More Cancer Variant Intersections with 1KG Coding Variants and What's Going on With the TCGA Datasets?

An eleventh hour double feature from II426@gersteinlab
Wednesday, August 1, 2012

Prostate Cancer Exome Variants ∩ 1KG Coding Variants

Prostate cancer

Actual Data

# of cancer exome variants	# of 1KG coding variants		cancer variants in	Percentage of 1KG coding variants in intersection
216		34	15.7%	0.00661%

Average of 100 Runs Using Randomized Cancer Variant Positions

# of cancer exome variants	# of 1KG coding variants		cancer variants in	Percentage of 1KG coding variants in intersection
216	514,269	0.03	0.0139%	0.00000583%

Actual:Random Percentage Ratio

Melanoma Cancer Exome Variants ∩ 1KG Coding Variants

Melanoma SNV (Halaban data)

Actual Data

# of cancer exome variants	# of 1KG coding variants	1 4 4	cancer variants in	Percentage of 1KG coding variants in intersection
25,489	514,269	771	3.02%	0.150%

Average of 100 Runs Using Randomized Cancer Variant Positions

# of cancer exome variants	# of 1KG coding variants		cancer variants in	Percentage of 1KG coding variants in intersection
25,489	514,269	5.69	0.0223%	0.00111%

Actual:Random Percentage Ratio

- Split data into separate studies
 - Compute exome fraction for each study
- Investigate which are backed up in literature
 - Explain where they came from
- Germline variants' dataset sizes were pretty small, and the exome fractions were all over the place
- Focus on somatic variants
 - Things are more solid there

COAD: Literature indicates data is exome capture

Cancer	Center	Sequencer	# Mutations	Exome Fraction
COAD	BCM	Illumina	22,147	96.8%
COAD	BCM	SOLiD	9197	99.1%

• **GBM:** No literature support, mutation counts are small, not sure what's going on here

Cancer	Center	# Mutations	Exome Fraction
GBM	BCM	450	85.1%
GBM	MIT	436	81.1%
GBM	WUSTL	436	91.5%

• LAML: No literature support, mutation counts are small, not sure what's going on here

Cancer	Center	Sequencer	# Mutations	Exome Fraction
LAML	WUSTL	Illumina GA	724	83.1%
LAML	WUSTL	Illumina HiSeq	9	77.7%

• **OV:** Literature indicates data is exome capture, but the datasets highlighted with red stars look suspect (green stars are OK)

18100113	qais ai v	$+$ \bigcirc \cap \cap		
Cancer	Center	Sequencer	# Mutations	Exome Fraction
*OV	BCM	-	2,456	97.2%
*OV	MIT	Illumina	12,615	48.4%
*OV	MIT	Unknown	20	90.0%
*OV	WUSTL	ABI	1	100.0%
*OV	WUSTL	Illumina	6192	90.1%

READ: Literature indicates data is exome capture

Cancer	Center	Sequencer	# Mutations	Exome Fraction
READ	BCM	Illumina	1,716	97.6%
READ	BCM	SOLiD	8,768	99.2%

 Summary: Datasets with literature support and aren't doing something funky include 2 COAD, 2 OV, and 2 READ studies

Multiple Myeloma

- According to paper, there's both whole genome and exome data
- Sample IDs in paper supplement don't match with sample IDs in data file
- If data separated by sample, exome fraction averages ~30%
 - Inconclusive