Cancer Variant Intersection Analysis: Additional Datasets

Lucas Lochovsky
Annotation subgroup
Gerstein lab, Yale
Sept 19, 2012

Data

Prostate Cancer

- Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature (2011).
- Seven samples
- ~29,000 variants
- ~0.7% exome

Melanoma

- Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2009).
- One sample
- ~33,000 variants
- ~0.9% exome

Data

Breast Cancer

- Nik-Zainal, S. et al. Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149, 979–993 (2012).
- 21 samples
- ~180,000 variants
- $^{\circ}0.8\%$ exome
- Looking at "gene_type" column, it appears that variants are ~30% protein coding
- But "mut_type" column indicates that most of those are intron variants

Methods

- Separate driver and passenger mutations
 - Using CHASM (Cancer-Specific High-throughput Annotation of Somatic Mutations)
 - Wong, W. C. et al. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics 27, 2147–2148 (2011).
- Investigate enrichments/depletions of drivers and passengers in phase 1 1KG coding variants through intersection analysis
 - Common vs. rare 1KG variants
 - Nonsynonymous vs. synonymous 1KG variants
- Random expectation: Average of 10,000 runs using randomized cancer variant coordinates

Significant Results: Berger Prostate Cancer

Drivers

- Only one driver variant overlapped 1KG variant
 - Rare, nonsynonymous

Passengers

Comparison	Actual:Random Percentage Ratio	p-value	95% CI (random dist)
Passengers vs. all 1KG coding	2.38	8.39E-04	[0.63018742, 9.47501258]
Passengers vs. 1KG common coding	4.43	0.000160	[-1.021558522, 3.280358522]
Passengers vs. 1KG rare coding	1.90	0.0398	[-0.10245336, 7.46765336]
Passengers vs. 1KG nonsyn coding	3.04	1.82E-04	[-0.43441278, 6.34621278]
Passengers vs. 1KG syn coding	1.39	0.280	[-0.74319146, 5.05239146]

Significant Results: Pleasance Melanoma

Drivers			
Comparison	Actual:Random Percentage Ratio	p-value	95% CI (random dist)
Drivers vs. all 1KG coding	2.38	0.0347	[-0.872331252, 4.234531252]
Drivers vs. 1KG common coding	5.46	0.00344	[-0.842927884, 1.575327884]
Drivers vs. 1KG rare coding	1.62	0.243	[-0.949376666, 3.423976666]
Drivers vs. 1KG nonsyn coding	1.02	0.490	[-0.97056178, 2.92396178]
Drivers vs. 1KG syn coding	4.13	0.00360	[-0.966859322, 2.418059322]

Passengers

•			
Comparison	Actual:Random Percentage Ratio	p-value	95% CI (random dist)
Passengers vs. all 1KG coding	1.40	0.167	[0.97642116, 10.45117884]
Passengers vs. 1KG common coding	1.56	0.261	[-0.95666989, 3.52406989]
Passengers vs. 1KG rare coding	1.44	0.185	[0.08550592, 8.24829408]
Passengers vs. 1KG nonsyn coding	1.50	0.179	[-0.30308568, 6.96128568]
Passengers vs. 1KG syn coding	1.22	0.364	[-0.67620584, 5.58520584]

Significant Results: Nik-Zainal Breast Cancer

Drivers

 There were zero intersections between drivers and 1KG variants

Passengers

•			
Comparison	Actual:Random Percentage Ratio	p-value	95% CI (random dist)
Passengers vs. all 1KG coding	1.53	4.73E-04	[25.46989484, 49.23870516]
		0.001373	
Passengers vs. 1KG common coding	2.03	404	[2.6067239, 14.1334761]
Passengers vs. 1KG rare coding	1.43	0.0104	[17.09457002, 37.41062998]
Passengers vs. 1KG nonsyn coding	1.92	5.50E-06	[12.68312814, 31.01627186]
Passengers vs. 1KG syn coding	1.19	0.220	[8.06816372, 23.83483628]

Caveat

 Sample size n for the Halaban data is 275, but the highest n in these datasets is 21

For the Future...

Intersection analysis with TCGA cancer data is ongoing