothesis testing was calculated as (14):  

FDR = E(R
0 )

R  

E(R0 ) = 1
B

R0
b=1

B

!  

 
with R0b = #{FPb} , B is the number of randomization and R is the number of categories 
passing cut-offs.  After setting FDR to 1.3%, 101 categories are found to be significantly 
enriched of rare variants.  
 
 
Defining sensitive regions 
Among the 101 significant categories, we defined categories constituting ~0.02% and 
~0.4% of the genome with highest fraction of rare variants as “Ultra-Sensitive” and 
“Sensitive” regions (5 and 24 categories respectively) [Supp Figure S 6]. Mutations in 
these regions are more likely to be deleterious, as they are selected against variants.   
 
 
Allelic SNPs and eQTLs  
For the allele-specific analyses, we divided the SNPs found in the individual 
NA12878 into three categories: those that are allele-specific and found in ChIP-seq 
and/or RNA-seq peaks (AS), those non-allele-specific but found in peaks (non-AS) 
and those not found in peaks (non-peaks). The list of allele-specific SNPs found in 
ChIP-seq and RNA-seq peaks (specific to NA12878) are generated from the 
AlleleSeq pipeline by Rozowsky et al. (15). 
 
The 14,812 eQTL SNPs are obtained from Montgomery et. al. (16). For comparison, the 
matched SNPs were selected to be located within 1Mb of a gene and matched for allele 
frequency and distance from transcription start site. For eQTL enrichment analysis, the 
eQTL SNPs were compared against the matched set of SNPs for all the functional 
categories; odds ratios and p-values are obtained from Fisherʼs exact tests. 
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Genes showing tissue-specific expression 
The tissue-specificity of protein-coding genes was analyzed by RNA-sequencing of 18 
human tissue samples from the Ambion FirstChoice Human Total RNA Survey Panel. 
Library preparation and sequencing of 49bp paired-end read was done with Illumina 
HiSeq according to the manufacturerʼs instructions, the reads were mapped to hg19 with 
bwa, and gene expression levels were measured as RPKM from read counts in coding 
regions of Gencode v10 genes. Out of the total 19290 expressed genes in at least one 
tissue of this dataset and of these a total of 11719 (137-2626 per tissue) showed a 
tissue-specific pattern of expression defined as in (17).  
 
Tissue-specific DNase hypersensitive sites 
DNase hypersensitive sites of 125 cell types are obtained from Thurman et al. (18). After 
excluding cancer cell types, normal cell lines are grouped into 25 tissues according to 
Encode common cell types information. Tissue specific DHS sites for each tissue are 
defined as those that occur only in that tissue and are absent from other tissues.  
 
 
2. Details on ʻPurifying selection in the human proteome and 
regulomeʼ 
 
Source of Interaction data 
Binary protein-protein interactions were obtained from InWeb (19) and HINT (20). 
Regulatory interactions were obtained from Gerstein et al, 2012 (4).  
 
Structural Interaction network (SIN) construction and analysis to find 
SNPs at interaction interfaces 
For SIN construction, protein-protein interaction (PPI) network is curated and filtered 
from HPRD (Human Protein Reference Database) and MIPS database, containing 
39,849 interactions between 7,432 proteins (21). For each protein, the domain 
information is obtained from Pfam. Pfam domain-domain interactions (DDI) and residue 
level interactions between protein domains in PDB are obtained from iPfam (release 
20.0). Domain-domain interactions are mapped onto protein-protein interaction network 
through the protein-domain relationships. Interactions that are supported by both DDI 
and PPI are included in the SIN.  Generally speaking, SIN has the interacting domain 
information in corresponding protein-protein interactions. SIN contains 11,433 domain 
interactions between 2,262 proteins. The presence of missense SNPs is then checked in 
the list of amino acid residues at interaction interfaces. 

 
Atomic resolution structural interaction network 
To construct an atomic-resolution human protein interactome network, we compiled all 
available high-quality co-crystal structures from Protein Data Bank (PDB) (22). Atomic-
resolution interaction interfaces were identified using these co-crystal structures - we 
used a water molecule of diameter 1.4Å as the probe and calculated the relative solvent 
accessible surface areas of the interacting pair as well as the individual proteins involved 
in the interaction (23). Any residues whose relative accessibilities change by more than 
1Å2 are considered as potential interface residues. Amino acids at the interface are on 

Ekta Khurana� 12/12/12 6:55 PM
Deleted: ,

Ekta Khurana� 12/12/12 6:55 PM
Deleted: but



 5 

the surface of the corresponding proteins, but tend to be buried in the co-crystal 
structure where the two proteins are in a bound configuration. So, for all interface 
residues, there should be a significant change in accessible surface area when 
comparing the bound and unbound states (24). Furthermore, we required that interface 
residues be present at the surface of the corresponding proteins. We calculated the 
fraction of surface area for each residue in the corresponding proteins without their 
interaction partners accessible to the water molecule probe. If more than 15% of the total 
surface area is accessible to the water molecule for a particular residue, we define it to 
be at the surface, else it is considered to be buried (24, 25). Using these two criteria, we 
obtain a set of 89,075 residues that represent the interface for 2,069 interactions as 
determined by 5,549 atomic-resolution co-crystal structures (26). With our atomic-
resolution interactome network, we calculated the enrichment of all phase I SNPs at the 
interaction interface, the remainder of the interacting domain, and the rest of the protein. 
We find that while rare variants are enriched significantly both at the interface and in the 
remainder of the interacting domain (odds ratio = 1.16, P = 0.001 for interface residues; 
odds ratio = 1.15, P < 10-5 for remainder of the interacting domain), common variants 
(DAF >= 0.5%) are enriched significantly outside interacting domains (odds ratio = 1.08, 
P = 0.0005 outside interacting domains). Our analysis provides a molecular mechanistic 
explanation for the differences in the way these two polymorphisms act – common 
variants are evolutionarily prone to remain away from the interaction interface as these 
occur frequently in the population and are unlikely to have any deleterious functional 
consequences. 
 
 
Validation by yeast two-hybrid experiments 
To test the functional consequences of rare variants, we cloned three different 
polymorphisms into Wiskott Aldrich Syndrome protein (WAS) – R41G, E131K and I294T. 
E131K is both a rare variant (DAF < 0.5%) and a known HGMD disease mutation, 
whereas I294T and R41G are known HGMD disease mutations but have not been 
detected as SNPs. E131K and R41G occur within the WH1 domain on WAS while I294T 
is in the PBD domain. We examined the effects of these polymorphisms on WAS 
interactions using a yeast two-hybrid (Y2H) system. We found that while wild-type WAS 
and APPBP2 interact, all three polymorphisms disrupt the interaction. On the other hand, 
WAS uses the PBD domain for interacting with CDC42 and regulating its auto-inhibition 
(27). Our Y2H results confirm that only the I294T mutation within the PBD domain 
disrupts the interaction, illustrating the specificity of our assay in detecting particular 
disruptions. Moreover, both wild-type WAS and all three variants interact with WIPF1 
and NCK2. Our results show that all the three mutations, including the rare SNP, have 
functional consequences as they disrupt specific interactions. To further explore such 
consequences, we examined the effect of these variants on the WAS-TRIP10 and WAS-
ABI3 interactions. R41G disrupts both these interactions but I294T and E131K do not 
disrupt them. Our results suggest that the WH1 domain (and not the PBD domain) forms 
the interface for these two interactions, since previous analyses have shown that 
mutations at the interface are most likely to disrupt specific interactions (26). Moreover, 
while both R41G and E131K are within the WH1 domain, only the former disrupts the 
interaction. This can be explained by examining the severity of the functional 
consequences of these mutations. R41G has not been detected as a polymorphism in 
healthy individuals suggesting that it is a highly deleterious mutation occurring at 
extremely low allele frequencies within the population. On the other hand, E131K has 
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been detected as a rare polymorphism in healthy individuals. This suggests that the 
functional consequences of this variant are less deleterious than that of R41G. Our 
analysis shows that rare variants have some functional consequences and disease 
mutations tend to be a more extreme case with more deleterious effects. 
 
 
Construction of mutant clones 
The wild-type WAS entry clone is obtained from the hORFeome 3.1 collection (28). 
Mutant clones were generated using PCR mutagenesis as previously described (29, 30). 
Briefly, wild-type genes in AD or DB vectors were used as templates in PCR reactions to 
generate N- and C-terminal fragments both containing the desired mutation in their 
overlapping regions. BP recombination reactions were done as per the manufacturerʼs 
manual (Gateway BP Clonase II enzyme mix) to clone mutant clones into the entry 
vector (pDONR223). Wild-type and mutant WAS clones were also PCR cloned into the 
mammalian expression vector pcDNA3 (Invitrogen Life Technologies) using XbaI and 
NotI restriction sites. A flag-tag was introduced into the C-terminal end of genes. 
Primers used: 
WAS_ cloning_F_XbaI 
GCTGTCTAGAGCCACCATGAGTGGGGGCCCAATGGG 
WAS_cloning_FLAG NotI_R 
ATCAGCGGCCGCCTACTTATCGTCGTCATCCTTGTAATCGTCATCCCATTCATCATC
TTC 
 
Yeast two-hybrid 
Yeast two-hybrid (Y2H) was done as previously described (25). CDC42, TRIP10, ABI3, 
APPBP2, WIPF1 and NCK2 were transferred into AD vectors using Gateway LR 
reactions. Wild-type/mutant WAS was transferred into a DB vector. AD and DB 
constructs were transformed into Y2H strains MATa Y8800 and MATα Y8930, 
respectively. Transformed yeast was spotted onto YPD plates and incubated at 30 °C for 
~20 h before replica plating onto SC-Leu-Trp plates. These plates were incubated at 30 
°C for 24 h, then replica plated onto each of the four plates (SC-Leu-Trp-His, SC-Leu-
His+CYH, SC-Leu-Trp-Ade, SC-Leu-Ade+CYH). 3 days later plates were scored for 
protein interactions. 
 
 
3. Details on ʻRelationship of functional elements with indels 
and larger SVsʼ  
 
SVs of single nucleotide resolution are combined from the 1000 Genomes pilot data (13) 
and the phase I integrated call set. To removed redundancies, we take 50% reciprocal 
overlaps between SVs and preferentially keep the phase I SVs. This results in a dataset 
of 15,790 SVs of single nucleotide resolution. SV formation mechanisms are classified 
using the BreakSeq tool (31). The randomization test is performed as previously 
described (32). Gene and gene elements are taken from the longest transcript of protein-
coding genes in Gencode v7 annotations. Whole gene intersection includes SV 
overlapping with one whole gene, as well as multiple whole genes. Partial gene 
intersection involves partial overlap of SVs with any gene. 
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Aggregation of histone marks around SV breakpoints 
Yong Kong 
 
 

4. Details on ʻFunctional implications of positive selection 
amongst human populationsʼ 
 
Enrichment of sites with high population differentiation in categories 
of functional elements and genes 
Sites presenting extreme population differences in the frequency of the derived allele 
were identified as described, and 604 were experimentally tested using Sequenom 
assays and concordance with Complete Genomics data revealing an average per-locus 
genotype concordance rate of 95% (6 human genomes)). We identified a control set of 1 
million sites matched for allele frequency in the combined sample and calculated the 
ratio between the occurrence of functional annotations in the two data sets for the 27 
functional categories where we would have a large enough sample size to detect 
enrichment (>100,000 SNPs). We performed a Fisher exact test for each category and 
applied two different corrections to take account of the 27 tests used: the Benjamini-
Hochberg (BH) procedure and the Bonferroni correction. For the latter, we considered as 
significant p-values <0.0018 (0.05/27). This correction for multiple testing is conservative 
since the categories are not all independent. Since the definition of HighD sites requires 
setting a threshold for derived allele frequency difference (ΔDAF; threshold used = 0.7), 
we also investigated the consequences of varying this threshold between 0.5 and 0.8 
and we found that the observed enrichments are stable across a broad range of ΔDAF 
thresholds [Supplementary figure XX]. 
In evaluating the prevalence of HighD sites among genes categories, we selected from 
Ensembl release 68 a set of control genes matched for number, GC content, gene length 
and recombination rate (from Hapmap Phase2). 
 
 
We note that despite observing enrichment in some TF peaks, we do not observe 
enrichment in TF motifs, which might be expected to have stronger functional impact 
than TF peaks. This might be due to a limitation of the method used to identify HighD 
sites, since it only picks one SNP (with the highest ΔDAF value) in each cluster of highly 
differentiated SNPs. It is possible that the mostly highly differentiated SNP does not lie in 
a motif but it is in LD with another SNP which has a stronger impact on TF binding by its 
presence. 
 
 

5. Details on ʻNatural germline vs disease variantsʼ 
 
Enrichment of known disease-causing mutations in sensitive regions 
Disease-causing mutations in regulatory regions are obtained from HGMD database 
(33). After lifting over from hg18 to hg19, 566 mutations are found happened in non-
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coding regions using Gencode 7 annotations. Enrichments of these disease-causing 
mutations in “ultra-sensitive”, “sensitive”, “non-coding annotation” regions are compared 
to “non-coding” regions. 
 
Source of cancer data sets 
Cancer patient genome variant data was obtained from recently published whole 
genome sequence (WGS) cancer studies, including seven prostate cancer genomes 
(34), three medulloblastoma genomes (35), and 21 breast cancer genomes (36). 
Somatic variant calls for these cancers were obtained from the respective studiesʼ 
authors. Prostate germline variant calls were obtained using the Broad Instituteʼs 
Genome Analysis Toolkit (GATK) (37), and the medulloblastoma germline variant calls 
were obtained from the study authors. Germline variant calls were not available for the 
breast cancer data. For the purpose of uniform comparison and to remove artifacts 
arising from varied sequencing technologies and data processing pipelines, we have 
used germline variants from healthy tissues of matching tumour samples processed in a 
consistent manner whenever possible. 
 

Enrichment/depletion of driver and passenger somatic SNVs with 
1000 Genomes SNPs 
Enrichment/depletion of cancer drivers and passengers was determined by comparing 
the observed intersection with an expected intersection computed by random simulation. 
These simulations involved randomizing the positions of the variants in each cancer 
dataset 10,000 times, producing 10,000 sets of random variants for each cancer. For 
each of these random datasets, an intersection analysis against 1000 Genomes variants 
was run. Hence, for each observed intersection, a distribution of intersections expected 
at random chance was created. These distributions were used to determine any 
significant enrichments or depletions of cancer variant intersections with the 1000 
Genomes variants. We find that coding driver SNVs are significantly depleted for 
intersection with 1000 Genomes variants (p value= XX) while passenger SNVs are 
significantly enriched (p value= 1.19e-26). 
 
Annotation of SNV as breaking or conserving TF motif 
A SNP that breaks a motif is defined as a mutation that decreases the motif-matching 
score of the TF-binding site to the PWM of the motif. Conversely, a SNP that conserves 
a motif is defined as a mutation that increases the motif-matching score of the TF-
binding site to the PWM of the motif. Only polarized mutations, i.e. those whose 
ancestral states are known, are used for this analysis. For germline samples and deep-
sequenced NA12878, only those variants whose ancestral states are determined in the 
1000 Genomes Phase I data are used. 
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Supporting Figures  
 

 

 
Supp Figure S 1 Impact of sample size on identification of differential purifying 
selection in various functional categories. As sample size increases, the fraction 
of SNPs with low allele count in categories under weak purifying selection (for 
example, pseudogenes) decreases. In strong contrast, the fraction of rare SNPs 
in categories under strong selection (for example, SNPs introducing 
prematureStop codons) remains relatively constant with increasing sample size. 
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Supp Figure S 2 Broad and high-resolution categories. The numbers of sub-
categories within each category are shown in brackets. 
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Supp Figure S 3 Relationship between fractions of rare SNPs and average Gerp 
scores of non-coding categories (rho= 0.49, p=3e-4; spearman rank test). 
Average Gerp score is calculated as the mean Gerp score of all bases underlying 
each category. Red dot is the coding region.  

 

 
 
 

 
 
 
Supp Figure S 4 Schematic randomization procedures. Null distribution is 
obtained by sliding category coordinates along the genome for 1,000 
times.   
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Supp Figure S 5 Comparison of randomized P values with binomial P 
values of fraction of rare SNPs for 677 categories. Binomial P value is 
calculated using fraction of rare variants of non-coding average as 
background.  
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Supp Figure S 6 Changes of “Genomic percentage” and “Fraction of rare 
SNPs (rDAF)” by sequentially adding significant categories into examined 
regions. Significant categories are decreasingly ordered according to 
fraction of rare SNPs. Black lines are 95% confidence intervals. Orange 
lines denote rDAFs of “Coding” and “Genomic average”. Blue dotted line 
is the ultra-sensitive cut-off; red dotted line is the sensitive cut-off.  
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Supp Figure S 7 Relationship of ʻSNP densityʼ and ʻCpGʼ content for various 
functional categories 
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Supp Figure S 8 Relationship of ʻFraction of common SNPsʼ and ʻCpG contentʼ 
for various functional categories 
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Supp Figure S 9 Left panel shows the relationship between ʻSNP densityʼ and 
ʻFraction of rare SNPsʼ for coding genes (rho=-0.6346749 , p value=0.005684). 
Right panel shows the relationship between SNP density and ʻFraction of rare 
SNPsʼ for DHSs (rho=-0.7361538, p value=4.383e-05). 
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Supp Figure S 10 Fraction of rare frameshift indels for different gene categories 
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Supp Figure S 11  
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Supp Figure S 12 (HMGD) Enrichment of HGMD regulatory disease-causing 
mutations in non-coding ultra-sensitive, sensitive and annotated regions 
compared to whole non-coding regions.    
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Supp Figure S 13 Left panel shows that a higher percentage of somatic SNVs 
map to coding genes than germline SNVs for both medulloblastoma and prostate 
cancer. Right panel shows the distribution of somatic SNVs in different functional 
categories for one sample from different cancers. 
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Supp Figure S 14 Distributions of per sample ratios for somatic and matching 
germline SNVs in various functional categories across seven prostate cancer 
samples. 
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Supplementary Tables 
 
Tabel S1. Tissue-specific expressed genes: Fraction of rare SNPs, Mann-
Whitney p values for comparison with all expressed genes and direction of 
change of their median expression from all genes. 

 

 
 
 
 

 

 

 

Median Median
rare/total P-value vs all

SNPs
Adipose 0.639 0.167 lower
Bladder 0.667 0.267 lower
Brain 0.668 5.08E-06 higher
Cervix 0.625 0.442 lower
Colon 0.667 0.740 lower

Esophagus 0.646 0.739 lower
Heart 0.658 0.287 lower
Kidney 0.678 0.556 higher
Liver 0.644 0.058 lower
Lung 0.643 0.031 lower
Ovary 0.680 0.006 higher
Placenta 0.654 0.475 lower
Prostate 0.604 0.824 higher
Spleen 0.642 0.002 lower
Testes 0.658 0.014 lower
Thymus 0.658 0.121 higher
Thyroid 0.667 0.086 higher
Trachea 0.648 0.054 lower

Tissue
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Tabel S2. Fisherʼs exact test odds ratio (somatic:germline) and p values for 
enrichment of functionally deleterious mutations amongst somatic variants. 
Significant p values  (<0.05) are colored in grey.  

 

 
Sample Missense/Syn LoF/Coding Sensitive/NonCoding Ultrasensitive/Noncoding 

PR-0508 2.11 (4.415e-
1) 

24.85 
(4.521e-2) 

1.94 (4.541e-2) 4.26 (3.521e-2) 

PR-0581 1.05 (1) 0 (1) 0.93 (1) 1.65 (4.563e-1) 

PR-1701 2.16 (2.523e-
1) 

0 (1) 1.18 (5.618e-1) 1.16 (5.772e-1) 

PR-1783 20.66 
(1.143e-5) 

8.32 (1.189e-
1) 

1.07 (7.285e-1) 1.08 (6.053e-1) 

PR-2832 1.43 (7.182e-
1) 

48.81 
(6.522e-5) 

1.56 (1.314e-1) 4.14 (3.779e-2) 

PR-3027 1.68 (2.797e-
1) 

14.67 
(9.7755e-3) 

1.10 (7.221e-1) 0 (6.318e-1) 

PR-3043 5.12 (2.102e-
2) 

0 (1) 0.66 (5.376e-1) 1.12 (5.91e-1) 
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Tabel S3.	  Number of SNVs conserving vs. breaking TF-binding motifs 

 
 

 
 
 

Sample! # SNPs!
# SNPs 
breaking 

motifs!

# SNPs 
conserving 

motifs!

Ratio of 
conserving:!
breaking!

Deeply-sequenced 
NA12878 
(Polarized SNPs in 
1000 Genomes 
Phase I)!

2562766! 4410! 2985! 0.677!

Average 1000 
Genomes Phase I 
(Polarized SNPs)!

3607334! 6244! 4030! 0.647!

Prostate cancer sample! #  SNPs! # SNPs 
breaking motifs!

# SNPs 
conserving 

motifs!

Ratio of 
conserving:!
breaking!

Somatic!

PR-0508! 1446! 4! 1! 0.250!
PR-0581! 1430! 1! 0! 0.000!
PR-1701! 1936! 1! 1! 1.000!
PR-1783! 2226! 2! 1! 0.500!
PR-2832! 1829! 3! 1! 0.333!
PR-3027! 2452! 4! 2! 0.500!
PR-3043! 1713! 4! 0! 0.000!
Average! 1862! 3! 1! 0.333!

Germline 
(Polarized 
SNPs in 1000 
Genomes 
Phase I)!

PR-0508! 2697721! 4004! 2799! 0.699!
PR-0581! 2699101! 3948! 2860! 0.724!
PR-1701! 2759025! 4041! 2830! 0.700!
PR-1783! 2758799! 3893! 2784! 0.715!
PR-2832! 2757884! 4024! 2851! 0.708!
PR-3027! 2748298! 3774! 2706! 0.717!
PR-3043! 2756406! 3465! 2536! 0.732!
Average! 2739605! 3878! 2767! 0.714!
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Medulloblastoma sample! # SNPs! # SNPs 
breaking motifs!

# SNPs 
conserving 
motifs!

Ratio of 
conserving:!
breaking!

Somatic!

MB1! 2250! 3! 3! 1.000!

MB2! 1786! 6! 2! 0.333!

MB4! 1607! 5! 0! 0.000!

Average! 1881! 5! 2! 0.444!

Germline 
(Polarized SNPs 
in 1000 Genomes 
Phase I)!

MB1! 2753485! 3893! 2799! 0.719!

MB2! 2731595! 4188! 2,55! 0.706!

MB4! 2758545! 4037! 2871! 0.711!

Average! 2747875! 4039! 2875! 0.712!
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Tabel S4. Ultra-sensitive and sensitive coordinates and functional 
annotations. 
 
 
  

Breast cancer 
somatic sample! # SNPs! # SNPs 

breaking motifs!
# SNPs 
conserving 
motifs!

Ratio of 
conserving:!
breaking!

PD3851a! 1782! 5! 1! 0.200!
PD3890a! 6124! 11! 5! 0.455!
PD3904a! 5608! 7! 2! 0.286!
PD3905a! 4587! 9! 1! 0.111!
PD3945a! 10308! 21! 6! 0.286!
PD4005a! 6104! 18! 3! 0.167!
PD4006a! 9194! 25! 2! 0.080!
PD4085a! 2673! 2! 0! 0.000!
PD4086a! 2199! 5! 0! 0.000!
PD4088a! 1705! 7! 0! 0.000!
PD4103a! 5360! 6! 3! 0.500!
PD4107a! 10291! 20! 4! 0.200!
PD4109a! 9888! 23! 3! 0.130!
PD4115a! 9954! 23! 9! 0.391!
PD4116a! 8026! 12! 6! 0.500!
PD4120a! 70690! 275! 60! 0.218!
PD4192a! 3919! 7! 3! 0.429!
PD4194a! 1484! 3! 1! 0.333!
PD4198a! 4552! 7! 1! 0.143!
PD4199a! 6932! 20! 3! 0.150!
PD4248a! 2536! 5! 0! 0.000!
Average! 8758! 24! 5! 0.222!
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