Network analysis of modENCODE gene co-expression networks reveals "selection pressure on networks" and "ontogeny recapitulates phylogeny"

Daifeng Wang, Gang Fang, Mark Gerstein July 17 2012

Motivation

- Gene expression data in modENCODE
 - Species: worm vs. fly
 - Stages: embryo developmental stages
- Question 1:
 - How highly conserved genes vs. species-specific genes organize in gene co-expression network?
- Question 2:
 - How do they contribute to embryo development?

Question 1: Selection pressure on networks

Question 2: "ontogeny recapitulates phylogeny"

Eigengenes vary much differently across stages between highly conserved modules and species-specific modules

modENCODE datasets

Species	# of Genes*	Developmental Stages**
Worm (C. ele.)	10450	33 stages: "N2_EE_50.0", "N2_EE_50.30", "N2_EE_50.60", "N2_EE_50.90", "N2_EE_50.120", "N2_EE_50.150", "N2_EE_50.180", "N2_EE_50.210", "N2_EE_50.240", "N2_EE_50.300", "N2_EE_50.330", "N2_EE_50.360", "N2_EE_50.390", "N2_EE_50.420", "N2_EE_50.450", "N2_EE_50.480", "N2_EE_50.510", "N2_EE_50.540", "N2_EE_50.570", "N2_EE_50.600", "N2_EE_50.630", "N2_EE_50.660", "N2_EE_50.690", "N2_EE_50.720", "L1_N2_L1.1", "L2_N2_L2.4", "L3_N2_L3.1", "L4_L4b", "YA_N2_Yad.1", "AdultSPE9", "DauerEntryDAF2_DauerEntryDAF2.2_DauerEntryDAF2.1.1_DauerEntryDAF2.4.1", "DauerDAF2_DauerDAF2.2_DauerDAF2.5.1", "DauerExitDAF2.2_DauerExitDAF2.3.1_DauerExitDAF2.6.1"
Fly (D. dmel.)	11235	30 stages: "em0.2hr", "em2.4hr", "em4.6hr", "em6.8hr", "em8.10hr", "em10.12hr", "em12.14hr", "em14.16hr", "em16.18hr", "em18.20hr", "em20.22hr", "em22.24hr", "L1", "L2", "L3_12hr", "L3_PS1.2", "L3_PS3.6", "L3_PS7.9", "WPP", "WPP_12hr", "WPP_24hr", "WPP_2days", "WPP_3days", "WPP_4days", "AdF_Ecl_1day", "AdF_Ecl_5days", "AdF_Ecl_30days", "AdM_Ecl_1day", "AdM_Ecl_5days", "AdM_Ecl_30days"
*genes without invalid samples ** Stages selected from the finalized modENCODE RNA-seg datasets in June 2012		

Worm: network cliquishness vs. preservation

Fly: network cliquishness vs. preservation

Enrichments of modules via clustering genes with high cliquishness

50% modules enriched with either highly conserved or species-specific genes

Discussion 1

- Highly conserved modules
 - evolutionary pressure in on biological networks, not on individual genes
 - important biological functional coupling of the genes maintaining gene sequence conservation during evolution
- Species-specific modules
 - associated with phylotypes
- To compare gene regulation across stages between those modules....

Measurement of gene regulation variation

- Eigengene in each module
 - 1st PC, capture the most co-varying temporal direction in module
 - $-E_i(t_j)$, the expression value of eigengene at stage t_j of module i
- Highly conserved modules
 - $-d_{hc}(t_j)=Mean(abs(E_i(t_j)-E_i(t_{j-1})))$ for all highly conserved i
- Species-specific modules
 - $-d_{ss}(t_j)=Mean(abs(E_i(t_j)-E_i(t_{j-1})))$ for all species-specific i

d_{hc} vs. d_{ss}

Discussion 2

- Early embryo developmental stages
 - highly conserved > species-specific in variation
 - highly conserved genes are the major regulation targets and play more significant roles
- Late embryo to adult stages
 - species-specific > highly conserved in variation
 - species-specific genes mainly function during the phenotype developmental stages
- Support "ontogeny recapitulates phylogeny"