GPMTG

RK

7th September 2012

overview

brains!

- **1** intro / motivation
- 2 human, chimp, macaque miRNA analysis strategy
- **3** rebuilding the chimp & macaque miRNA reference
- 4 inter-species & inter-tissue expression differences
- **5** miRNA-mRNA

human brain

cortex amygdala cerebellum hyppocampus striatum thalamus

brain comparison

human brain is composed of **functionally distinct regions** and **cell types**

'wiring' of the cortex is what makes us human

process of wiring depends on precise **spatiotemporal** regulation of **gene expression**

brain comparison

organism	N neurons	N synapses	synapses per neuron	
worm	300	I 0 ⁴	33	н
fly	100 thousand	I 0 ⁷	100	н
mouse	75 million	1011	I,000	ŀ
chimp	7 billion	~I0 ^{I3}	~1,000	
human	85 billion	I0 ¹⁵	10,000	

brain disease

Huntington's disease affects the whole brain, but the striatum is more vulnerable

Control brain

Huntington's disease brain

brain disease

plaques resulting from **Alzheimer's disease** progresses through the cortex in a predictable pattern

brain disorder

specific brain areas implicated in Autism Spectrum Disorders

blue regions social impairment

yellow regions communication deficits

red regions repetitive behaviour

brain development

development of the human brain is a complex and prolonged process

brain development

can lose an **entire hemisphere** in early development and still function [fairly] normally

fairly common that to remove a **brain tumour**, a surgeon will remove an **entire lobe**

brainspan xSpecies

human (hsa)

macaque (mml)

chimp (ptr)

brainspan xSpecies

human (hsa)

chimp (ptr)

macaque (mml)

6 brains

5 brains

5 brains

sequenced mRNA and miRNA from 16 regions of each brain:

Frontal lobe

DFC Dorsolateral prefrontal cortex
M1C Primary motor cortex
MFC Medial prefrontal cortex
OFC Orbital prefrontal cortex
VFC Ventrolateral prefrontal cortex

Occipital lobe V1C Primary visual cortex

Parietal lobe

IPC Posterior inferior parietal cortex **S1C** Primary sensory cortex

Temporal lobe

A1C Primary auditory cortexITC Inferior temporal cortexSTC Posterior superior temporal cortex

Sub-cortex

AMY Amygdala CBC Cerebellum HIP Hippocampus MD Thalamus STR Striatum

human brain

cortex amygdala cerebellum hyppocampus striatum thalamus

brainspan xSpecies

Number	Species	Sex	Age (years)	Stage	Hemisphere
HSB 123	Homo sapiens	Male	37	Adulthood	Right
HSB 126	Homo sapiens	Female	30	Adulthood	Right
HSB 130	Homo sapiens	Female	21	Adulthood	Left
HSB 145	Homo sapiens	Male	36	Adulthood	Right
HSB 135	Homo sapiens	Female	40	Adulthood	Right
HSB 136	Homo sapiens	Male	23	Adulthood	Right
PTB 162	Pan troglodytes	Female	22.5	Adulthood	Left
PTB 164	Pan troglodytes	Female	30.8	Adulthood	Right
PTB 165	Pan troglodytes	Male	31.2	Adulthood	Right
PTB 166	Pan troglodytes	Male	26.4	Adulthood	Right
PTB 167	Pan troglodytes	Male	29.8	Adulthood	Right
RMB 160	Macaca mulatta	Female	10.7	Adulthood	Left
RMB 161	Macaca mulatta	Male	11	Adulthood	Left
RMB 196	Macaca mulatta	Female	11	Adulthood	Left/Right
RMB 218	Macaca mulatta	Male	7	Adulthood	Left
RMB 219	Macaca mulatta	Male	7	Adulthood	Left

previously...

Hu et al. 2011 -->

431 miRNAs expressed in HSA CBC and/or DFC

of these: 385 map to PTR 390 map to MML

375 PTR and 366 MML miRNAs expressed

OPEN O ACCESS Freely available online

PLOS GENETICS

MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

Hai Yang Hu^{1,9}, Song Guo^{1,9}, Jiang Xi¹, Zheng Yan¹, Ning Fu², Xiaoyu Zhang³, Corinna Menzel⁴, Hongyu Liang³, Hongyi Yang³, Min Zhao³, Rong Zeng²*, Wei Chen^{4,5}, Svante Pääbo⁶, Philipp Khaitovich^{1,6}*

1 Key Laboratory of Computational Biology, CAS–MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China, 2 Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 3 College of Life Science, Northeast Forestry University, Harbin, China, 4 Max Planck Institute for Molecular Genetics, Berlin, Germany, 5 Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin-Buch, Germany, 6 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

Abstract

Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.

Citation: Hu HY, Guo S, Xi J, Yan Z, Fu N, et al. (2011) MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains. PLoS Genet 7(10): e1002327. doi:10.1371/journal.pgen.1002327

Editor: Lisa Stubbs, University of Illinois at Urbana-Champaign, United States of America

Received January 17, 2011; Accepted August 11, 2011; Published October 13, 2011

Copyright: © 2011 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Ministry of Science and Technology of the People's Republic of China (grant numbers 2007CB947004 and 2006CB910700), the Chinese Academy of Sciences (grant numbers SSCX2-YW-R-094 and KSCX2-YW-R-024 and KSCX2-YW-R-0251), the Shanghai Institutes for Biological Sciences (grant number 2008KIT104), the Max Planck Society, the Bundesministerum fuer Bildung und Forschung, and the China Basic Research Foundation grant 2011CB910601. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zr@sibs.ac.cn (RZ); khaitovich@eva.mpg.de (PK)

 $\ensuremath{\mathfrak{S}}$ These authors contributed equally to this work.

Introduction

Phenotypic differences between species, including humanspecific features such as language and tool-making, are thought to have arisen, to a large extent, through changes in gene expression [1]. Indeed, humans and the closest living primate relatives, chimpanzees, display substantial gene expression diverendogenous, single-stranded RNA involved in post-transcriptional gene expression silencing. Mature miRNA function as part of the RNA-induced silencing complex (RISC), mediating posttranscriptional gene expression inhibition [6–8]. In animals, the predominant mechanism of miRNA-mediated gene silencing employs complementary base-pairing between the miRNA seed region and the mRNA 3' UTR region [9,10]. This interaction

previously...

reported miRNAs with significant **divergence in abundance: 35** between hsa/ptr &

106 between hsa/mml

totalRNA from several individuals sequenced in 1 or 2 pool(s) per species

OPEN O ACCESS Freely available online

PLOS GENETICS

MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

Hai Yang Hu^{1,9}, Song Guo^{1,9}, Jiang Xi¹, Zheng Yan¹, Ning Fu², Xiaoyu Zhang³, Corinna Menzel⁴, Hongyu Liang³, Hongyi Yang³, Min Zhao³, Rong Zeng²*, Wei Chen^{4,5}, Svante Pääbo⁶, Philipp Khaitovich^{1,6}*

1 Key Laboratory of Computational Biology, CAS–MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China, 2 Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 3 College of Life Science, Northeast Forestry University, Harbin, China, 4 Max Planck Institute for Molecular Genetics, Berlin, Germany, 5 Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin-Buch, Germany, 6 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

Abstract

Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the kargets and dadaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.

Citation: Hu HY, Guo S, Xi J, Yan Z, Fu N, et al. (2011) MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains. PLoS Genet 7(10): e1002327. doi:10.1371/journal.pgen.1002327

Editor: Lisa Stubbs, University of Illinois at Urbana-Champaign, United States of America

Received January 17, 2011; Accepted August 11, 2011; Published October 13, 2011

Copyright: © 2011 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Ministry of Science and Technology of the People's Republic of China (grant numbers 2007CB947004 and 2006CB910700), the Chinese Academy of Sciences (grant numbers SSCX2-YW-R-094 and KSCX2-YW-R-024 and KSCX2-YW-R-0251), the Shanghai Institutes for Biological Sciences (grant number 2008KIT104), the Max Planck Society, the Bundesministerum fuer Bildung und Forschung, and the China Basic Research Foundation grant 2011CB910601. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zr@sibs.ac.cn (RZ); khaitovich@eva.mpg.de (PK)

 $\ensuremath{\mathfrak{S}}$ These authors contributed equally to this work.

Introduction

Phenotypic differences between species, including humanspecific features such as language and tool-making, are thought to have arisen, to a large extent, through changes in gene expression [1]. Indeed, humans and the closest living primate relatives, chimpanzees, display substantial gene expression diverendogenous, single-stranded RNA involved in post-transcriptional gene expression silencing. Mature miRNA function as part of the RNA-induced silencing complex (RISC), mediating posttranscriptional gene expression inhibition [6–8]. In animals, the predominant mechanism of miRNA-mediated gene silencing employs complementary base-pairing between the miRNA seed region and the mRNA 3' UTR region [9,10]. This interaction

mapping reads to known miRNAs

mapping to the genome is potentially error-prone due to small size of mature miRNAs

hope to gain sensitivity by mapping to known sequences of hairpin/mature miRNAs

miRBase is a well-maintained collection of miRNAs for a variety of species

miRBase	mikbase	MANCHESTE
tome Search Browse Help Downloa	d Blog Submit	Sec.
Latest miRBase blog posts	miRNA	count: 18226 entries
A corrupt database has led to the loss of any blo past 10 days or so. Please feel free to email or n inconvenience. miRBase, Wikipedia and community	By sam (April 20, 2012) Release Scarch Sy sam (April 20, 2012)	by miRNA name or keyword
Annotation Many miRBase entry pages have a new "commu (see, for example, dme-mir-10). This section inc about specific microRNA families and sequences free, online encyclopedia, Wikipedia. In total, ow	nity annotation" section orporates information taken directly from the er 4500 miRBase entries	oad published miRNA data ad page FTP site
currently include information from Wikipedia. We paragraph from the Wikipedia page, the full page	e, [] NetWate Highligh	ch - Science 303:1741 (2004) hts, Web watch - Nature Reviews

miRBase provides the following services:
 The <u>miRBase database</u> is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript

- entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for <u>searching</u> and <u>browsing</u>, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also <u>available for download</u>.
- The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results. Visit the <u>help pages</u> for more information about the naming service.
- The miRBase Targets database and pipeline has been rebranded as microCosm, and is now hosted at the EBI. The microCosm resource continues to be maintained by the Enright group, miRBase currently links miRNAs to targets predicted by microCosm, <u>TargetScan</u> and <u>Pictar</u>, and aims to provide a more

mapping strategy

for each species, reads were mapped to the following references:

- 1 **miRNA**
- 2 miRNA homologs
- 3 piRNA
- 4 tRNA
- 5 mRNA
- 6 misc/contaminants
- 7 novel miRNA

read-length distributions

mapping stats

inner ring total number of unique read-sequences **outer ring** total number of sequenced reads

miRBase (release 18)

source	human	chimp	macaque
miRBase mature miRNAs	1,921	525	488
miRBase detected	746	312	308
Hu et al. detected	413	375	366

only 678 human miRNAs were known when the chimp reference was updated in 2009

& only 533 when the macaque reference was updated in 2008

per-tissue detection

detected in **human**: ~550

detected in **chimp**: ~270

detected in macaque: ~280

reannotating the ptr/mml miRNAs

human (hsa)

chimp (ptr)

re-annotation

re-annotation

re-annotation

re-annotation (benefits)

patterns in identity between PTR/HSA and MML/HSA?

3' or 5' conservation bias?

identification of ~8nt Argonaute-binding seed region?

d

e

f

mature miRNA identity

pre-miRNA identity

mature miRNA detection- updated

source	human	chimp	macaque
miRBase mature miRNAs	1,921	525	488
miRBase detected	746	312	308
Hu et al. detected	413	375	366
liftover mature miRNAs	I,898	I,789	I,692
liftover detected	746	606	502

per-tissue detection (again)

miR	Bas	e m	atu	re n	niRN	IAs:	; fewer mo								more	
519	545	552	553	561	565	568	569	572	548	562	554	552	556	554	558	hsa
251	270	272	275	264	267	270	274	276	275	276	273	276	276	280	283	ptr
264	275	276	279	282	281	286	279	278	295	287	288	285	284	289	290	mml
CBC	V1C	OFC	A1C	STR	S1C	DFC	VFC	M1C	ЧΗ	ITC	MFC	STC	IPC	MD	AMY	

per-tissue detection (again)

miF	RBas	e m	atu	re n	niRN	IAs:				fewe	er			more		
519	545	552	553	561	565	568	569	572	548	562	554	552	556	554	558	hsa
251	270	272	275	264	267	270	274	276	275	276	273	276	276	280	283	ptr
264	275	276	279	282	281	286	279	278	295	287	288	285	284	289	290	mml
CBC	V1C	OFC	A1C	STR	S1C	DFC	VFC	M1C	ЧIН	ITC	MFC	STC	IPC	MD	AMY	

ptr/mml re-annotated mature miRNAs:

519	545	561	568	552	553	552	554	556	565	569	572	562	548	558	554	hsa
440	471	471	480	491	499	497	493	508	490	495	497	495	505	514	515	ptr
400	414	441	439	430	430	434	439	434	432	428	426	448	446	450	456	mml
CBC	V1C	STR	DFC	OFC	A1C	STC	MFC	ЪС	S1C	VFC	M1C	ITC	ΗР	AMY	MD	-

mRNA expression comparison

tissue comparison

h>p>r	99	262	394	87	68	234	265	316	92	208	125	54	196	151	273	154
h>p=r	277	566	766	383	337	482	481	486	310	396	390	276	339	439	527	397
h>r>p	112	239	301	159	157	214	195	149	143	160	135	125	153	183	185	170
h=p>r	910	1212	1398	814	776	1114	1133	1402	935	1396	1146	768	1453	1187	1330	1216
h=p=r	15075	12350	11551	15235	15282	13459	13352	12604	15311	12659	13614	15672	12901	13953	12186	14112
h=r <p< th=""><th>260</th><th>377</th><th>271</th><th>147</th><th>177</th><th>331</th><th>252</th><th>330</th><th>219</th><th>441</th><th>356</th><th>215</th><th>322</th><th>244</th><th>507</th><th>240</th></p<>	260	377	271	147	177	331	252	330	219	441	356	215	322	244	507	240
h <r<p< th=""><th>35</th><th>74</th><th>44</th><th>32</th><th>41</th><th>71</th><th>66</th><th>54</th><th>35</th><th>74</th><th>64</th><th>27</th><th>38</th><th>59</th><th>60</th><th>47</th></r<p<>	35	74	44	32	41	71	66	54	35	74	64	27	38	59	60	47
h <p=r< th=""><th>278</th><th>570</th><th>848</th><th>266</th><th>256</th><th>463</th><th>396</th><th>382</th><th>207</th><th>281</th><th>361</th><th>237</th><th>242</th><th>288</th><th>400</th><th>215</th></p=r<>	278	570	848	266	256	463	396	382	207	281	361	237	242	288	400	215
h <p<r< th=""><th>55</th><th>86</th><th>95</th><th>57</th><th>43</th><th>90</th><th>92</th><th>91</th><th>57</th><th>91</th><th>73</th><th>26</th><th>72</th><th>74</th><th>93</th><th>73</th></p<r<>	55	86	95	57	43	90	92	91	57	91	73	26	72	74	93	73
	CBC	MD	STR	AMY	ЧН	V1C	ITC	STC	A1C	IPC	S1C	M1C	MFC	VFC	DFC	OFC

species comparison

91	77	123	121	70	105	89	104	107	102	115	99	116	70	105	103	h <p<r< td=""></p<r<>
24	24	15	15	23	16	28	28	11	20	16	22	19	24	32	20	h <p=r< td=""></p=r<>
24	24	10	13	26	11	21	23	21	18	8	27	10	39	25	9	p>r>h
28	44	64	45	39	51	41	31	63	35	41	36	51	45	41	43	h=p <r< td=""></r<>
828	821	803	809	834	824	813	822	805	815	827	828	809	816	812	812	h=p=r
5	6	2	5	9	5	6	2	2	5	4	4	5	5	5	6	h=r>p
7	7	3	4	6	4	4	3	3	2	3	3	4	4	2	8	h>r>p
18	24	20	20	21	20	20	16	19	22	17	13	12	18	14	27	h>p=r
15	13	13	20	13	13	10	14	15	14	15	14	13	12	8	16	h>p>r
16	22	21	22	20	21	30	19	25	22	26	12	24	15	15	26	r>h>p
16	10	9	12	16	13	14	17	10	20	13	17	15	12	9	11	h=p>r
18	15	13	14	13	11	14	13	16	13	12	18	16	22	19	13	p>h>r
16	19	10	6	16	12	16	14	9	18	9	13	12	24	19	12	h=r <p< td=""></p<>
OFC	DFC	VFC	MFC	M1C	S1C	IPC	A1C	STC	ITC	V1C	ЧIР	AMY	STR	MD	CBC	
154	273	151	196	54	125	208	92	316	265	234	68	87	394	262	99	h>p>r
397	527	439	339	276	390	396	310	486	481	482	337	383	766	566	277	h>p=r
170	185	183	153	125	135	160	143	149	195	214	157	159	301	239	112	h>r>p
1216	1330	1187	1453	768	1146	1396	935	1402	1133	1114	776	814	1398	1212	910	h=p>r
14112	12186	13953	12901		13614	12659	15311	12604	13352	13459			11551	12350	15075	h=p=r
240	507	244	322	215	356	441	219	330	252	331	177	147	271	377	260	h=r <p< td=""></p<>
47	60	59	38	27	64	74	35	54	66	71	41	32	44	74	35	h <r<p< td=""></r<p<>
			0.40	007	261	281	207	382	396	463	256	266	848	570	278	h <n=r< td=""></n=r<>
215	400	288	242	237	301	201	207	002							2.0	
215 73	400 93	74	72	237	73	91	57	91	92	90	43	57	95	86	55	h <p<r< td=""></p<r<>

miRNA

mRNA

differential expression by species

differential expression by species

small number of miRNAs seem to be human-specific (#1)

larger number only expressed in human and chimp (#2)²⁰

pairwise differential expression

mml

	0	0	0	3	2	0	0	0	0	6	15	15	28	3	143	OFC
0		0	0	3	0	0	0	0	0	7	25	27	30	4	155	DFC
0	0		2	0	0	0	0	0	0	3	21	22	31	7	143	VFC
0	0	0		5	4	0	3	0	0	12	3	0	10	6	125	MFC
0	0	0	3		0	0	0	0	2	0	31	34	30	3	143	M1C
0	0	0	0	0		0	0	0	2	0	18	33	24	4	103	S1C
0	0	0	0	0	0		0	0	0	4	16	22	27	4	143	IPC
0	0	0	2	0	0	0		0	2	2	29	51	37	3	144	A1C
0	0	0	0	0	0	0	0		0	5	21	38	33	18	165	STC
0	0	0	0	0	0	0	0	0		11	12	6	20	6	161	ITC
0	2	0	8	0	0	0	0	0	8		59	88	49	23	103	V1C
5	7	10	3	9	8	10	7	5	4	15		3	19	16	172	HIP
0	5	5	0	6	8	5	5	0	0	17	0		11	19	195	AMY
20	20	17	20	16	13	23	19	20	19	26	2	11		24	171	STR
12	14	12	19	10	10	11	8	14	19	13	11	13	21		143	MD
200	212	205	214	187	184	185	192	190	215	166	212	223	207	198		CBC
OFC	DFC	VFC	MFC	M1C	S1C	ЪС	A1C	STC	ITC	V1C	ΗР	AMY	STR	MD	CBC	

ptr

OFC	190	19	25	5	6	5	0	0	0	0	0	8	0	0	0	
DFC	184	20	26	9	13	2	0	0	0	0	0	0	0	0		0
VFC	189	21	25	6	9	0	0	0	0	0	0	0	0		0	0
MFC	161	19	14	0	2	17	0	0	0	0	0	9		0	0	0
M1C	215	17	21	35	40	5	27	4	0	0	0		3	0	0	0
S1C	197	15	22	23	22	2	10	0	0	0		0	0	0	0	0
IPC	183	17	17	16	18	2	0	0	0		0	0	0	0	0	0
A1C	195	21	24	17	15	0	0	0		0	0	0	2	0	0	0
STC	163	21	27	8	9	3	0		0	0	0	0	0	0	0	0
ITC	162	29	21	0	2	21		0	0	0	0	0	0	0	0	0
V1C	159	30	40	37	39		8	0	0	0	0	0	8	0	2	0
HIP	218	29	14	0		15	4	5	7	10	8	9	3	10	7	5
AMY	172	18	7		0	17	0	0	5	5	8	6	0	5	5	0
STR	188	21		11	2	26	19	20	19	23	13	16	20	17	20	20
MD	203		21	13	11	13	19	14	8	11	10	10	19	12	14	12
CBC		198	207	223	212	166	215	190	192	185	184	187	214	205	212	200
	CBC	MD	STR	AMY	ЧIР	V1C	ITC	STC	A1C	IPC	S1C	M1C	MFC	VFC	DFC	OFC

hsa

hsa

individual miRNA representation

plot normalised log₂ expression values for a single miRNA over all 16 tissues in all 3 species:

human chimp macaque

human DEX miRNAs

human DEX miRNAs

miRNAs DEX in all species

miRNAs DEX in all species

miRNAs DEX in 2 species

miRNAs DEX in 2 species

miRNAs DEX in 2 species

interesting miRNAs

miR-105, miR-767 < **1kb apart in an intron of GABRA3** (subunit of the GABA receptor)

interesting that miR-767 is not expressed in mml

miR-105 targets: IL2RB, LIN7A, HOXA3

miR-767 targets: SMAD6, BASP1, ATXN1

interesting miRNAs

however **no obvious anticorrelation** with these supposed targets

15

10

5

0

15

10

5

0

strong **positive correlation with GABRA3** 'parent' gene

search continues...

to do...

carefully integrate homolog & novel miRNA expressions into this analysis

examine hsa/ptr/mml sequence alignments for conservation bias

examine cases where sequences align well, but have a total loss of expression in 1+ species --> pseudo-miRNAs?

continue to examine individual DEX miRNAs to pick strong validation candidates and concise exemplar network

brainspan samples overview

human

chimp

macaque

adult samples

6 brains

5 brains

5 brains

humandevelopment samples

8 brains

brainspan data overview

	human adult	chimp adult	macaque adult	developing human	developing macaque
mRNA-seq	6 brains x 16 regions	5 brains x 16 regions	5 brains x 16 regions	18 brains x 16 regions	planned
miRNA-seq	6 brains x 16 regions	5 brains x 16 regions	5 brains x 16 regions	18 brains x 16 regions	planned
DNA	6 brains (chip) 5 brains (seq)	5 brains (seq, in progress)	•••	18 brains (planned)	•••
methylation	6 brains x 16 regions (chip)	•••	•••	•••	•••
ChIP-seq	3 IPs x 3 brains x 2 regions	?	?	•••	•••

acknowledgements

Gerstein lab, Yale

Mark Gerstein Lukas Habeggar Arif Harmanci Joel Rozowsky Andrea Sboner Jing Wang et al.

Nairn lab, Yale

Angus Nairn Becky Carlyle George Craft Veronica Musante Shari Wiseman

Šestan lab, Yale

Nenad Šestan Yuka Kawasawa Mingfeng Li **Allen Institute** Ed Lein Susan Sunkin USC Jim Knowles **Oleg Evgrafov** Ting Cheng UCLA **Daniel Geschwind** Neelroop Parikshak

acknowledgements

Gerstein lab, Yale

Mark Gerstein Lukas Habeggar Arif Harmanci Joel Rozowsky Andrea Sboner Jing Wang et al. Nairn lab, Yale **Angus Nairn Becky Carlyle** George Craft Veronica Musante Shari Wiseman

Sestan lab, Yale

Nenad Sestan Yuka Kawasawa Mingfeng Li **Allen Institute** Ed Lein Susan Sunkin USC Jim Knowles **Oleg Evgrafov Ting Cheng** UCLA **Daniel Geschwind Neelroop Parikshak**