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R. Supplementary References

S. Supplementary Figures

T. Supplementary Tables
A. Introduction

Philosophy. One can conceptualize a genomics "roll out" (publishing a number of genomics papers commenting on a single underlying data freeze) as a hierarchical information structure, designed to present a large amount of genomic data and results in an organized fashion. This supplement is an integral part of that structure. In the hierarchy, the "main" integrative paper20 sits at the top, synthesizing everything broadly. It then points to other high-profile companion papers, such as this one, and further more detailed companions focusing on specific sub-analyses (e.g., an analysis of distal regulatory modules (DRM)35). Each of these individual papers, in turn, often refers to a huge amount of supplementary calculations and datasets. Some of these are presented in formal paper supplements, while others are on project websites. Moreover, the data sets to which the papers refer the most are usually not the actual raw data per se, but subsidiary analysis products that summarize the data (e.g., peak call lists and networks). At the bottom of the hierarchy is the actual underlying raw data (usually sequencing reads), stored in central repositories (such as the short read archive (SRA)). Raw data files are usually huge and unwieldy. Consequently, it makes most sense to approach the information in a particular freeze from the top down.
Now we go through each part of the supplement. 

Methods & Glossary. Firstly, this supplement provides further details on the materials and methods described in the main text. Major headings for this part (SOM/B to SOM/J) parallel that of the main text, in order to best facilitate navigation of the information. We also provide a glossary of terms used in the manuscript (SOM/K). 
Exhibits & Shadow Figures. We grouped the supplementary tables and figures in such a way that each addresses one coherent aspect of the analyses, with the order of appearance concordant with the main and supplementary text. Contact person(s) for specific tables and figures are also listed in the contacts section (SOM/O). The supplementary figures also include several “shadow figures” of those in the main text, which are similarly drawn but contain more detailed information.
Website & Virtual Machine. We also provide a website (http

HYPERLINK ""
://

HYPERLINK ""
encodenets

HYPERLINK ""
.

HYPERLINK ""
gersteinlab

HYPERLINK ""
.

HYPERLINK ""
org) associated with this paper, which hosts various highly processed files (including networks) used for analyses49. It also contains code bundles. Details of the files and code are available in SOM/N. Moreover, this section also contains contact person(s) associated with each file.
The website contains two interactive viewers for some of the networks (a tYNA-based viewer50 and one based on the web version of Cytoscape51). The entire website can be downloaded as an Amazon Web Services EC2-compatible virtual machine.

Larger-scale Associated Data Sets. Raw data for this paper are available from the ENCODE DCC at UCSC52. All uniformly processed data can be accessed at the UCSC data hub53. The uniformly processed data can also be viewed in the UCSC genome browser by clicking on “Track Hubs”, or by going directly to HubConnect54. A TF supertrack is also available for users specifically interested in TF binding55. 
B. Overview of data and data processing

B.1 ENCODE ChIP-seq data production, validation, and uniform scoring

We developed a uniform quality control and data processing pipeline. This pipeline aims at ensuring the high-quality of the experimental datasets and robustness of the results in the presence of data processing artifacts. 

B.1.1 Production of ChIP-seq data

ChIP-seq datasets used in these analyses were generated by ENCODE production groups following a standard workflow (see schematic in Fig. S1A). Briefly, cells grown according to ENCODE standards56 were formaldehyde cross-linked, chromatin was isolated and fragmented by sonication, TF-associated regions were isolated by immunoprecipitation, and libraries were then prepared for sequencing. Specific protocols were optimized by the individual production groups, and differ primarily at the sonication step (including choice of sonicator, sonication buffer, length of sonication, and final size distribution of sonicated material), as well as at the immunoprecipitation step (including choice of immunoprecipitation reagent and immunoprecipitation buffer). Detailed protocols used by individual groups can be found via the UCSC ENCODE portal52. 

Both monoclonal and polyclonal antibodies were used for immunoprecipitation (~25% of antibodies used were monoclonals) and, in a limited number of instances, cell lines using epitope-tagged transcription-related factors (TFs) were used to generate ChIP-seq data. Data generated by production groups supporting the specificity of antibodies used to generate ENCODE ChIP-seq datasets are available online57,58. Generally, these data includes immunoblot analysis demonstrating a single band, or only those bands consistent with the size(s) expected for a given TF. In addition, a second demonstration of specificity is required, including (a) loss of signal in an immunoblot upon siRNA knockdown of a TF, (b) identification of the TF by mass spectrometry in an immunoprecipitation reaction performed under conditions used for ChIP-seq, (c) demonstration of significant overlap in ChIP-signals when an antibody raised against a different region of a TF or a different component of a multiprotein complex to which the TF is known to belong is used for ChIP-seq, or (d) significant enrichment of a known DNA-recognition motif among peaks called in the ChIP-seq data (Fig. S1A). 

All ChIP-seq experiments were performed at least in duplicate, and were scored against an appropriate control designated by the production groups (either input DNA or DNA obtained from a control immunoprecipitation). Submitted data were generally expected to meet an initial standard for inter-replicate consistency (developed by the ENCODE consortium) to ensure an acceptable level of reproducibility. In particular, four fifths of the top 40% of the targets identified from one replicate (using an acceptable scoring method) should overlap the list of targets from the other replicate. Alternatively, target lists scored using all available reads from each replicate should share more than 75% of targets. (This consistency check was distinct from the IDR thresholding procedure, which is described later in this supplement.) In addition, a number of quality metrics for individual replicates (including measures of library complexity and signal enrichment) were calculated, and these are available for review58,59. As sequencing has become more economical, minimum standards for the number of reads required for submission of data have been established and upgraded over the course of the ENCODE project. Datasets used in the analyses presented here complied with the minimum depth requirements at the time of submission (ranging from 6M to 20M uniquely mapped reads).

A detailed description of the precise standards and considerations for evaluating the quality of ChIP-seq data and antibodies used for ChIP-seq is available58.

B.1.2 Uniform scoring pipeline

To determine the binding peaks of TFs, we built a scoring pipeline (Fig. S1B) for the uniform processing of all TF ChIP-seq experiments generated by the ENCODE consortium. This pipeline was implemented on the EBI cluster, but can readily be ported to other computers. Two representative peak callers were used to ensure that the results were independent of the peak caller used.

Reads from all ENCODE ChIP-seq experiments and matching controls were mapped to a standardized version of the GRCh37 (hg19) reference human genome sequence with the following modifications:

· Mitochondrial sequence was included

· Alternate sequences were excluded

· Random contigs were excluded

· The female version of the genome was represented by the autosomes and chrX, whereas the male genome was represented by the autosomes, chrX, and chrY with the PAR regions masked. Reads from experiments in cell-lines labeled male or unknown were mapped to the male genome mentioned above, while experiments in cell-lines labeled female were mapped to the female version of the genome.

All TF ChIP-seq datasets were processed using the standardized pipeline (Fig. S1B). Mapped reads in the form of BAM files were downloaded from the UCSC ENCODE portal52. Multi-mapping reads were discarded. The SPP60 and the PeakSeq61 peak calling methods were used to identify peaks (regions of enrichment) by comparing each ChIP-seq experiment to a corresponding input DNA control experiment. For the SPP peak caller, peaks were ranked using the peak signal score, which is a function of ChIP signal enrichment in each peak over background signal from a corresponding input DNA experiment, corrected for mirror correlation of positive- and negative-strand tag densities within the peak region. PeakSeq peaks were ranked using the estimated false discovery rate (q-value) for each peak, which is computed from the enrichment of ChIP-seq reads in a peak, relative to the the normalized counts of matching control reads using a Binomial test.

Since every ENCODE dataset is represented by at least two biological replicate experiments, we used a measure of consistency of peak calling results between replicates, known as the irreproducible discovery rate (IDR), in order to determine the optimal number of reproducible peaks62. Peak calling was performed independently on each replicate of a ChIP-seq dataset. We used relaxed peak calling thresholds (FDR = 0.9 for SPP and FDR=0.05 for PeakSeq) in order to obtain a large number of peaks that span true signal as well as noise (false identifications). The IDR method analyzes a pair of replicates, and considers peaks that are present in both replicates to belong to one of two populations – a reproducible “signal” group or an irreproducible “noise” group. Peaks from the reproducible group are expected to show relatively higher ranks and stronger rank-consistency across the replicates, relative to peaks in the irreproducible groups. Based on these assumptions, a two-component probabilistic copula-mixture model is used to fit the bivariate peak rank distributions from the pairs of replicates. The method adaptively learns the degree of peak-rank consistency in the “signal” component and the proportion of peaks belonging to each component. The model can then be used to infer an IDR score for every peak that is found in both replicates. The IDR score of a peak represents the expected probability that the peak belongs to the noise component, and is based on its ranks in the two replicates. Hence, low IDR scores represent high-confidence peaks. We used an IDR score threshold to obtain an optimal peak rank threshold on the replicate peak sets (cross-replicate threshold). For SPP-based peak calls, the IDR threshold used was 1%, and for PeakSeq, we used 5%. If a dataset had more than two replicates, all pairs of replicates were analyzed using the IDR method. We used the maximum peak rank threshold across all pairwise analyses as the final cross-replicate peak rank threshold. We then pooled reads from replicate datasets and used SPP/PeakSeq to call peaks on the pooled data with a relaxed FDR of 0.9/0.05. Pooled data peaks were once again ranked by signal-score (for the SPP peak caller) or q-value (for the PeakSeq peak caller). The cross-replicate rank threshold learned from the replicates was used to threshold the ranked set of pooled data peaks. 

Any thresholds based on the reproducibility of peak calling between biological replicates are bounded by the quality and enrichment of the worst replicate. Valuable signal is lost in cases in which a dataset has one replicate that is significantly worse in data quality than another replicate. Hence, we developed a rescue pipeline for such cases. In order to balance data quality between a set of replicates, we pooled mapped reads across all replicates of a dataset, and then randomly sampled (without replacement) two pseudo-replicates with equal numbers of reads. This sampling strategy tends to transfer signal from stronger replicates to the weaker replicates, thereby balancing cross-replicate data quality and sequencing depth. We then processed these pseudo-replicates using the IDR method in order to learn a rescue threshold. We found that, for datasets with comparable replicates (based on independent measures of data quality), the rescue and cross-replicate thresholds were very similar. However, for datasets with replicates of differing data quality, the rescue thresholds were often higher than the cross-replicate thresholds, and were able to capture true peaks that showed statistically significant and visually compelling ChIP-seq signal in one replicate but not in the other. Ultimately, for each dataset, we used the best of the cross-replicate and rescue thresholds to obtain a final consolidated optimal set of peaks. 

All peak sets were then screened against a specially curated empirical blacklist of regions in the human genome63, and peaks overlapping the blacklisted regions were discarded. Briefly, these artifact regions typically show the following characteristics: 

· Unstructured and extreme artifactual high signal in sequenced input-DNA and control datasets as well as open chromatin datasets irrespective of cell-type identity

· An extreme ratio of multi-mapping to unique mapping reads from sequencing experiments

· Overlap with pathological repeat regions, such as centromeric, telomeric and satellite repeats that often have few unique mappable locations interspersed in repeats

The peak calls are available via the UCSC ENCODE portal52. We compared the final set of PeakSeq and SPP peak calls. We found that, for most high-quality datasets, there was a high degree of overlap (> 80%) between the peak sets from the two peak callers. In this paper, the co-association studies used the SPP peaks, and the network-based analysis used the PeakSeq results.

B.2 Experimental procedure for siRNA transfection

For siRNA transfection, we used Dharmacon ON-TARGETplus SMART pool consisting of a mixture of four siRNAs directed against the target TF. Transfections were performed with 100 pmol pooled siRNA using the DharmaFECT 1 transfection reagent (Cat# T-2001-03). The siRNA was dissolved in 1X Dharmacon siRNA buffer, to which 4 microliters of DharmaFECT transfection reagent was added. The solution was placed in one well of a 6 well cell tissue culture plate, and one million K562 cells in 500 microliters of OPTIMEM 1 (GIBCO) were added to the well, for a total volume of 770 microliters. The plate was incubated for 30 minutes at room temperature. 1.230 ml of OPTI MEM 1 medium was then added, resulting in a final volume of 2ml and a final siRNA concentration of 50 nM, and the plates were incubated at 37 °C in an incubator with 5% CO2. The knockdown was checked after three days, by both Western blotting and RNA analysis. Purified polyadenylated RNA was used to prepare cDNA libraries for paired end sequencing.

The siRNA knockdown experiments display a range of knockdown efficiencies (Figure S1C). The relationship between the effect of the knockdown and binding site occupancy is affected by many factors (e.g., TF concentration and stability, the number of binding sites, and the range of affinities among the set of sites). Despite the complexity, we do notice a more substantial influence on gene expression in knockdown of top and middle level TFs, although there is not enough data to derive strong statistical conclusions.

C. TF Co-association

C.1 Differences between global and context-specific TF co-association analysis

Different groups of transcription factors (TFs) tend to co-localize at distinct sets of gene-proximal and distal regulatory regions to elicit highly specific genome-wide gene expression profiles. Hence, the first step in deciphering the combinatorial regulatory code is to identify the location and cell-type-specific co-associations of transcription factors. The large number of diverse ENCODE TF ChIP-seq datasets in multiple cell-lines provides us with the unique opportunity to partially unravel the context-specific co-associations of transcription factors.

Previous studies that have analyzed small numbers of TFs have revealed global TF co-associations19,64. However, much evidence indicates that distinct combinations of factors interact physically and functionally at different genomic locations65,66. Typically, the co-association of TFs is evaluated in a pairwise fashion. After identifying regions of enrichment (peaks), the ChIP-seq data for each TF is treated as a set of binary events (binding/non-binding) and a co-association score between each pair of TFs is computed as some measure of overlap or correlation of the genome-wide binary binding profiles20,67. While this method provides valuable information about the broad, global structure of TF co-association, it has a few drawbacks, as listed below:

· TFs tend to bind regulatory regions as a continuum of DNA occupancy levels that represent functional, quasi-functional, and nonfunctional DNA binding events68. Hence, valuable information about quantitative dependence relationships between binding profiles of TFs is lost by treating them as binary events. Also, binary treatment of TF binding events causes the co-association statistics to be highly dependent on peak calling thresholds and definitions of peak overlap.

· Secondly, TFs are multi-functional and typically regulate genes in a combinatorial fashion. A particular TF can bind with different sets of TFs in different genomic (proximal/distal) and functional contexts (promoter/enhancer/insulator). Such context-specific co-associations are difficult to ascertain in a genome-wide pairwise co-association analysis which would primarily highlight globally consistent associations. 

· Co-association statistics based on independent analysis of pairs of TFs do not reveal higher-order dependencies, such as how the binding activity of one TF can affect the relationship between two other TFs.

· Finally, most global pairwise co-association statistics (such as those based on profile correlation or Fisher-test p-values) are typically symmetric (undirected); i.e., the co-association score of TF1 with TF2 is, by construction, equal to that of TF2 with TF167. However, TFs do not necessarily co-associate symmetrically. For example, a general TF, such as POL2, will be found to bind consistently in the vicinity of a large majority of peaks of any promoter-localized TF, such as E2F4. However, only a small fraction of all POL2 peaks will be co-associated with E2F4 peaks.

To overcome some of these limitations, we developed a novel context-specific analysis framework that can focus on a particular set of genomic locations of interest (genomic context) and learn a model of the multivariate binding patterns of different TFs within the context. While we treat the ChIP-seq data as quantitative continua, our models are non-parametric. Hence, our co-association statistics are largely invariant to monotonic transformations of binding intensities of peaks (i.e. peak ranks, signal scores, p-values or q-values can be used to obtain near-identical results). Our models inherently capture pairwise and higher-order, linear, and non-linear dependency relationships between TF binding profiles restricted to the genomic context of interest. We use the models to extract enriched pairwise and higher-order dependencies between different TFs within specific genomic contexts. By aggregating such information across multiple contexts, we are able not only to reveal globally consistent co-associations but also to analyze local variability of co-associations across the different genomic contexts. In addition, we compare context-specific co-associations of TFs across multiple cell types. Thus, we provide a multi-resolution view of TF co-association that recapitulates known associations and also discovers several novel global and context-specific relationships. Finally, in SOM/C.5, we point out several future improvements we could do to this framework, as well as some caveats for the interpretation of the results. 

C.2 A machine learning framework for context-specific TF co-association analysis
C.2.1 Overall approach
Our main goal was to study the stability or variability of quantitative co-association relationships between TFs within and across multiple well-defined genomic contexts. A genomic context is simply a collection of genomic locations or intervals with some common semantic interpretation (e.g. locations of all transcription start sites in the genome). In this paper, we decided to take a TF-centric approach, i.e. in each cell-line we defined several TF-centric genomic contexts (shown as stacked panels in Fig. S2A), where each context corresponds to genomic locations of ChIP-seq peaks of a particular TF (focus-factor) in a particular cell-line. We refer to such a set of genomic locations as a focus-factor context. For each peak region of the focus-factor, we extracted normalized ranks of overlapping ChIP-seq peaks of all other factors (partner-factors), thus obtaining a co-binding map (SOM/C.2.2) of the focus-factor context (Fig. S2A).

We used a discriminative machine learning algorithm to learn a TF co-association model that accurately differentiates a co-binding map (positive set) from a randomized control map (negative sets) by capturing dependencies between quantitative TF binding profiles specifically enriched in the true co-binding map (SOM/C.2.3). We used the learned model to compute the relative importance (RI) (SOM/C.2.4.2) of all TFs in the focus-factor context, i.e., their relative contribution to the discriminative performance of the model. The context-specific binding profile of a TF with high RI shows enriched dependency relationships with binding profiles of one or more other factors in the co-binding map. So intuitively, the RI of a TF encodes as a single number, its overall ‘combinatorial potential’ relative to all other factors within the focus-factor context. However, it does not provide any information about which other factors each TF specifically co-associates with within the focus-factor context. Hence, we used the models to compute context-specific co-association scores (CS) (SOM/C.2.4.4 – C.2.4.8) for all pairs and higher-order groups of factors. The CS of a specific set of TFs quantifies the enrichment of the dependence structure between the TFs in the true co-binding map as compared to the randomized control map. As we show in SOM/C.2.3, our models are designed to explicitly capture pairwise and higher-order dependence relationships. Hence, even though we mainly present results based on context-specific CS of pairs of factors, we note that these scores were not obtained by analyzing pairs of TFs in isolation (i.e. independent from other TFs). Fundamentally, the pairwise scores are ‘projected’ from higher-order relationships that are explicitly captured by the learned models. It is for the sake of interpretability that we mostly restrict ourselves to presenting and discussing context-specific pairwise scores, as these also indirectly capture higher-order dependencies. We organized the CS of all pairs of TFs in a focus-factor context in the form of a context-specific co-association score matrix.

There are two main types of dependence relationships that are typically observed in a co-binding map of a focus-factor context. There are some partner-factors whose binding profiles quantitatively correlate (or anti-correlate) with that of the focus-factor (and potentially other partner-factors) over a substantial fraction of the focus-factor context (e.g. a TF that consistently co-binds with the focus-factor). We refer to such partner-factors as primary-partners of the TF that was used as the focus-factor. Objectively, we identify primary-partners of a particular TF as those partner-factors that have high CS with the TF in the TF’s context. If a TF has several primary-partners, these would all have high CS with each other and the TF in the TF’s focus-factor context. Hence, each of the primary-partners would also have high RI scores. Primary-partners of a TF also tend to have high CS with the TF in other contexts defined using other factors as focus-factors. 

The second type of dependence structure within a co-binding map involves groups of partner-factors whose binding profiles show strong dependence relationships with each other over a limited subset of the focus-factor peaks. We refer to such partner-factors as local-partners of the focus-factor. As a simple example, a group of factors that co-bind with each other at say 20% of the focus-factor’s binding sites but not at the remaining 80% of sites would be considered local-partners of the focus-factor. Such a group of local-partners of a TF will be assigned high CS with each other but not with the TF in the TF’s focus-factor context. Each partner-factor in a group of co-associated local-partners of a TF will typically have high RI scores in the TF’s focus-factor context. 

We performed the above mentioned analyses using each TF in a particular cell-line as a focus-factor (shown as multiple stacked panels in Fig. S2A). We then aggregated the context-specific RI scores and CS from all the contexts in various ways to reveal different aspects of context-specific TF co-association.



First, we defined an aggregate factor importance matrix (RIM) by stacking the RI scores of all factors from all focus-factor contexts (SOM/C.2.5.1) (Fig. S2A). Clustering this matrix revealed the similarities and differences between contexts in terms of the RI of various TFs. The RIM typically has a predominantly asymmetric structure. We then computed the correlation between all pairs of focus-factor contexts (rows of the RIM) using the RI scores, which provided a symmetric distance measure between focus-factor contexts. We refer to this matrix as the importance correlation matrix (ICM) (SOM/C.2.5.2). The RIM and ICM help identify broad compositional similarities and differences of focus-factor contexts.

In a particular focus-factor context, the primary-partners of the focus-factor have high CS with the focus-factor itself. Hence, the row corresponding to the focus-factor (focus-factor row) in the co-association matrix of the focus-factor context can be used to identify the primary-partners of the focus-factor (Fig. S2A). In order to obtain a summarized view of primary-partners of all TFs in a cell-line, we stacked the focus-factor rows from each of the context-specific co-association score matrices to obtain an aggregate primary-partner matrix (PPM) (SOM/C.2.5.4). We clustered the rows and columns of the PPM to reveal higher-order groups of factors whose members are primary-partners of each other.

We also compute a maximal co-association matrix (MCS) (SOM/C.2.5.3) by computing the element by element maximum over all context-specific co-association matrices. The MCS captures the maximum co-association score for each pair of TFs over all focus-factor contexts.

Some co-associations may be globally consistent, i.e. high scoring in a majority of focus-factor contexts, while others may be restricted to specific sets of contexts. Hence, in order to capture the variability of a particular TF’s co-associating partners over all contexts, we extracted the row corresponding to the TF from each of the context-specific co-association matrices and then stacked these rows to create a variability-map (SOM/C.2.5.5) of co-associations of the TF. In this way, we obtained one variability-map for each TF in a cell-line. By clustering the rows and columns of a variability-map of a TF, we can distinguish between the globally consistent and context-specific partners of the TF.

We used ChIP-seq datasets corresponding to a total of 119 factors in 5 main ENCODE human cell-lines, specifically GM12878, K562, HeLa-S3, HepG2 and H1-hESC. Some TFs were profiled using ChIP-seq assays with different antibodies. Different antibodies often target different isoforms of a TF which can result in considerably different binding profiles. Hence, we treated these as distinct entities (TFs) in the co-association analyses (Table S2). Some TFs were also profiled by different ENCODE production groups using the same antibody. In such cases, we only used the ChIP-seq experiment with the highest data quality. The pipeline shown in Fig. S2A was used to analyze each cell-line separately.

In the following subsections, we formally define and explain the terms, learning algorithm, models, scores and aggregate statistics introduced above.
C.2.2 Co-binding map of a focus-factor context
The genomic context of a focus-factor is the set of genomic intervals corresponding to all high confidence peaks of the focus-factor. The co-binding map of a focus-factor context serves as a rough but useful visualization of the co-association structure of the context-specific binding profiles of all TFs. Figs. S2C-1, S2E-1 and S2M-1 show co-binding maps of the GATA1, E2F4 and FOS focus-factor contexts in the K562 cell-line. 

For each TF ChIP-seq dataset, we obtained a genome-wide ranked set of peaks (SOM/B.1.2). For each focus-factor peak, we first found overlapping peaks of all other TFs (partner-factors). We used the peak widths provided by the peak-caller (typically in the range of ~200-400 bp) and considered a partner-factor peak to overlap a focus-factor peak if their peak intervals intersected by at least 1 bp. Rather than treating the presence or absence of an overlapping partner-factor peak as a binary event, we used normalized peak intensities which range from 0 (weakest) to 1 (strongest). The normalized peak intensity of an overlapping partner-factor peak is simply the normalized rank of the peak given by [image: image2.png](R—-7)/(R-1)



; where [image: image4.png]


 is the rank of the overlapping partner-factor peak in the genome-wide ranked set of [image: image6.png]


 peaks of the partner-factor. If a focus-factor peak is not overlapped by any peak of a particular partner-factor then that location is assigned a score of 0 for that partner-factor. Thus, the co-binding map of a focus-factor context is a matrix, where the number of columns is equal to the number of focus-factor peaks [image: image8.png]


 and the number of rows is equal to the total number of factors [image: image10.png]


 (which includes the focus-factor). Each column contains a vector of binding strengths of all partner-factor peaks that overlap a particular focus-factor peak. Each row represents the binding intensity profile of a particular factor over all focus-factor peak locations. In the following subsections, we index columns (focus-factor peak locations) of a co-binding map using symbol [image: image12.png]


 and use symbols [image: image14.png]


, [image: image16.png]


 or [image: image18.png]


 to index rows (factor profiles).

We clustered the rows and columns of the co-binding map using hierarchical clustering (Euclidean distance and Ward linkage) to reveal key clusters and local biclusters. The co-binding map of a focus-factor context also serves as the main input to our machine learning framework that learns a quantitative model of the dependence structure in the co-binding map.
C.2.3 Quantifying the dependence structure in a co-binding map
We developed a novel machine learning framework to model the multivariate dependence structure in each focus-factor’s co-binding map. We used the models to extract context-specific pairwise and higher-order co-associations between partner-factors. Specifically, we modeled the learning problem as a binary classification task, i.e. can we discriminate a context-specific co-binding map from a matched randomized control map using the joint distribution of the quantitative context-specific TF binding profiles (Fig. S2A).
C.2.3.1 Positive Set

We used the co-binding map of a focus-factor context as the positive class of input data to the learning algorithm. Specifically, each of the [image: image20.png]


 focus-factor peak locations (columns) [image: image22.png]


 in the true co-binding map was used as a positive example and labeled [image: image24.png]+1



. The binding intensity values ([image: image26.png]


 of overlapping peaks of all [image: image28.png]


 factors at each focus-factor location ([image: image30.png]


) were used as the set of features (attributes) of each example, i.e. [image: image32.png]


. Note that the [image: image34.png]


 factors in a co-binding map include the focus-factor and the [image: image36.png](N—1)



 partner-factors.
C.2.3.2 Negative Set

We used a randomized instance of the co-binding map (control map) as the negative class of input data to the learning algorithm. We created the control map by independently shuffling the peak intensity values in each row of the co-binding map, i.e. for each row, we randomly re-assigned the peak intensities of the factor at one focus-factor peak location to another location (Fig. S2A, top-right panel). The control map has the same size as the co-binding map. Each row (shuffled TF profile) in the control map has the same distribution of binding intensities as the corresponding row in the true co-binding map. However, the shuffling disrupts the joint distribution (and hence the dependence structure) between TF profiles (rows) present in the true co-binding map. Each of the [image: image38.png]


 columns of the shuffled co-binding map [image: image40.png]


 is labeled [image: image42.png]


and the shuffled peak intensities of the [image: image44.png]


 factors in the column are used as features (attributes).

C.2.3.3 Discriminative model

Given [image: image46.png]2T



 examples [image: image48.png]{x.,v]



 obtained from the positive (true co-binding map) and negative set (shuffled control map), we used a machine learning algorithm to learn a model [image: image50.png]F(X)



 that can accurately discriminate the +1 labeled examples in the true co-binding map from the -1 labeled examples in the shuffled one. We note that since each factor [image: image52.png]


 has the same distribution of peak intensities in the positive and negative set of examples, a single factor is unable to discriminate the examples in the positive set from those in the negative set. Only joint distributions of pairs and higher-order sets of factors can potentially do so. Our goal is thus to discriminate the two classes by learning combinations of factors whose joint distributions in the positive set are significantly different from the those in the negative set. For this purpose, we used the RuleFit369 algorithm that learns a classification model as a sparse linear combination of ‘rules’ consisting of discriminative combinations of factors as shown below. 
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The predicted label [image: image55.png]


is given by [image: image57.png]sign(F(X))



.
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 is a bias coefficient.

The second term [image: image61.png]


 is a sparse combination of simple linear terms involving individual factor peak intensities.

The third term [image: image63.png]YK a,r (X)



 is a sparse linear combination of [image: image65.png]


 multi-factor rules [image: image67.png]


 with coefficients [image: image69.png]


. The rules [image: image71.png]


 consist of pairs and arbitrarily higher-order combinations of TFs and they model non-linear dependence relationships between factor profiles (SOM/C.2.3.4).

Hence, the model is essentially a generalization of a simple regularized linear model (first and second terms) with a sparse linear combination of non-linear rules (third term). The learning algorithm automatically learns the sparse set of [image: image73.png]


 rules and the relevant coefficients [image: image75.png]


, [image: image77.png]


 and [image: image79.png]


.

C.2.3.4 Rule Learning

The rules in the model are designed to represent discriminative combinations of factors that are significantly enriched in the true co-binding map compared to the control map. Each factor [image: image81.png]


has binding intensity values [image: image83.png]


 ranging from 0 to 1. A rule involving a single factor [image: image85.png]


 takes the form [image: image87.png]I(tmin; < x; < tmax;)



. For a particular example, the rule which evaluates to 1 [image: image89.png](TRUE)



 if the factor has a value [image: image91.png]


 between [image: image93.png]


 and [image: image95.png]


 and evaluates to 0 [image: image97.png](FALSE)



 otherwise. Extending this concept to rules containing more than one factor, the basic form of a multivariate rule [image: image99.png]7y (X)



 is a conjunction (logical AND) of [image: image101.png]


 threshold rules over specific subsets of factors.
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In simple terms, an example rule of this form involving 3 well-known co-associating factors POL2, TAF1 and TBP (all parts of the basal transcription machinery) would be (0.4 < POL2 <=1) AND (0.6 < TAF1 <=1) AND (0.3 <= TBP <= 1).

The value of [image: image104.png]


, i.e. the number of factors in a rule [image: image106.png]


, in the above equation, can range from 1 to [image: image108.png]


 (total number of factors). There are [image: image110.png]


 possible combinations of [image: image112.png]


factors. The task of the learning algorithm is to efficiently search this massive space of rules while also learning the relevant peak intensity thresholds [image: image114.png]


 and [image: image116.png]


. Clearly enumerating all possible rules with all possible thresholds prior to learning the coefficients of the model [image: image118.png]F(X)



 is infeasible even for a moderate number of factors ([image: image120.png]


).

The RuleFit3 algorithm69 instead uses the well-known random forest algorithm70 as a sub-routine to learn massive ensembles of decision trees that discriminate the positive set from the negative set. Decision trees can be learned extremely efficiently and inherently encode rules of the form shown in Equation C.2.3.1. The random forest model could itself be used to extract co-association relationships. However, it is hard to interpret because it contains a large number of correlated and redundant rules. Our main goal is to extract a compact set of discriminative rules and factors. Hence, RuleFit3 uses the rules present in the decision trees generated by the random forest algorithm as a repository of potentially relevant rules. Even though we use the random forest to generate a large number of rules (ranging from 2000 – 5000), this number is still substantially smaller than the [image: image122.png]


 possible rules. These filtered rules are guaranteed to have some discriminative power. Also, since the random forest learns decision trees on several subsampled versions of the positive and negative sets, the odds that it misses an important combination of factors is extremely low. The inherent subsampling improves resistance to noise and the handling of correlated features. RuleFit3 then uses these filtered rules as inputs to an L1 regularized optimization routine that minimizes a robust binary loss function (squared-error ramp loss) in order to ultimately learn a sparse, non-redundant set of [image: image124.png]


 discriminative rules. The number of rules [image: image126.png]


 is not set apriori but is rather learned from the data itself. Details are provided in the RuleFit3 manuscript69. It is important to note that RuleFit3 induces sparsity (minimal number of non-zero coefficients) collectively on the set of rules (involving combinations of factors) and the simple linear terms. In a traditional L1-regularized linear model consisting only of individual factor intensity terms, if multiple factors have highly correlated profiles (e.g. ChIP-seq experiments targeting the same factor using different antibodies), then the sparsity constraint would result in a non-zero coefficient for only one factor from the group of correlated factors. But, all the correlated factors might be equally relevant from a biologically standpoint. RuleFit3 is not affected by this problem because individual rules generated by the random forest can and do contain correlated factors and the sparsity is induced on the rules rather than the individual factors that are contained within the rules. We provide examples of rules with correlated variables in Section C.3.1.3.

A decision tree of fixed-depth [image: image128.png]


 will learn rules involving exactly [image: image130.png]


 factors. However, since we are unaware of the exact size of the relevant discriminative rules, RuleFit3 uses the random forest algorithm to sample variable-depth decision trees such that the average depth over all trees is approximately equal to some user-define parameter [image: image132.png]


. We experimented with a variety of values for the [image: image134.png]


 parameter ([image: image136.png]2< D <20)



 and found no significant change in results for [image: image138.png]D=>6



. Hence, we set the [image: image140.png]


 parameter to 6. This means that RuleFit3 can sample rules of variable sizes such that the average size over all rules is ~6.

We evaluated the discriminative power of the learned models using 10-fold cross-validation. The positive and negative sets were randomly sliced into 10 equally sized subsets of examples. In a round robin fashion, 9 of the 10 subsets were used for training and the remaining subset was used to test generalization performance of the model. The predicted labels [image: image142.png]


 on the test examples were compared to their true labels [image: image144.png]


. The area under the Receiver Operating Curve (auROC) and binary classification accuracy were used as performance measures. A learned model can achieve high discriminative accuracy only if there is an enriched dependence structure in the binding profiles of groups of factors in the true co-binding map compared to the randomized control map. 

Of course, a single model trained on a co-binding map (positive set) and a single shuffled control map (negative set) will not provide robust statistics. So for each co-binding map, we trained 50 models using multiple randomized control maps as negative sets. We averaged performance metrics (accuracy and auROC), as well as other model-based scores (such as the relative importance and co-association scores) over the multiple models. Using more than 50 models did not significantly affect the median values of the extracted scores.

The learning algorithm is non-parametric and completely invariant to monotonic transformations of the binding profiles of the factors in the co-binding maps. Hence, substituting normalized peak ranks with peak p-values, q-values or fold changes does not change the models, as these are all approximately monotonically related to the normalized peak ranks.
C.2.4 Extraction of co-association information from the learned models
Each rule [image: image146.png]


 learned by RuleFit3 is characterized by two relevant quantities. 

The support of a rule ([image: image148.png]


 is defined as the fraction of training examples [image: image150.png]T'



for which the rule evaluates to TRUE
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The scale of a rule [image: image153.png](t)



 is defined as the standard deviation of the rule which is given by
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C.2.4.1 Ranking rules

A commonly used measure of relevance of a predictor in a linear model is the absolute value of the coefficient of the standardized predictor69. We compute the overall importance of each rule [image: image156.png]


 as
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where [image: image159.png]


 is the coefficient of the rule [image: image161.png]


 in the model (Equation C.2.3.3) and [image: image163.png]


 is its scale (Equation C.2.4.b).

Similarly, for the individual factor intensity terms [image: image165.png]


 in the model (Equation C.2.3.3), the importance is computed as
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where [image: image168.png]


 is the coefficient of the individual factor term and [image: image170.png]std(x;)



 is the standard deviation of the factor intensity values [image: image172.png]


 over all examples in the training data.

We can use the above measures to rank the learned rules. However, each factor can be part of multiple rules involving different combinations of factors. Also, we learn several models of a focus-factor context using multiple shuffled control maps. So we needed a way to summarize the overall importance of each factor and the overall co-occurrence of factors across all rules and models.

C.2.4.2 Relative importance of factors in a co-binding map

Individual factors that appear in rules with high importance scores are expected to be more relevant to characterizing the dependence structure of a co-binding. Hence, we summarized the absolute importance of any factor [image: image174.png]


 in a co-binding map as
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The first term [image: image177.png]


 is the importance of the individual factor intensity term [image: image179.png]


(Equation C.2.4.1.b). The second term sums the importance of all rules [image: image181.png]


 that involve the factor [image: image183.png]


divided by the size of the rules (i.e. the number of factors in the rule) [image: image185.png]


. The rationale behind the second term in Equation C.2.4.2.a is that we divide the importance of a rule equally amongst all the factors that it involves. 

The relative importance (RI) of factor [image: image187.png]


 is simply
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We computed the median of the relative importance scores over all 50 models trained on the co-binding map. 

Each factor, individually, has the same distribution in the positive and negative set. So, only factors whose profiles are significantly correlated with profiles of other factors in the positive set as compared to the negative set get high RI scores. These dependencies will be captured as interacting terms within learned rules. So intuitively, the RI of a factor encodes as a single number its overall ‘combinatorial potential’ relative to all other factors within the focus-factor context. 

C.2.4.3 Differential importance of factors for identifying proximal and distal biases

The above-mentioned importance scores reflect the average influence of each factor with respect to the joint distribution of the binding profiles over all genomic locations in the focus-factor context. We can compute analogous local importance scores for rules and linear terms with respect to each focus-factor location [image: image190.png]


 as
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where [image: image194.png]


 is the intensity value of factor [image: image196.png]


 at focus-factor location [image: image198.png]


 and [image: image200.png]


 is the mean value of [image: image202.png]


 over all examples in the training data. 

Given a subset [image: image204.png]


of focus-factor locations with some common characteristics (e.g. TSS-proximal sites, or TSS-distal sites), we can compute the importance of rules [image: image206.png]


, individual linear terms [image: image208.png]


 and the importance of each factor [image: image210.png]


 with respect to the subset [image: image212.png]


as
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These importance scores were converted to relative importance scores [image: image217.png]RI(S)



 using Equation C.2.4.2.b.

In order to obtain the bias of a partner-factor towards distal focus-factor binding sites, we computed the differential importance (DI) of each partner-factor as the difference of the [image: image219.png]RI



 with respect to a TSS-distal subset of focus-factor peaks [image: image221.png](Saisear)



 and the [image: image223.png]RI



 with respect to a TSS-proximal subset of focus-factor peaks [image: image225.png](Sproximat)



.
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We computed the median, 0.25 and 0.75 quantiles of [image: image228.png]


 values obtained from the 50 models learned using a particular co-binding map.

C.2.4.4 Partial dependence functions

The relative importance (RI) scores of factors measure their relative ‘combinatorial potential’ within a focus-factor context but do not provide any information about which factors specifically co-associate with other factors, i.e. in terms of the model which factors co-exist with other factors in multiple high scoring rules. Hence, we use the properties of centered partial dependence functions to compute context-specific co-association scores69. These scores can be computed for pairs and higher-order combinations of factors. We note that the RuleFit3 model explicitly learns multivariate rules involving 2 or more factors and hence co-association scores computed for pairs of factors can be intuitively understood as marginalized ‘projections’ of the learned higher-order dependencies to pairwise scores. This is fundamentally different from analyzing a pair of factors in isolation (even within a focus-factor context). Below, we describe how RuleFit3 computes pairwise and higher-order co-association scores.

First, the prediction function [image: image230.png]F(X)



 is centered to have mean 0. Given a group [image: image232.png]


of one or more of the [image: image234.png]


factors in a co-binding map, let [image: image236.png]


 be the complement set of factors, i.e. all factors not in set [image: image238.png]


. The partial dependence of [image: image240.png]F(X)



 on g is given by
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For a fixed set of joint intensity values of factors in group[image: image243.png]


 given by[image: image245.png]


, we evaluate the prediction function [image: image247.png]F(.)



 over all [image: image249.png]T'



training examples using the intensity values [image: image251.png]


 of the complement set of factors [image: image253.png]


 but using the fixed set of values [image: image255.png]


 for the factors in group [image: image257.png]


 In this way, the effects of factors in [image: image259.png]


 are averaged out revealing the partial dependence of the model on factors in [image: image261.png]


 (Details in 69).

C.2.4.5 Pairwise raw co-association scores

If two factors [image: image263.png]


 and [image: image265.png]


do not interact in the learned model, i.e. do not co-exist within rules, then the partial dependence on [image: image267.png]


 can be decomposed as the sum of the partial dependence on [image: image269.png]
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 individually i.e.[image: image273.png]P+ P,




By computing the true value of [image: image275.png]


using Equation C.2.4.4 and evaluating its deviation from what one would obtain in the absence of any interaction of [image: image277.png]


 and [image: image279.png]


, i.e. [image: image281.png](P, +P)



 , we can obtain a pairwise raw co-association score as
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Thus the raw co-association score between factor [image: image284.png]


 and [image: image286.png]


 captures the fraction of variance of the prediction function (the denominator) that is explained by the joint interaction (dependence) of [image: image288.png]


 and [image: image290.png]


 (the first term in the numerator) over and above that explained by each factor independently.

C.2.4.6 Higher-order raw co-association scores

An analogous expression for the co-association score of a 3-way interaction between factors [image: image292.png]


, [image: image294.png]


 and [image: image296.png]


 is given as
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 is thus the fraction of variance not explained by the lower-order  interactions between factors. These higher-order statistics can be computed efficiently. However, in terms of interpretability, we did not find a significant advantage of the higher-order scores compared to the pairwise scores (Equation C.2.4.5). Hence, we mainly focus our analyses around pairwise scores.

C.2.4.7 Calibration and normalization of co-association scores

The raw co-association scores range from 0 to 1 (fraction of variance). We wanted to calibrate these scores in order to differentiate between ranges of scores corresponding to high-confidence associations as compared to low-confidence or spurious associations obtained by chance. We constructed an extended co-binding map for each focus-factor context by adding ‘control-features’ to the true set of features (factors). The control-features were generated the same way we created the negative set; i.e. every factor’s binding intensity profile in the co-binding map was shuffled to create an equivalent control feature. Then, we generated 50 shuffled control maps from the extended co-binding map, use these as negative sets and learned RuleFit3 models. We computed relative importance and pairwise co-association scores analogous to how we analyzed the original co-binding map. 

We computed the relative importance scores (RI) of the true features and the control-features. Fig. S2B-1-(1) shows the relative importance scores of the true features and control-features for the GATA1 co-binding map in K562. We found that the RI scores of control-features never exceed a value of 5 for any of the focus-factor contexts over all cell-lines. Hence, for any context-specific analysis, we consider factors that have importance scores < 5 to be inactive in the context.

We also computed raw co-association scores (RCS) between all pairs of true features and control-features (SOM/C.2.4.5). We analyzed the distribution of RCS between all pairs of true features and compared this to the distribution of RCS between all pairs of control-features and pairs consisting of a control-feature and a true feature (Fig. S2B-2). The distributions of RCS between true features (red panels) and between control-features (blue subpanels) showed two distinct well-separated groups of scores over all focus-factor contexts. We found that raw co-association scores in the stronger component were lower bounded at 1e-7 over all focus-factor contexts and the scores in the weaker component never exceeded 1e-14. Hence, we normalized all co-association scores using 
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Henceforth, we refer to the normalized co-association scores simply as co-association scores (CS). In all our analyses, we set any CS values < 0 to 0. Hence, CS values range from 0 to 7.

We also noticed that a small subset of control features occasionally obtained CS values [image: image305.png]


 with other control-features or true-features (Fig. S2B-2, marked as low-confidence scores). Across all focus-factors, we found that these CS scores involving control-features rarely exceeded a value of 5 (corresponding to a raw co-association score of 0.01). Hence, we consider all pairs of factors with [image: image307.png]CS<5



 as low-confidence co-associations (since scores in this range could be obtained by chance). Pairs of factors with [image: image309.png]


 are considered high-confidence co-associations.

C.2.4.8 Co-association matrix

The co-association matrix for a focus-factor context is a matrix containing the co-association scores (CS) between all pairs of [image: image311.png]


factors. We typically visualize the co-association matrix as a heatmap as shown in Fig. S2B-1-(2) with a color-scale ranging linearly from white to orange for [image: image313.png]0< CS <5



, followed by orange to red for [image: image315.png]


. This allows us to visually distinguish high-confidence from low-confidence co-associations while also keeping track of subtle differences between scores within each confidence class. We hierarchically clustered the rows and columns of the matrix using the Euclidean distance metric and ward linkage. The context-specific co-association matrices are symmetric by construction.

C.2.5 Summarizing co-association information across all focus-factor contexts

In order to summarize context-specific co-association information over all focus-factor contexts in a cell-line, we computed the following aggregate matrices.
C.2.5.1 Aggregate Factor importance matrix (RIM)

We computed the relative importance scores (RI) (SOM/C.2.4.2) of all factors in each focus-factor context in a particular cell-line and then simply stacked the RI vectors to create an [image: image317.png]NXN



 aggregate factor importance matrix (RIM) of the cell-line. The rows of the matrix represent focus-factor contexts and the columns represent all factors in the cell-line. We hierarchically clustered the rows and columns of the matrix using the Euclidean distance and ward linkage. This matrix tends to be largely asymmetric.
C.2.5.2 Importance correlation matrix (ICM)

We represented each focus-factor context by its vector of RI scores and computed a similarity matrix between all pairs of focus-factor contexts as the Pearson correlation of their RI vectors (rows in the RIM). This [image: image319.png]NXN



 Importance correlation matrix (ICM) is symmetric with rows and columns representing focus-factor contexts. We arrange the rows and columns of the ICM using the row order obtained by hierarchically clustering the rows of the RIM. A high importance correlation score between a pair of contexts implies that partner-factors have similar RI scores (combinatorial potentials) in the pair of contexts. RIM and ICM help identify contexts with similar composition of dependence structures.
C.2.5.3 Maximal co-association matrix (MCS)

A pair of factors may have high co-association scores (CS) in some focus-factor contexts and not in others. In order to capture the maximal set of high-scoring associations, we computed a [image: image321.png]NXN



 maximal co-association matrix (MCS) for a cell-line from the individual context-specific co-association matrices (SOM/C.2.4.8). The rows and columns in the matrix represent the [image: image323.png]


 factors in the cell-line. For any pair of factors (row, column), we compute the maximum CS for that pair of factors over the co-association matrices from all focus-factor contexts. We clustered the rows and columns of the matrix using hierarchical clustering with spearman correlation as the distance measure and average linkage. This matrix tends to be largely symmetric.
C.2.5.4 Aggregate primary-partner matrix (PPM)

Primary-partners of a TF are partner-factors that have a high co-association score (CS) with the TF in the context that is defined using the TF as the focus-factor. Intuitively, the binding profile of a primary-partner of a focus-factor will have a strong dependence relationship with that of the focus-factor over majority of the focus-factor context. Typically, a partner-factor consistently co-binds with a substantial fraction of the focus-factors’ binding sites. The row corresponding to the focus-factor in its context-specific co-association matrix (primary-partner vector) has the relevant information about its primary-partners. The aggregate primary-partner matrix (PPM) for a cell-line was constructed by stacking the primary-partner vectors from each focus-factor context in the cell-line. Each row in the matrix is a focus-factor and the columns are potential primary-partners. We hierarchically clustered the rows of the matrix using spearman correlation as the distance measure and average linkage. We noticed that the PPM had a partially symmetric structure with a strong block diagonal structure even when the rows and columns were clustered independently. Hence, for the sake of interpretability, we arranged the columns in the same order as the clustered rows.
C.2.5.5 Variability-maps of co-associations of a factor

One of the main advantages of our context-specific analysis framework is the ability to analyze the stability or variability of partners of a particular TF over multiple contexts. For each TF in a particular cell-line, we constructed variability-maps of its co-association scores with all factors over all contexts. For a particular factor [image: image325.png]


, we extracted the row corresponding to [image: image327.png]


 from each context-specific co-association matrix. Each row corresponds to co-association scores of [image: image329.png]


 with all other factors in each focus-factor context. We stacked these vectors to generate the variability-map of co-associations of [image: image331.png]


. The rows of the map are focus-factor contexts and the columns are all potential partners of [image: image333.png]


. We clustered the rows and columns independently using hierarchical clustering with Euclidean distance and ward linkage.

C.2.6 Functional enrichment of biclusters
We used the pairwise co-association matrix (SOM/C.2.4.8) of a focus-factor context to identify clusters of factors (2 or more) that have significant co-association scores (CS) with each other. We then searched the co-binding map of the focus-factor context for all focus-factor peak locations that are significantly enriched for binding events of the group of co-associating factors (biclusters). Specifically, we binarized the co-binding map by setting all non-zero binding intensity values to 1. For groups of two co-associating factors ([image: image335.png]


, we find all focus-factor peaks that overlap peaks of both factors. For groups of [image: image337.png]M= 2



 factors, we find all focus-factor peaks that co-bind with at least [image: image339.png]


 of the [image: image341.png]


co-associated factors.

The genomic coordinates of the focus-factor peaks thus identified as harboring specific co-associated groups of factors were input to the GREAT Functional Annotation server71. Default parameters were used to detect enriched functional Gene Ontology (GO) categories. The top 20 enriched GO categories identified with a false discovery rate threshold of 0.05 were reported.
C.3 Co-association case studies 

In this section, we begin with an application of our novel analysis framework to decipher the heterogeneity of TF co-associations in the GATA1 and E2F4 focus-factor contexts in the K562 cell-line. We then provide aggregate analyses across all focus-factor contexts in each of the 5 ENCODE cell-lines. We analyze the stability and variability of TF co-associations across different cell-types (cellular contexts). We show specific examples of the variability of co-associated partners of TFs across different contexts within a single cell-line. Finally, we discuss the stability of the co-association analysis with respect to relaxed definitions of peak overlap and peak calling. 

C.3.1 TF co-association in the GATA1 focus-factor context

GATA1 is a well-studied transcription factor that plays a key role in erythroid differentiation in K562 cells. We identified 2785 reproducible GATA1 ChIP-seq peaks that were used to define the GATA1 focus-factor context.

C.3.1.1 Interpreting the co-binding map

Fig. S2C-1-(1) shows the clustered co-binding map (SOM/C.2.2) of the GATA1 focus-factor context in the K562 cell-line. We identified 8 main groups of TFs (represented as colored rectangles) with relatively distinct joint distributions of binding profiles. Most of the groups, such as group 8 (CTCF, RAD21, SMC3) and group 7 (JUN, JUND, JUNB, FOS, FOSL1) tend to form highly local biclusters that are significantly enriched for a majority of group members at specific subsets of GATA1 binding sites. TFs that belong to such local biclusters are considered local-partners of GATA1. The bicluster structure highlights the heterogeneity of co-associations of TFs with each other and with GATA1 within the GATA1 context. Group 6 is relatively different from the other groups in that it includes the focus-factor GATA1. By definition, GATA1 binds all genomic locations in the GATA1 context. Partner-factors such as GATA2, TAL1 and the elongation form of POL2 (labeled POL2-(4H8)) that belong to group 6 have highly correlated profiles with each other and GATA1, and they also show high binding intensity over a significant fraction (> 65%) of all GATA1 peaks. We refer to these partner-factors as primary-partners of GATA1. Fig. S2C-1-(2) shows the ChIP-seq signal of different factor sub-groups at three representative GATA1 peaks. The first location (left-panel) is enriched for peaks of the TFs in group 6. At the second location, we once again observe a significant enrichment of the primary-partners (group 6). However, group 7 factors, such as FOS, JUN, JUNB, and JUND, also show specific high ChIP-seq signal at this location. MYC and MAX also show weaker peaks. The third location (right-panel) is significantly enriched for CTCF, RAD21, and SMC3 (which are associated with insulation/repression) and simultaneously depleted for TAL1 (which is typically associated with activation). Group 7 TFs are distinctly absent, but MYC, MAX, and E2F6 show moderate signal. These locations exemplify the context-specific, combinatorial nature of TF co-association.

C.3.1.2 Biological interpretation of context-specific relative importance and co-association scores

We applied our machine learning framework (SOM/C.2.1) to quantify the dependence structure of TF binding profiles in the GATA1 context. We computed the matrix of context-specific co-association scores (CS) (SOM/C.2.4.4 - C.2.4.8) between all pairs of TFs, as well as the relative importance (RI) (SOM/C.2.4.2) of each TF (Fig. S2C-2). 

First, we found that the pairwise CS matrix recapitulates and refines the co-association structure found in the co-binding map (i.e., the separation of TF groups is significantly clearer). GATA1 has significant CS exclusively with members of group 6, thus allowing us to objectively identify these TFs as primary-partners of GATA1. The other groups of TFs that form local bi-clusters in the GATA1 context (such as group 7) have high within-group CS but low CS with GATA1 itself. These TFs are local partners of GATA1.

The RI scores represent the overall combinatorial potential of each TF in the GATA1 context. Although JUND does not have a high CS score with GATA1 in the GATA1 context (since it co-binds with GATA1 only at a subset of GATA1 peaks), it has a high RI score because it co-binds consistently with 5 other TFs in group 7 at a subset of GATA1 peaks. However, JUND has a lower RI score than several primary-partners in group 6, such as POL2-(4H8) and TAL1, which co-bind with each other at a significantly larger subset of GATA1 peaks. CTCF has high CS scores with its well-known partners RAD21, SMC3 (cohesin complex) in group 8, but it has a significantly lower RI score than JUND, since it forms the local bicluster with cohesin at very few (< 4%) GATA1 peaks (Fig. S2C-1-(1)). Thus, intuitively, the RI for a particular TF is affected by the ‘size’ of the biclusters to which it belongs (i.e., the number of factors with which it co-binds and the fraction of focus-factor peak locations that are enriched for biclusters that include the TF).

C.3.1.3 Enriched higher-order combinations of factors in the GATA1 context

In this section, we present some of the high-scoring combinatorial ‘rules’ learned by the RuleFit3 models trained on the GATA1 co-binding map in K562. We present the exact rule composition, the rule size, the support (SOM/C.2.4.2), the rule coefficient (SOM/C.2.3.3), and the RI of the rule (SOM/C.2.4.1). The rules are sampled from 50 models trained on different random instantiations of control maps.

While the rules provide an interpretable snapshot of enriched higher-order, non-linear dependencies between binding profiles of TFs, it is important not to over-interpret them. Subsets of factors can and do appear in multiple rules with various other factors. Also, a single model is learned by contrasting the co-binding map with only one randomized control map. Hence, in order to obtain robust statistics, it is important to summarize the overall interaction effect of factors within multiple rules and multiple models. The RI of the TFs and the multi-variate co-association scores are more reliable statistical measures.

	RULE
	No. of Factors
	Support / Std. dev
	Coeff.
	Rule RI
	Comments

	[JUN >= 0.02154] AND 
[JUNB >= 0.1672] AND 

[JUND >=0.6517]
	3
	0.08057
	3.222
	100
	JUN factors

	[E2F6 >= 0.0189] AND
[MAX >= 0.4953] AND 

[E2F6-{UCD} >= 0.003866]
	3
	0.079898
	2.35
	72.65
	Multiple antibodies for E2F6 in the same rule

	[POL2-(4H8) >= 0.0466] AND
[POL2] >= 0.06179]


	2
	0.4603
	1.078
	61.24
	Different POL2 antibodies in the same rule

	[GATA1 >= 0.2398] AND
[CCNT2 >= 0.8538] AND

[HMGN3] >= 0.8021
	3
	0.1162
	1.336
	48.82
	Novel partners of GATA1

	[MYC-[IFNG30] <= 0.8610] AND
[MYC-IFNG6H <= 0.7803] AND

[MYC-IFNA30 <= 0.5495] AND

[MYC-IFNA6H <= 0.6258]
	4
	0.6883
	0.9916
	52.37 
	MYC datasets under interferon treatment

	[NRSF >= 0.5120] AND
[POL2-(4H8) >= 0.5228] AND

[POL2-(B) >= 0.06705] AND

[TAL1 >= 0.8431] AND

[GATA2-{UCD} >= 0.1400]
	5
	0.2177
	1.230
	55.32
	Primary-partners

	JUN-[IFNG6H]
	1
	0.2610 
	1.925
	54.74
	Simple linear term

	[CEBPB <= 0.5693] AND
[CHD2 <= 0.07714] AND

[CJUN <= 0.7281] AND

[MYC-[IFNG6H] <= 0.8980] AND

[MYC <= 0.8045] AND

[ELF1 <= 0.5364] AND

[GABP <= 0.8446] AND

[JUNB <= 0.9673] AND

[JUND <= 0.9318] AND

[POL2-[IFNA30] <= 0.08576] AND

[POL2-[IFNA6H] <= 0.003625] AND 

[POL2-[IFNG30] <= 0.01581] AND [POL2-[IFNG6H] <= 0.03407] AND

[STAT1-[IFNA30] <= 0.4047] AND

[TAF1 <= 0.8143] AND

[E2F4 <= 0.1617]
	16
	0.3075
	1.067
	70.52 
	Large rule containing several local partners of GATA1


C.3.1.4 Known and novel co-associations in the GATA1 context

The groups of TFs discovered using the GATA1 context-specific co-association matrix in Fig. S2C-2 revealed several known and novel TF co-associations:

· Group 1 consists of PU.1 and ELF1, which have been shown to jointly regulate leukemia genes69. 

· Groups 2 (POL2 and IRF1 in interferon-treated K562 cells alongside TBP) and group 5 (initiation-form of POL2 in untreated cells, TAF1 and ETS1) have overlapping but sufficiently different distributions of binding profiles. Several of these TFs (POL2, TAF1, TBP) are key components of the RNA Polymerase II transcriptional machinery.

· Group 3 consists of E2F6, MAX and MYC in untreated and interferon-treated cells. MYC and MAX are known to form heterodimers, and E2F6 has also been shown to interact with MAX70-72. However, while the CS between (MYC, MAX), as well as (E2F6, MAX), was high (> 5.5), the CS between (E2F6, MYC) was moderate. Simple peak overlap analysis supported this observation. We found that 95% of the 789 E2F6 peaks in the GATA1 context overlap MAX peaks and 92% of the 786 MYC peaks overlapped MAX peaks. However, only 50% (399) of the E2F6 peaks overlap MYC peaks. In addition, all of the 399 peaks involving E2F6 and MYC also overlapped MAX peaks. Thus, the co-association scores are able to decipher subtle differences in co-associations between higher-order sets of factors.

· Group 4 consists of a novel co-association between ZBTB7A and EGR1.

· Group 6 consists of GATA1 and its primary-partners. GATA1 has been shown to recruit TAL1 at several erythroid enhancers73. However, GATA2 has been shown to compete with GATA1 for the same binding sites as GATA174. Thus, primary-partner-factors of a focus-factor may include components of competing regulatory complexes that appear to consistently co-associate with the focus-factor based on ChIP-seq binding profiles. The apparent co-association may be due to dynamic but mututally exclusive competitive binding of the factors or the presence of distinct sub-populations of K562 cells that lack GATA1 in which GATA2 binds the same sites. Other proteins often identified with enhancers, such as P300 and BRG1, are also part of group 675,76. HMGN3 and CCNT2 show very strong CS with each other as well as with other members of group 6. This is a novel co-association. 

· GATA1 is known to have an activating or repressive regulatory role, depending on co-association with other factors29. Interestingly, we found that GATA1 has high CS with NRSF (a well-known repressor) and HDAC2 (a histone deacetylase associated with deactivation) while also having high CS with TAL1 and P300, which are typically associated with activation. The association of GATA1 with these repressive TFs has not previously been demonstrated. We wondered whether genes that were potentially regulated by GATA1 in K562 were active or repressed. Specifically, we assigned each GATA1 peak to its nearest gene (GENCODE v7 TSS) in order to obtain a set of potential GATA1 target genes. PolyA+, cytoplasmic CAGE tag expression (in reads per million) for each TSS was used as a measure of gene expression 77. We found that only about half of the genes associated with GATA1 peaks were expressed in K562 (Fig. S2E-4-(1)). In comparison, ~91% of all nearest target genes associated with peaks of the well-known activator E2F4 were expressed in K562, indicating that a substantial number of potential GATA1 target genes are repressed. We also analyzed RNA-seq expression changes of the GATA1-associated target genes after si-RNA knockdown of GATA1 in K562. A p-value of 0.01 was used to identify differentially expressed genes in the knockdown data. Fig. S2E-4-(2) shows that 94 of the genes associated with the GATA1 peaks are up-regulated after knockdown, and only 54 genes are down-regulated. Both analyses indicate that a substantial fraction of GATA1 target genes are not expressed in K562, and a larger fraction of these genes are up-regulated after GATA1 knockdown. We hypothesize that the significant co-association of repressors (such as NRSF and HDAC2) with GATA1 peaks may be responsible for maintaining several GATA1 enhancers in a repressed or poised state in these K562 cells.

· Group 7 in Fig. S2C-2 consists of JUND, JUNB, JUN, FOS, and FOSL1, all of which are known to form heterodimeric regulatory complexes with each other78,79. 

· Group 8 consists of CTCF, RAD21, and SMC3, which are known to form large complexes regulating chromatin structure80,81.

C.3.1.5 Post-translational modification of POL2 alters co-association partners.

We also observed interesting differences in co-association partners with the different modified forms of RNA polymerase II (Fig. S2C-2). The antibody POL2-8WG16 (labeled as POL2 in the figure) recognizes the unphosphorylated initiating form of RNA polymerase II, whereas the POL2-(4H8) and POL2-(B) antibodies recognize both phosphorylated and unphosphorylated Pol II, representing initiating and elongating forms of the enzyme. Although all three versions show significant co-association with each other, POL2-(4H8) and POL2-(B) show strong CS with GATA1 and other primary-partners, whereas the initiation-specific form of POL-2 forms a tighter local cluster with TAF1, GABP, and ETS1. A majority (~70%) of GATA1 peaks in K562 are significantly distal (> 2.5 Kb) from annotated gene TSSs. Recently, it has been shown that enhancers encode long non-coding RNAs, and that extra-genic POL2 binding sites tend to be enriched at enhancer sites82. We have thus found strong evidence that the different antibodies targeting the two forms of polymerase seem to have substantially different binding profiles (Fig. S2C-2-(1)), and these forms differentially co-associate with factors at gene proximal TSSs and distal enhancers (Also see SOM/C.3.1.6). Interestingly, the TATA binding protein (TBP) also shows a stronger CS with POL2-8WG16 peaks in interferon-treated cells than in untreated cells.

C.3.1.6 Partner-factor enriched at proximal and distal GATA1 peaks

We computed the differential importance score (SOM/C.2.4.3) for each TF in the GATA1 context in order to identify factors that show enriched co-associations at proximal peaks (relative to distal GATA1 peaks). 869 of the 2785 GATA1 peaks are < 2.5 Kb from TSSs, and 1141 peaks are > 10 Kbp from TSSs. Hence, a majority of GATA1 peaks are distal to TSSs. Fig S2C-3-(1) shows that members of group 7 (JUND, JUNB, JUN), as well as P300 have a moderate distal bias, whereas POL2 (the initiation form), TAF1, TAF7, and TBP, which are part of the basal transcriptional machinery, along with MAX, CHD2, SIN3A, YY1, E2F6, and ELF1, have a very significant proximal bias. POL2-(4H8) does not show a bias towards proximal or distal GATA1 sites, since it acts as a primary-partner of GATA1. These results are robust to the choice of the distance threshold used to define proximal and distal regions (Fig. S2C-3-(2) to S2C-3-(4)). As supporting evidence, we also computed the fraction of TSS proximal peaks for each TF. TFs that showed a positive differential importance (distal bias) had low fractions of proximal peaks (18-25%) relative to TFs with negative differential importance (proximal bias), which had ~60-80% of their peaks proximal to TSSs. Thus, even though the machine learning models were trained collectively on the entire GATA1 co-binding map consisting of distal and proximal peaks, they are rich enough to simultaneously capture the proximal and distal co-association biases of different factors in the GATA1 context. One could define sub-contexts within the GATA1 context based on other criteria and automatically identify TFs that help contrast the sub-contexts.

C.3.1.7 Variability map of partners of GATA1 across all focus-contexts in K562

By computing co-association scores (CS) of GATA1 with other factors across multiple focus-factor contexts in K562, we can analyze the global stability and variability of GATA1 partners. This is one of the key advantages of our context-specific approach. We used our machine learning framework to learn models of each of the 95 focus-factor contexts in K562. We then computed the variability-map (SOM/C.2.5.5) of the CS of GATA1 with other factors across all focus-factor contexts (Fig. S2D). 79 of the 95 K562 contexts had at least one non-zero CS of GATA1 with some TF (rows of the variability-map). 50 of the 95 K562 TFs had a non-zero CS with GATA1 in at least one focus-factor context (columns in the variability-map). However, the most frequent high-scoring partners of GATA1 (columns) were all members of the GATA1 primary-partner group 6 that was identified using only the GATA1 context-specific analysis (SOM/3.1.4). We also observed subtle differences between these partners. GATA2 and TAL1 were found to have high CS with GATA1 over all but 5 focus-factor contexts of repressive TFs. The next most frequent set of partner-factors were the chromatin modifiers - P300, HDAC2 and BRG1. POL2-(4H8), POL2-(B), HMGN3, and CCNT2 were found to have high CS scores in ~50% of all contexts, with stronger CS scores in contexts defined by predominantly distally bound TFs (the top half of the rows in Fig. S2D). GATA1 also showed high CS with JUND, JUNB and JUN almost exclusively in the MAX and IRF1 contexts. Hence, the overall associations of TFs with GATA1 appear to be relatively stable across most contexts with subtle differences. We present examples of TFs with highly context-specific partner associations in SOM/C.3.4.

C.3.2 Context-specific co-association of E2F4 with E2F6

An interesting observation we made in the GATA1 context-specific analysis was the distinct absence of an association between E2F4 and E2F6, even though both factors belong to the E2F class of factors with similar DNA-binding sequence motifs. We were curious whether this lack of co-association was specific to just the GATA1 context or a more global phenomenon in K562. Hence, we first looked at the E2F4 co-binding map (Fig. S2E-1). Interestingly, we found that both factors had highly correlated profiles in the E2F4 context, and that E2F6 peaks covered a significant fraction (> 80%) of the E2F4 context. We trained our machine learning framework on the E2F4 co-binding map, and found E2F6 to have the 7th highest relative importance score amongst the 95 TFs in K562, and it also showed up as the primary-partner of E2F4 in the co-association score matrix (Fig. S2E-2). When computing the variability-map of CS scores of E2F4 with other factors, we found ample evidence of the E2F4-E2F6 partnership across more than 50 focus-factor contexts (Fig. S2E-3). However, along with GATA1, the GATA2 and TAL1 focus-factor contexts were all distinctly missing the E2F4-E2F6 co-association, even though E2F6 was found to significantly co-associate with other factors (such as MAX) in these contexts.

We also found interesting similarities and differences between the co-association score matrices of the GATA1 (Fig. S2C-2) and E2F4 contexts (Fig. S2E-2-(2)). MYC, MAX, and E2F6 once again show high CS scores with each other. The subtle differences in their 3-way associations in the GATA1 context (SOM/C.3.1.4) were also reproduced in the E2F4 context. MXI, which is known to form heterodimers with MAX, was a new addition to this group in the E2F4 context. JUND, JUNB, and JUN once again have high CS scores with each other. However, FOS, which was part of this group in the GATA1 context, has a different set of partners (specifically, SP1, SP2, CHD2, and IRF1). CTCFL is a new addition to the CTCF, RAD21, SMC3 cluster in the E2F4 binding map that was not found in the corresponding cluster in the GATA1 binding map. Also, unlike the GATA1 context, in which the three POL2 antibodies shown had partially overlapping co-association structure (Fig. S2C-2), in the E2F4 context, they appear to show high mutual CS with each other. This observation is consistent with the fact that all 3 forms of the antibody target initiation forms of POL2, which are all enriched at core promoters, and that E2F4 peaks are predominantly TSS-proximal (86%). GTF2B and GTF2F1, which are subunits of the transcriptional machinery, are also new additions to this group.

C.3.3 Distinct functional enrichment of target genes of different TF combinations

As shown in the previous sections, co-binding maps of focus-factors tend to show a significant ‘bicluster’ structure with specific groups of TFs co-binding at specific subsets of binding sites of the focus-factor. We hypothesized that these different biclusters would represent functionally distinct groups of target genes. Hence, we evaluated the functional enrichment of target genes associated with distinct biclusters in various focus-factor contexts, as outlined in SOM/C.2.6. Since we use the nearest gene criterion to assign TFs peaks to target genes which can be reasonably unreliable for peaks that are substantially distal (> 5 Kb from the nearest TSS), we focused our functional enrichment analysis on contexts with focus-factors (e.g. E2F4, E2F6 and MAX) having a substantial fraction (> 60%) of TSS proximal peaks.

(GABP, PU.1) and (GABP, ELF1) pairs of partner-factors showed significant co-association scores in the E2F4 context (Fig. S2E-2-(2)). Of the 4874 peaks of E2F4 in K562, the (GABP, ELF1, PU.1) were collectively found at 2490 E2F4 peaks. (GATA1, GATA2, TAL1) were collectively found at 323 E2F4 peaks and (CHD2, ZBTB33) were co-bound at 289 E2F4 peaks. Although E2F4 is generally linked to cell-cycle regulation, we observed distinct functional enrichment of target genes associated with these biclusters. Specifically, (i) gene targets of E2F4 with (GABP, PU.1, and ELF1) are enriched in RNA processing-related functions, (ii) gene targets of E2F4 with (GATA1, GATA2, and TAL1) are enriched for chromatin organization-related functions, and (iii) gene targets of E2F4 with (CHD2 and ZBTB33) are enriched for DNA replication-related functions (Table S3B).

Switching to the E2F6 context (Table S3C), biclusters involving (i) E2F6 with (USF1, USF2) were enriched for target genes involving hydrogen transport, (ii) E2F6 with (GATA1, GATA2, TAL1) were enriched for regulation of myeloid differentiation, (iii) E2F6 with (SP1, SP2, FOS, IRF1) was involved in DNA damage response, and (iv) E2F6 with (HMGN3, CCNT2) was involved in Golgi vesicle transport.

In the MAX context (Table S3D), biclusters involving (i) MAX with (GATA1, GATA2, TAL1) was involved in erythrocyte and myeloid differentiation, and (ii) MAX with (CTCF, SMC3, and CTCFL) was involved in apoptotic nuclear change.

Thus, we find strong evidence that the identified bicluster structure is likely functional, and that a TF can co-associate with distinct sets of partner-factors to potentially regulate different functional classes of target genes.

C.3.4 Aggregate analysis of TF co-association over all contexts in multiple ENCODE cell-lines

In this section, we summarize results from the aggregate analysis of TF co-association over all contexts in each of the 5 ENCODE cell-lines, as outlined in SOM/C.2.5.

C.3.4.1 K562

Fig. S2F-1 shows the aggregate factor importance matrix (RIM) (SOM/C.2.5.1) in the K562 cell-line. The RIM is distinctly asymmetric, with some general factors (such as POL2 and MAX) having high RI scores over a large fraction of focus-factor contexts. We found 9 distinct classes of focus-factor contexts (labeled C1 to C9) with distinct distributions of RI scores for partner-factors. Briefly, C1 consists of contexts (STAT1, STAT2, IRF1) showing high RI of JUND and the GATA factors and the STAT factors themselves; C2 consists of the GATA contexts, along with enhancer-related factors P300 (a histone acetylase), BRG1, INI1, and histone deacetylases HDAC2 and SIRT6, once again reflecting the paradoxical and dynamic nature of contextual TF co-association in factors with competing functions. C3 contains contexts FOSL1, JUN, JUND, and JUNB30,31,83, as well as MAFK and NFE284. C1, C2, and C3 consist of focus-factor contexts that are predominantly distributed distal to annotated TSSs. C4 contains contexts that are relatively evenly distributed proximal and distal to TSSs. These include MYC, MAX, MXI, E2F6, YY1, GABP, as well as the elongation forms of POL2 (i.e., POL2-(4H8) and POL2-(B)). C5 contains contexts of the initiation forms of POL2 and other members of the transcriptional machinery (TAF1, TAF7, TBP), along with other predominantly TSS-proximal contexts, such as E2F4, ETS1, NELFE2, SP1, SP2, SIN3A, and CHD2. The columns corresponding to distal TFs, such as GATA and JUN factors, show distinctly lower RI scores in C5 relative to C1-C3. Similarly, columns corresponding to POL2 have significantly higher RI scores in C4 and C5. C6-C8 represent different types of repressive domains that are relatively isolated and show exclusively high RI scores for the TFs that are part of the respective clusters. C6 contains contexts of repressors, such as HDAC8 and ZNF263. C7 contains contexts of CTCF, RAD21, SMC3, and CTCFL, which are commonly associated with insulator elements and chromatin remodeling. C8 contains contexts of ZNF274, SETDB1, and KAP1, which are known to be associated with heterochromatin elements enriched in the repressive histone modification H3k9me3. Finally, C9 contains contexts of factors that are part of the POL3 complex. Thus, we find that clustering the aggregate importance matrix reveals functionally coherent groups of focus-factor contexts. The importance correlation matrix (ICM) (Fig. S2F-2) better displays the broader relationships (distal, mixed, proximal, and repressive) between the focus-factor contexts.

Next, we computed the maximal co-association score matrix (MCS) (SOM/C.2.5.3) and the aggregate primary partner matrix (PPM) (SOM/C.2.5.4) over all focus-factor contexts in K562. The MCS reveals the highest co-association score of each pair of factors over all contexts. The PPM summarizes primary-partners of all focus-factors. We were pleasantly surprised to observe significant sparsity in the MCS, indicating that our method is able to robustly learn the expected high specificity of co-associations between factors across multiple contexts. By construction, the MCS is symmetric, while the PPM is not. However, interestingly, the distribution of scores in the PPM results in a partially symmetric structure with a few exceptions, which indicates a frequent reciprocal relationship between focus-factors and their primary-partner factors. We also observe that both matrices have strong block diagonal structures with clear separation between tight groups of functionally related factors. Many of these were already identified and discussed as groups in the GATA1 and E2F4 contexts in SOM/C.3.1. However, the MCS, which identifies primary-partners and contextually relevant local partners, tends to be denser than the PPM, which only identifies primary-partners. 

The global co-association matrix computed using independent pairwise overlap analysis of binarized genome-wide binding profiles20 more closely resembles the importance correlation matrix. Our analysis framework can substantially refine these broad correlations to distinguish primary-partners from contextually local partners (MCS and PPM).

Some of the novel primary-partner relationships identified in the K562 cell-line include (HMGN3, CCNT2), (ZNF274, ETS1), (USF2, ATF3), (NFE2, FOS) and (FOS, CHD2). In one case (CEBPB with TAL1 in K562), the novel association was confirmed using co-immunoprecipitation and mass spectrometry (Table S3A).

Fig. S2F-5 shows the discriminative performance (area under ROC) of models trained on each focus-factor context. Most of the models have high discriminative power (> 0.9), indicating significantly enriched dependence structure of TF binding profiles in the true co-binding maps, relative to randomized control maps. The few focus-factor contexts with lower auROC either have few (< 500) focus-factor binding sites, resulting in insufficient training data, or have highly isolated binding profiles, resulting in a genuine lack of non-random dependence structure. However, even for these contexts, many of the learned co-associations (e.g. KAP1 with SETDB1) have bonafide functional relationships.

C.3.4.2 GM12878

Fig. S2G-1 to Fig. S2G-5 show analogous results from aggregate analysis of all 55 focus-factor contexts in GM12878. Once again, the RIM has an asymmetric structure (Fig. S2G-1). Also, the ICM highlights 4 broad groups of compositionally similar focus-factor contexts (Fig. S2G-2)

(i) predominantly TSS-proximal contexts, such as TAF1, MYC, SIN3A, GABP, SIX5, ETS1, POL2, and TBP

(ii) MAX, USF1, and USF2

(iii) insulator/repressive contexts CTCF, RAD21, SMC3, ZNF143, and YY1

(iv) predominantly TSS-distal contexts, such as JUND, BATF, IRF4, BCL11A, TCF12, PAX5, MEF2A, and MEF2C. 

The MCS and PPM reveal several novel co-associations, such as BRCA1 with (CHD2, ZBTB33, ETS1); ZNF143 with (CTCF, RAD21, SMC3); (USF1, USF2) with (ATF3, NFE2); and JUND with IRF4 (Fig. S2G-3, S2G-4).

C.3.4.3 HeLa-S3

Fig. S2H-1 to Fig. S2H-5 show analogous results from aggregate analysis of all 46 focus-factor contexts in HeLa-S3. The RIM and ICM show 5 broad classes of compositionally similar focus-factor contexts (Fig. S2H-1, S2H-2).

(i) POL3 related contexts, including RPC155, TFIIIC110, BDP1, BRF1, and BRF2

(ii) predominantly TSS-proximal contexts, including POL2, TAF1, ELK4, NRF1, E2F1, and E2F4

(iii) predominantly TSS-distal enhancer related contexts, including BAF170, BAF155, BRG1, P300, STAT3, JUN, JUND, PRDM1, and CEBPB

(iv) a mixed set of proximal and distal contexts, such MYC, MAX, MXI, BRCA1, TBP, AP2ALPHA and AP2GAMMA

(v) insulator contexts, including CTCF, RAD21, and SMC3

The PPM showed subtle differences in primary-partner co-associations of different members of the E2F family, namely E2F1, E2F4, and E2F6. MAX was found to be a significantly stronger partner-factor of E2F6 than was E2F4. However, MAX did not score highly as a primary-partner of E2F4. E2F4 scored as a significant primary-partner of E2F1, but the reciprocal relationship was weaker where E2F6 was the strongest primary-partner of E2F4.

Some of the novel co-associations discovered in HeLa-S3 include P300 with (BRCA1, JUN, JUND), USF2 with MAX, JUND with (BAF155, STAT3), and FOS with IRF-3.

C.3.4.4 HepG2

Fig. S2I-1 to Fig. S2I-5 show analogous results from the aggregate analysis of all 49 focus-factor contexts in HepG2. The RIM and ICM show 5 broad classes of compositionally similar focus-factor contexts (Fig. S2I-1, S2I-2).

(i) the isolated MAFK and MAFF contexts

(ii) insulator contexts involving focus-factors CTCF and RAD21

(ii) predominantly TSS-proximal contexts, such as POL2, TAF1, TBP, TR4, SIN3A, GABP, SRF, and ELF1

(iv) USF1, USF2, and ATF3

(v) a large cluster of predominantly distal enhancer contexts, including P300, FOXA1, FOXA2, TCF7L2, HNF4A, HNF4G, PGC1A, as well as JUND, JUN, FOSL2, and CEBPB.

The MCS shows that the large cluster of enhancer-related TFs assayed in HepG2 have mutually high maximal co-association scores across all contexts (Fig. S2I-3). However, the PPM indicates that these TFs do not form a fully connected clique of mutual primary-partners  (i.e., there is significant context-specificity of co-association of the different enhancer TFs). 

Some of the high-scoring novel HepG2 primary-partner co-associations include PGC1A with HSF1 and TCF7L2 with FOXA1, P300, and FOXA2.

C.3.4.5 H1-hESC 

Fig. S2J-1 to Fig. S2J-5 show analogous results from the aggregate analysis of all 33 focus-factor contexts in H1-hESC. The RIM and ICM show 5 broad classes of compositionally similar focus-factor contexts (Fig. S2J-1, S2J-2).

(i) The insulator contexts involving CTCF and RAD21

(ii) A cluster involving focus-factor contexts MAX, USF1, USF2, and ATF3, which was also seen in HepG2 and GM12878.

(iii) predominantly TSS proximal contexts, including POL2, TAF1, TAF2, NRF1, SRF, SIN3A, EGR1, YY1, and GABP.

(iv) predominantly TSS distal contexts, including P300, SP1, JUND, JUN, TCF12, NANOG, and RXRA

(v) POU5F1 and BCL11A contexts

The MCS matrix reveals that SUZ12 and CTBP2 have high maximal co-association scores with each other over all contexts (Fig. S2J-3). SUZ12 is part of the Polycomb repressive complex (PRC2), and it is found at silenced chromatin domains enriched in the H3k27me3 histone modification85,86. CTBP2 is a known co-repressor, which supports the observed co-association with SUZ1287. However, interestingly, the SUZ12 and CTBP2 focus-factor contexts have a significantly different overall distribution of RI scores of partner-factors, as seen in the RIM (Fig. S2J-1). The PPM reveals interesting differences in primary-partner preferences of SUZ12 and CTBP2. SUZ12’s primary-partners include CTBP2, as well as CTCF and RAD21, which are also typically linked with insulation and repression. However, CTBP2’s strongest primary-partners include a different pair of repressive factors; namely YY1, SIN3A, and SUZ12 have weaker co-association scores with CTBP2.

C.3.5 Common and cell-type specific associations in GM12878 and K562 

Of the 119 TFs assayed over all the ENCODE cell-lines, 31 antibodies were common to both GM12878 and K562. We compared the aggregate primary partner matrices (PPMs) (SOM/C.2.5.4) in the two cell-lines restricted to these TFs, in order to understand the similarities and differences of co-association relationships between the same set of factors in the two cell-lines. (Fig. S2K). We reordered the rows and columns of the GM12878 PPM to match the order obtained by clustering the K562 PPM, and found that the overall block diagonal structure of significant co-association scores was largely maintained across the two cell-types. We further computed the log-ratios of raw co-association scores of each (focus-factor, partner-factor) pair from the PPM matrices in the two cell-lines to obtain a convenient visual representation of the differential primary-partner co-associations in K562 relative to GM12878 (Fig. S2K-(3)). We found that over 80% of the (focus-factor, partner-factor) pairs showed no significant change in co-association scores, indicating overall concordance of co-association relationships between TFs (at least across these two cell-lines). There were also fewer differential associations enriched in K562 relative to those enriched in GM12878.

C.3.5.1 Cell-type specific co-association of FOS and JUND

One interesting example of a cell-type specific co-association is the distinct lack of a primary-partner co-association between JUND and FOS in the GM12878 cell-line that is present in the K562 cell-line. To investigate this further, we generated variability-maps (SOM/C.2.5.5) for FOS and JUND co-associations in the GM12878, K562, and HeLa-S3 cell-lines (Fig. S2L-1, S2L-2, S2L-3).

In GM12878, the key partners of FOS were (SP1, CHD2, IRF3, PBX3, RFX5), as well as (ATF3, USF1, USF2, NFE2, and MAX) over different sets of focus-factor contexts (Fig. S2L-1). JUND had no significant co-association score (CS) with FOS in any focus-factor context. The variability-map for JUND revealed BATF, IRF4, and BCL11A as the key partners of JUND over several focus-factor contexts in GM12878. Once again, FOS did not have a significant CS with JUND in any focus-factor context.

In K562, the key partners of FOS were (SP1, CHD2, SP2, IRF1) over one set of focus-factor contexts. SP1 and CHD2 were also found as primary-partners of FOS in GM12878 (Fig. S2L-2). In a different set of contexts, (USF1, USF2, NFE2 and ATF3) had strong CS with FOS. These were also found in GM12878. Over a third set of contexts, FOS had high CS with JUND, JUN, JUNB, FOSL1, and FOS-(eGFP). Thus, JUND was found to co-associate with FOS in K562 in a highly context-specific manner. Switching to the JUND variability-map, we found that JUN, JUNB, FOSL1, FOS, and FOS-(eGFP) had high CS scores with JUND in most focus-factor contexts.

In HeLa-S3, the key partners of FOS were found to be IRF3, JUN, JUND, P300, STAT3, CEBPBP and BAF155 (Fig. S2L-3). The variability-map for JUND also showed that JUN, CEPBP, P300, STAT3, FOS, and BAF155 had high CS with JUND. These analyses exemplify the power of our approach to reveal cell-type specific co-associations of factors.

C.3.6 Context-specific co-associations within a cell-type

C.3.6.1 Context-specific partners of FOS in K562

In the previous section (SOM/3.5.1), we noted the complex structure of the variability-map (SOM/C.2.5.5) for FOS in K562 - the focus-factor contexts (rows) formed three well-separated groups highlighting three mutually exclusive sets of context-specific partners (columns) of FOS (Fig. S2L-2). We also noticed that one group involving the co-association of FOS with (SP1, SP2, CHD2 and IRF1) was mainly enriched in focus-factor contexts of TFs with predominantly TSS-proximal peaks (e.g., POL2, TAF1, E2F4, and ELF1). The other group involved the co-association of FOS with (JUND, JUN, JUNB, and FOSL1), and this group was enriched in focus-factor contexts of predominantly distal binding TFs, such as GATA1, STAT1, and JUND itself. The co-binding map (SOM/C.2.2) of the FOS focus-factor context also clearly showed the separation of FOS peaks into two large groups with the above-mentioned sets of co-binding partners (Fig. S2M-1). We computed the differential importance (SOM/C.2.4.3) of each partner-factor in the FOS context to reveal partners with biases towards proximal and distal FOS peaks. As expected, we found that (SP1, SP2, CHD2, and IRF1), along with POL2, E2F6, and MAX had significant proximal bias, whereas (JUND, JUN, and JUNB),along with GATA1, GATA2, and TAL1, had a distinct distal bias. Thus, we show that our framework is armed with multiple analysis methods that can reveal context-specific co-associations of a factor, even within a single cell-type.

C.3.6.2 Novel co-association of ZNF143 with CTCF and SIX5

CTCF is an enigmatic, multi-functional factor. It has been heavily studied for its role as an insulator, but recent evidence has suggested that it may play a diverse set of roles, possibly depending on its associations with other TFs 88,89. In all the ENCODE cell-types, we found extremely strong co-association of CTCF with its well-known partners RAD21 and SMC3 (both of which are members of the cohesin complex)90. However, in the GM12878 cell-line, we found a very strong novel mutual co-association between CTCF and a zinc finger protein, ZNF143, which has been characterized as a regulator of several small RNAs and gene promoters91,92 (Fig. S2G-4). An indirect relation that can be derived is through the common interaction partner CHD8 that is known to form heterodimers with both ZNF14393 and CTCF94. 

The variability-map (SOM/C.2.5.5) for ZNF143 in GM12878 showed that, indeed, CTCF, as well as RAD21 and SMC3, were identified as high-scoring partners of ZNF143 over a large number of focus-factor contexts (Fig. S2M-3). However, SIX5, an important regulator involved in organogenesis, was found to have an even stronger and ubiquitous co-association with ZNF143. We wanted to analyze the three-way co-association relationships between the three factors. So we investigated the variability-maps for CTCF and SIX5 in K562 (Fig. S2M-4 and S2M-5). As expected, the CTCF variability-map showed strong co-association of RAD21, SMC3, and ZNF143 with CTCF across most focus-factor contexts. However, the co-association between CTCF and SIX5 was significant only in the ZNF143 context, indicating a conditional relationship between CTCF and SIX5 mediated in some way by ZNF143. This hypothesis was further supported by the variability-map of SIX5 (Fig. S2M-5), in which ZNF143, GABP, and YY1 were found to be ubiquitous partners of SIX5 over multiple focus-factor contexts. However, the co-association of SIX5 with CTCF (as well as RAD21 and SMC3) was significant mainly in the ZNF143 context. This case study once again highlights the power of our analysis framework in uncovering subtle conditional dependencies between higher-order groups of factors. A simple three-way peak overlap analysis also supported the hypothesized relationship between ZNF143, CTCF, and SIX5, without revealing all the additional information about co-associations of these factors with other TFs.

C.3.6.3 Summary of overall variability of all pairwise co-associations in K562

In order to quantify and visualize a convenient summary of the overall ubiquity of all co-associations in the K562 cell-line, we first binarized each context-specific co-association matrix (SOM/C.2.4.8). Each pairwise co-association was counted as active (1) if the CS was >= 5 (See calibration of scores in SOM/C.2.4.7) and as inactive (0) otherwise. For each pair of factors, we then computed the fraction of focus-factor contexts in which the pair was found to be active. Fig. S2M-7 summarizes these results across all pairs of factors, and allows us to identify globally consistent co-association - i.e., those that are active across most focus-factor contexts (shown in dark red), context-specific co-associations that are active in a subset of focus-factor contexts (shown in orange), and mutually-exclusive pairs of factors that do not co-associate in any focus-factor context.

We also wanted to understand the variation of the real-valued co-association scores of pairs of factors over contexts in which the co-association was active, so we computed the median absolute deviation (MAD) of CS scores for all pairs of factors over all contexts in which the association was deemed ‘active’ (Fig. S2M-8-(1)). We found that the resulting matrix had a sparse structure, with only a few pairs of factors having significant variance of CS over active contexts. We wanted to see how the distribution of MAD scores over all pairs of factors compared to a reference distribution, assuming that co-association scores were distributed randomly across all focus-factor contexts. We generated this reference distribution by shuffling the values in each context-specific co-association matrix, and recomputed the MAD of CS scores for all pairs of factors. Fig. S2M-8-(2) compares the two distributions of MAD values and shows that variance of ‘active’ co-association scores over all focus-factor contexts is significantly smaller than expected from a random distribution of scores.

Hence, from figures S2M-7 and S2M-8, we can conclude that in the K562 cell-line,

(i) The number of statistically significant pairs of interacting factors is sparse (i.e., it is small in comparison to all the possible pairwise co-associations).

(ii) Some co-associations are globally consistent and active across most focus-factor contexts, whereas others are context-specific.

(iii) If a co-association is found to be active in some context, then, on average, there is a high likelihood of observing that co-association in multiple contexts.

(iv) If a co-association is active in multiple contexts, then, on average, there is a high likelihood that the co-associations will have similar scores.

In Fig. S2N, we visually compare the local co-association matrices of the ZNF274 context and E2F4 context with the maximal co-associations score matrix (MCS) over all contexts in K562. The MCS summarizes cliques of co-associated TFs over all contexts. We wanted to highlight the fact that local context-specific co-association matrices essentially capture subsets of these groups of TFs that are specific to local contexts, and that some contexts (such as that of ZNF274) can be highly isolated, while other contexts (such as that of E2F4) show substantially more co-association cliques which are also found in other contexts.

C.4 Robustness of results to relaxing peak-overlap and peak calling thresholds

In all the above analyses, a pair of ChIP-seq peaks of two TFs were considered to overlap if the genomic intervals specified by their respective peak widths intersected by at least 1 bp. Most peak widths were in the range of 200-400 bp. Hence, this definition of peak overlap (which we call direct overlap) essentially captures co-binding of TFs in immediate proximity of each other on the linear genomic scale. However, it is well-known that TFs can bind sites separated by 1000s of base pairs in functionally coherent regulatory domains (such as cis-regulatory modules and extended promoters) to jointly regulate genes. We refer to this type of medium-range relationship between peaks as indirect overlap. We wanted to understand the robustness of the TF co-association results to changes in the definition of peak overlap. Hence, we recomputed co-binding maps for each focus-factor by relaxing the definition of peak overlap. Specifically, we considered a partner-factor to co-bind at a focus-factor peak location if at least one peak of the partner-factor was within +/- 5Kb from the focus-factor peak. If multiple partner-factor peaks were found to satisfy this criterion, the normalized binding intensity of the strongest partner-factor peak was used. We then trained our machine-learning models to extract context-specific co-association statistics. Fig. S2O compares the co-association matrices in the GATA1 context obtained from co-binding maps based on direct (CS1) and indirect overlap (CS2). Interestingly, the two matrices are nearly identical in terms of overall structure, with a few subtle differences. For example, the CS2 matrix tends to have stronger co-association scores for pairs of TFs that were already high-scoring in CS1 (e.g., CTCF, RAD21, and SMC3). One might expect a greater number of apparent co-associations between pairs of factors due to the relaxed definition of overlap. However, this does not seem to be the case. Apparently, allowing indirect medium-range peak overlaps does not seem to change the overall quantitative dependence structure in the co-binding map, even though it does change the overall density of the co-binding map. 

We also wanted to understand the effect of changing peak calling thresholds on the co-association results. In all the analyses presented above, we created co-binding maps using the normalized binding intensities of high-confidence reproducible peaks of partner-factors that overlapped focus-factor peak locations. We relaxed the peak calling thresholds and randomly extended partner-factor peak lists to twice their original size (allowing a minimum of 5K peaks and a maximum of 100K relaxed peaks for each TF). We reconstructed the quantitative co-binding maps using these relaxed peaks sets and learned models to extract co-association statistics. In general, we found the new co-binding maps to be substantially denser due to the relaxed thresholds and more peak overlaps. However, once again, we found that the context-specific co-association matrices were extremely similar to those obtained from the co-binding maps with stringent peak calling thresholds (Fig. S2P). Some of the weaker co-association relationships involving lower quality ChIP-seq datasets (e.g. BRG1 and INI, which are known to co-associate) were strengthened in the relaxed analysis.

Traditional global co-association statistics based on genome-wide, binary peak-overlap analyses would be heavily affected by changing peak calling thresholds and overlap definitions. The results presented above highlight the significance of using quantitative binding profiles and the robustness of our analysis pipeline to changing peak overlap thresholds or peak calling thresholds.

C.5 Caveats and future improvements

We have shown the power of our novel analysis framework in uncovering a multi-resolution view of context-specific TF co-association. However, we note that the results should be interpreted with the following caveats.

· All of the above co-association analyses use binding profiles of TFs based on ChIP-seq experiments. Peaks identified in ChIP-seq datasets can often reflect indirect and even non-functional binding. Hence, the co-association statistics derived from these experimental assays must be interpreted appropriately.

· It is important to consider the discriminative performance of the models learned on a co-binding map before interpreting the co-association statistics. Contexts with auROC values < 0.9 should be analyzed carefully. The low discriminative power of the model indicates that the dependence structure in the co-binding map is not significantly different from that in the randomized control maps. Isolated focus-factor contexts in cell-lines with little binding data (e.g., CTCF in H1-hESC) and focus-factors with very few binding peaks (< 500) typically show poor performance.

· Our context-specific analysis framework attempts to identify conditional dependency relationships between factors. Having defined a genomic context of interest, the framework performs a multivariate analysis of dependency relationships between factors. So adding or removing datasets with strong dependency relationships with a large number of TFs can at least partially affect the overall statistics extracted from the model. The models need to be retrained every time a new TF dataset is added. However, this is true for any multivariate analysis framework. Traditional co-association statistics independently computed on pairs of TFs are not affected by the addition or removal of TF datasets, but are unable to dissect conditional dependencies between multiple factors. We believe that the significant context-specific insights that we have demonstrated warrant the use of our multivariate analysis framework. The ENCODE consortium, as well as other research initiatives, continue to generate ChIP-seq datasets to profile additional factors. We expect our co-association statistics to stabilize as the ChIP-seq data compendia become more complete.

· In our current framework, we present co-association statistics as relative importance scores and co-association scores, and we mainly use these scores to rank co-association hypotheses. We plan to improve the calibration of scores and provide more rigorous statistics (p-values) in the future.

· In this paper, we mainly present a TF-centric analysis. We have also analyzed other types of genomic contexts, such as gene-centric contexts, to reveal the effect of context-specific TF co-associations to gene expression, as well as chromatin state contexts to reveal relationships of TF co-associations to various enrichments of chromatin marks. We plan to present these results in a future publication.

D. Assembling pairwise interactions into hierarchies

D.1 TF target identification

After scoring, we endeavored to identify the targets of each TF. For this, we used a probabilistic model called TIP, which quantitatively measures the regulatory relationships between TFs and genes34. For each TF, the model builds a characteristic profile of binding surrounding the TSS, and then uses this to weigh the binding regions associated with a given gene, providing a continuous-valued "regulatory" score relating each TF and potential target. The significance values of genes are calculated based on their “regulatory” scores by assuming a normal distribution. To identify the most confident targets of a TF, we employed a stringent threshold with a false discovery rate of 1% (FDR=0.01). Fig. S1C-E show that targets of a TF filtered by the probabilistic model are more differentially expressed than unfiltered raw targets when the TF is knocked down by siRNA interference experiments.

D.2 Construction of network hierarchy

As described in the main text, we introduced a metric 
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termed hierarchy height (h), with a distribution that probes the directionality of information flow. The distribution of h (Fig. S3C) suggests that TFs can be classified into three levels: “top-level executives” which regulate many TFs (h ~ 1), “bottom-level managers” which are more regulated than regulating (h ~ -1), and “middle-level managers” (h ~ 0) which are both regulated and regulating. Note that all of these “manager” TFs regulate non-TF target genes. 

We employed a simple simulated annealing procedure to arrange the TFs into three levels, such that the number of edges extending from upper to lower levels is maximized. This procedure is similar to that in ref 95. For general reference, the MATLAB code for the simulated annealing algorithm is provided on the project website (SOM/N).

The resultant regulatory hierarchy has ~80% of its edges directed downward. Since feedback edges have biological significance, we do not remove any of them from the network. The hierarchical network offers a more intuitive picture than does the conventional “hairball” representation. We found that the level assignment of TFs correlates strongly with h (SCC=0.81, P=1e-25; Fig. S3A-2). Though simulated annealing is a probabilistic algorithm, we found that the output construction is very stable (Fig. S3K). 

Finally, we carry out a number of "robustness" calculations on our hierarchy.

(1) We show that the distribution of h statistics describing the hierarchy is not merely a reflection of the low in-degree or out-degree nodes, and the distribution is robust to the overall number of nodes (SOM/D.3).

(2) We demonstrate that the derived regulatory hierarchy is substantially different from what one would get from applying the annealing algorithm to random networks (SOM/D.4); therefore, the hierarchical organization is an intrinsic property of the transcriptional regulatory network.

(3) We show that the reported differences in various genomic properties (e.g. gene expression level) between hierarchy levels remain statistically significant even as the number of TFs in the network decreases. (SOM/F.2).

D.3. Robustness of the hierarchy height statistic

The hierarchical structure of a network is very much related to the in- and out-degree statistics (I and O). Fig. S3G shows the degree distribution of I and O in both the TF-TF network and the TF-target network. 

Figure S3C shows that there is a trimodal distribution of the hierarchy height statistic; that is, there are peaks at h=1, 0, and -1, which form the core of the top, middle, and bottom levels of the TF hierarchy, respectively. To evaluate the robustness of the hierarchy height statistic, it is important to examine whether these peaks are dominated by factors with low in-degree (I) or out-degree (O) values. Slight changes in I or O for such factors (as more data become available) could have a strong influence on h values and levels in the TF hierarchy. 

We therefore plotted I against O for each factor in the TF-TF network (Fig. S3B). We also re-calculated h with an increasing number of low-degree TFs removed (Fig S3D-1). As more low-degree TFs are removed, the number of TFs with an h of -1 or 1 decreases, but the trimodal character of the distribution remains. Even after removing half the factors in the TF-TF network (O+I <= 5), Figure S3D-2 shows a trimodel h distribution, and the number of TFs in each third of the h range is balanced. In addition, the Spearman correlation between the original and the sub-sampled hierarchy height remains high and statistically significant (r = 0.95, p = 9e-29 via t-test) (Fig. S3E).

We further examined the robustness of the h statistic with respect to random down-sampling of nodes (Fig. S3N). Down-sampling in increments of 5% of the nodes, we calculated a new set of h statistics based on the new in- and out-degrees, and correlated the new h values with the original h. Figure S3N shows the fraction of 100 trials for which the two sets of h are significantly correlated (P<0.05). For instance, if 50% of nodes are sampled in 100 trials to form an ensemble of subnetworks, nodes in all 100 subnetworks have h values significantly correlated with the original network, suggesting that the regulatory hierarchy is preserved.

D.4. Quantifying the degree of hierarchy for a network

As described in the main text, the distribution of h probes the directionality, and thus the intrinsic hierarchical structure of a network. To quantify this “degree of hierarchy” for our TF-TF network, we compared the distribution of h with an ensemble of 1000 random networks. The random networks were generated by preserving the density of edges in the TF-TF network. Out of the 1000 random networks, 984 of them have an h distribution significantly different from the original tri-modal distribution (P<0.05), meaning that the TF-TF regulatory network is far from random. To increase statistical power, we combined all the 1000 random networks together and studied the distribution of h. We found that the distribution is a Gaussian with a mean close to zero, suggesting that the average in- and out- degrees are similar in random networks, in contrast to the TF-TF regulatory network (Fig. S3H). 

Motivated by the distribution of h, we used an annealing algorithm to look for the hidden top-down directionality in the regulatory network by minimizing the number of feedback edges (i.e., edges directed upward in the hierarchy). A random network has no preference in direction, and the number of feedback edges is roughly the same as the number of forward edges. Fig. S3I shows the distribution of the fraction of feedback edges in the random ensemble. The TF-TF network has a much lower fraction of feedback edges, and thus significantly differs from the ensemble (z = -10.69).

To quantify the directionality of the regulatory network, we introduced a directionality score (D score), defined as
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A large value of D means a strong preference of downward direction. As shown in Fig S3J, the value of D in the TF-TF regulatory network is significantly larger than in the random ensembles (z = 13.3).

E. Connecting the promoter-regulation hierarchy to distal, ncRNA, and protein interactions

E.1 Distal edges

A detailed description of the algorithm used for identifying gene-distal regulatory modules (DRMs) is given in Yip et al35. Briefly, five ENCODE cell lines (GM12878, H1-hESC, HeLa-S3, Hep-G2, and K562), which have the largest numbers of transcription-related factors (TRFs) with their binding sites assayed by ChIP-seq, were used to identify DRMs. For each of the five cell lines, we used TRF binding data as positive examples and a random sample of other regions as negative examples to learn patterns in chromatin features that appear at general binding active regions (BARs). We then used a similar procedure to learn chromatin features at promoter-proximal regulatory modules (PRMs) using TRF binding sites close to the transcription start sites of expressed genes as positive examples. The DRMs were subsequently defined as non-PRM BAR regions that are at least 10 Kbp away from any level 1 or level 2 annotated gene in Gencode version7. We took the union of the DRMs identified from the five cell lines to form a comprehensive set of non-cell-specific potential DRMs, resulting in a total of 129,326 modules.

To associate DRMs with potential target transcripts, we first took all Gencode version7 level 1 and level 2 transcripts, and filtered out those with less than 2 RPKM (reads per kilo-base per million reads) in all cell lines with expression data of the transcript, or less than a 2-fold expression level difference among all these cell lines. The resulting set contains 64,075 transcripts. For each pair of DRM and transcript within 1Mb apart on the same chromosome, we computed the Pearson Correlation Coefficient (PCC) between the signal intensity of a histone modification at the DRM and the expression level (RPKM) of the transcript across cell lines. To detect potentially unknown roles of histone modifications at DRMs, we considered a large set of histone modifications, including H3k4me1, H3k4me2, H3k4me3, H3k9ac, H3k27ac, H3k27me3, H3k36me3, H3k79me2, and H4k20me1. We also used two different sets of expression data, namely, whole-cell polyA+ RNA-seq and whole-cell polyA+ CAGE. In order to calculate statistical significance, we required that, for each combination of histone modification and expression measurement to be considered, there had to be at least 7 cell lines with both types of data. We further filtered out low histone modification signals (which are sensitive to noise) and DRMs with invariant histone modification signals across different cell lines, and considered only DRMs at which the specific histone modification shows at least a signal value of 2 in one or more cell lines, and at least a 2-fold signal difference among the cell lines. Finally, Fisher’s transformation of the PCC values was used to determine the corresponding p-values. Significant pairs were selected using a cutoff of 0.01 for the Bonferroni-corrected p-values. The pairs were further filtered by requiring that active histone marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, and H3K9ac) display only positive correlations with gene expression, and a repressive mark (H3k27me3) displays only negative correlations. Merging significant pairs for all combinations, and this yields a total of 8,411 DRM-transcript pairs.

These pairs were used to construct the distal TF network. Specifically, an edge between a TF and a potential target gene was drawn if, in a particular cell-line, (i) the TF binds to a DRM that is associated with a transcript of the gene; and (ii) in the same cell line, there is a strong histone mark (a signal value of 2 or more) at the DRM. Supplementary file “enets3.Distal.txt” contains the resulting list of distal TF-gene pairs.

Since we had no direct experimental evidence to verify the predicted regulatory relationships between our identified distal regulatory elements and their potential target genes, our procedure used very stringent thresholds to minimize false positives. Nonetheless, we did observe some interesting patterns that would likely remain true within a larger distal-regulatory network. One observation was that, although the out-degree in the promoter and distal regulatory networks for TFs are correlated overall, we found many TFs with low in-degree in the proximal network, but a high in-degree for distal regulation (Fig. S5A) (e.g., BATF, BCLAF1, BRCA1, SPI1 (PU.1), IRF4, and GATA1), suggesting that they are heavily regulated through enhancers.

E.2 ncRNA (miRNA) edges

In this section, we analyze the relationship between ncRNAs and the regulatory heirarchy. We correlate TF connectivity with the degree of ncRNA regulation. Specifically, based on genome annotations from GENCODE (v7), we use several sub-classes of ncRNAs, including microRNA, miscRNA, snRNA (excluding snoRNA), snoRNA, lincRNA, and processed transcripts for constructing a TF-ncRNA regulatory interaction network from ENCODE ChIP-seq data20,96. We first classify these ncRNAs as host gene-associated or non host gene-associated according to whether the ncRNAs lie in the regions of coding genes. Based on the cumulative distributions of TF out-degrees on different ncRNA sub-classes, we find that the difference between host gene-associated ncRNAs and non host-gene associated ncRNAs is small, which suggests that the identified interactions between TFs and ncRNAs do not result from TF binding to coding genes. We find that the out-degrees of TFs in TF-ncRNA network are correlated with those in the TF-coding gene network (r = 0.85, P = 9e-34; Fig. S6A). We also find that only 5 out of 118 TFs (BDP1, BRF1, BRF2, POU5F1, and ZNF274) tend to be significantly enriched for regulating the various sub-classes of ncRNAs (based on hyper-geometric tests, P < 0.067). Of these, BDP1, BRF1, and BRF2 are known to play important roles in regulating ncRNAs 67-69, and POU5F1 and ZNF274 are identified here for the first time as focusing on regulating ncRNAs.

Mapping these TF-ncRNA interactions to the TF hierarchy, we find that the top/middle-level TFs tend to regulate many more ncRNAs than do the bottom-level TFs, as is discussed in the main text. If we consider each ncRNA sub-class separately, we also observe the same statistically significant trend. For each TF, we also quantified its tendency score to regulate each sub-class of ncRNAs. The tendency scores are calculated as follows: for each TF T, we divide the number of coding genes that it regulates by the number of coding genes in total (denoting this fraction by a). We then divide the number of a sub-class of ncRNAs (such as miRNAs) that T regulates by the total number of miRNAs (denoting this fraction by b). Finally, we use the ratio of b to a (b/a) as the tendency score of T regulating miRNAs. Figs. S6B-C show the calculated tendency scores of all the TFs in different levels. Overall, we find that the combined tendency scores of all TFs for regulating short ncRNAs (miRNAs, miscRNAs, snRNAs, and snoRNAs) are significantly lower than those for regulating longer ncRNAs (lincRNAs and processed transcripts) (based on a total of 8 pairwise comparisons of tendency scores between classes of long ncRNAs and short ncRNAs using the Wilcoxon rank-sum test, all P values < 0.001). We also find that different sub-classes of ncRNAs have different TFs (with the tendency scores greater than 1) that are devoted to their regulation. Moreover, we find that the TFs focusing on regulating short ncRNAs are all from the bottom level, while the TFs focusing on regulating longer ncRNAs are all from either the middle level or the top level. For instance, a bottom-level TF (BRF2), encoding one of the multiple subunits of the RNA polymerase III transcription factor complex, was found to significantly regulate snRNAs (P < 2e-6, using a hyper-geometric test), which is supported by previous studies97,98. This difference is reasonable because longer ncRNAs share more similar properties with protein-coding genes than do short ncRNAs.

miRNA-gene regulatory relationships are predicted by TargetScan 36, which takes into account the conservation of miRNA binding sites across multiple species to reduce false positive rates. It has previously been shown to be the most accurate method for miRNA targtet prediction99. 

F. Relating network connectivity to genomic properties

F.1 Correlation with families and functional categories

We examined the distribution of TF classes in the regulatory hierarchy. In figure S8B, a stacked bar plot shows how general, chromatin-related, and sequence-specific (TFSS) regulatory factors are distributed across the three layers of the TF hierarchy. The plot shows that chromatin factors are enriched in the top layer (see Table S5A). General factors are found at both top and bottom, but several of the bottom-layer general TFs are related to transcription by Pol-III, which is expected to have little impact on transcription by Pol-II. Thus, the top layer of the hierarchy is enriched with general and chromatin factors relative to the other two layers. 

We also examined whether major factor classes and TFSS families are differentially enriched for different topological features of the regulatory hierarchy, namely degree centrality (O), hierarchy height, normalized hierarchy height, and betweenness, both in the TF-target network and in the TF-only network. There are several significant findings (Table S5B). First, using a Wilcoxon rank-sum test, the STAT family has higher betweenness than other families, in both the TF-only and all-target networks. In other words, STAT family members are on the shortest path between many factors and target genes in the network, making them central players in the network.

According to a t-test, in both TF-target and TF-only networks, chromatin factors are significantly lower in betweenness than are TFSSs and general TFs. Also via t-test, TFs in the homeodomain family exhibit significantly lower betweenness (in both TF-target and TF-only networks) than do other families.

According to both t- and Wilcoxon rank-sum tests, the bZIP family is significantly different in hierarchy height and normalized hierarchy height than are other families. The average value of normalized hierarchy height for the bZIP family is -0.4, meaning that bZIP family members are found mainly in the middle and bottom levels. Since bZIP TFs tend to function as hetero-dimers31,100, it may be that these heterodimers auto-regulate, which would tend to push each factor out of the top level of the hierarchy.

We used the DAVID Gene Ontology (GO) annotation tool101,102 to calculate the functional enrichment of the coding gene targets of TFs in all three levels. The genes regulated only by top-level TFs are significantly enriched in a diverse array of biological processes, including development, transcriptional regulation, cell morphogenesis, and regulation of metabolic processes and development (Table S5C), suggesting that they are more general regulators and control a number of common biological processes. In contrast, the genes regulated only by bottom-level TFs are enriched in a more narrow range of biological processes, such as those related only to membrane functionality (Table S5C). The functional enrichment of targets common to different levels of the TF hierarchy illustrates cross-talk between different levels (Table S5C). For example, the common targets of TFs between pairwise levels are significantly enriched for nucleosome organization and chromatin assembly or disassembly. In particular, we find that target genes shared by all three levels of the TF hierarchy are enriched for histone proteins, which tend to be active in all cell types. 

We also used the DAVID annotation tool to map all the 118 TFs (excluding POL2) into functional categories related to gene regulation (Table S5D), and assigned them into three groups: only positive regulators of gene expression (activators), only negative regulators of gene expression (repressors), and both positive and negative regulators of gene expression (both). Using all human genes as background, we find that all three levels in the hierarchy are significantly enriched with annotations for both positive and negative regulation of gene expression. However, using only the 118 TFs in the dataset as background (excluding POL2), we do not observe any enrichment, because activators and repressors are almost uniformly distributed across all three levels. 

F.2 Robustness analysis on the correlation between hierarchical organization and genomic features

In this work, we studied various genomic features with respect to the hierarchical organization of a network of 118 TFs. (Note that the 118 constitute our original set of TFs without POL2; see list in Table S2.) As 118 is a small fraction of ~1400 human transcription factors, it is important to investigate whether our results remain valid as the total number of studied TFs increases. While we do not have data for additional TFs, we studied the robustness of our results against the number of TFs using standard bootstrapping techniques. 

We investigated whether the relationships between h and various genomic features are consistent between the original network and the down-sampled networks. In particular, we focused on the features that were reported to be significant in the main text. Fig S8C-1 shows the effects of down sampling on the correlation between the value of h and the number of miRNA interactions for individual TFs. We did the down sampling analysis for different sampling fractions, ranging from 95% to 20%, and for each sampling fraction, 100 trials were performed. In short, for each trial, new h values were calculated for the sampled nodes, and the values were correlated with the genomic features (the number of miRNA interactions in this case). The 100 trials for a particular sampling fraction therefore arrived at a distribution of Spearman correlation coefficients, represented by a box in Fig. S8C-1. As shown in Fig. S8C-1, for sampling fraction of 80% or above, almost all the trials are significant (the black line P<0.05). When the sampling fraction is down to 50%, a majority of trials (75%) are still significant, providing a way to estimate the statistical power of our analysis. It is important to point out that while further down sampling generates a wider range of correlation coefficients, the average value of correlation coefficients for each sampling fraction stays rather consistent. This suggests that, taking merely network geometry into account, our results are rather consistent even the number of TFs further increases.

We repeated the analysis for features that were reported to be significantly correlated with h, including the SNP densities, correlation between binding and expression, the number of ncRNA targets and the amount of rewiring. For features like the SNP densities and the amount of rewiring, the correlation remains significant even the sampling fraction goes down to 60% (Fig. S8C-2, Fig S8C-3). Nevertheless, there are features that are less robust in terms of sampling. For instance, for the number of ncRNA targets and the correlation between binding and expression, the significance drops when the sampling fraction goes down to 80% (Fig. S8C-4, Fig. S8C-5).

Apart from the issue of scalability, we addressed the sensitivity of our analysis with respect to false positive and false negative edges by randomly adding and removing edges. More specifically, we randomly removed a fraction of edges, and added them back in a random fashion. We then calculated h for the disrupted network and performed the correlation analysis. As shown in Fig S8D-1, Fig. S8D-2, Fig. S8D-3, genomic features including the number of miRNA interactions, SNP densities and the amount of rewiring, are not sensitive to false positives or negatives. Though the disruption frequency goes up to 60% (i.e. 60% of the original edges are replaced), the correlation remains significant (P<0.05). On the other hand, there are features that are more sensitive in terms of false positives or negatives. For the number of ncRNA targets, there is a significant correlation as long as the disruption rate is lower than 30% (Fig. S8D-4), and for feature correlation between binding and expression, the tolerable disruption is only 10% (Fig. S8D-5).

F.3 More details on the genomic properties

F.3.1 Protein-protein interaction data

Protein-protein interactions among TFs were extracted from the BioGRID database25 and a more specific study by Ravasi et al26. The BioGrid data consists of a curated set of physical and genetic interactions from the literature, while data from Ravasi et al. resulted from a systematic screening analysis for protein-protein interactions of human TFs using the M2H system. From this PPI network, we further extracted the sub-network consisting only of TFs.

F.3.2 Proximal and distal targets

We defined proximal targets as those genes with a TSS within 2.5 kb of a binding peak. We then filtered the target gene list to identify the most confident interactions using a probabilistic model called TIP34. See SOM/E.1 for a detailed description of how distal targets are obtained. From these two networks, we also extracted sub-networks with only TFs.

F.3.3 Tissue specificity and expression levels

TF tissue specificity data were obtained from Ravasi et al.26. Here, the expression levels of ~1200 human TFs in 34 different tissues were quantified using qRT-PCR. For each TF, a tissue specificity score (TSPS) was calculated as the relative entropy quantifying the extent to which the observed TF expression pattern departs from the null distribution of uniform expression across all tissues. Higher TSPS of indicates higher tissue specific expression of a TF. We then studied the relationship between the tissue specificity of a TF and its position in the hierarchy. We also examined the expression variation across different tissues for TFs in different levels (Table S8).

F.3.4 Expression-binding correlation

To quantify the correlation between TF binding and gene expression, we calculated a Spearman correlation coefficient between the binding signals of TFs and expression levels of promoters in matched cell lines. Specifically, the ChIP-seq binding signal of a TF within 500bp of each TSS ([-500, 500] bp) was averaged to represent the binding affinity of the TF with the corresponding promoter, and the expression levels of promoters were measured by CAGE experiments (Cap Analysis of Gene expression). For each TF, the correlation values were averaged over multiple cell lines to obtain the final expression-binding correlation. 

Cheng et al. 38 developed a model that integrated the binding-expression relationships of many TFs to get an overall prediction of gene-expression. This model goes beyond the simple Spearman correlation used here and was used in the main ENCODE integrative paper20 to compare the degree to which TFs could be used to predict gene expression to histone modifications. Here we applied the model in a limited way. We divided TFs into two groups using the median amount of TF connectivity as the divider (with more and with less target genes, respectively). We then integrated the binding of each group to statistically predict gene expression levels. The two groups achieved similar predictive accuracies (e.g. the correlation between predicted and measured expression in K562 are 0.81 and 0.80, respectively)38.

F.3.5 Rewiring score

The rewiring score, which quantifies the difference between two sets of binding targets (S1 and S2) of a TF in two cell lines, is defined as 
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A high rewiring score means S1 and S2 exhibit little overlap. As there are not many factors with ChIP-seq results available in multiple cell lines, we focused on the two ENCODE tier 1 lines (Gm12878 and K562). There are 24 common TFs in the filtered networks.

F.3.6 Intransitivity

Note, given the size our data, we can see statistically that mid-level TFs have high betweenness (P < 0.05 between mid-top and between mid-bottom levels, Fig. 2c). Moreover, high betweenness in the proximal regulation is correlated with more distal regulation (P < 0.05 Table 1) . One might think that by transitivity that mid-level TFs have more distal regulation. While this is true, it is not statistically significant given the size of the dataset (P=0.1 and 0.4 respectively between mid-top and between mid-bottom levels, Fig. 2c). This illustrates the well known idea that while transitivity applies to logical statements, it doesn't apply to statistical ones103.

F.4 Correlating families with properties

One can correlate the various subclasses of TFs (e.g. TFSSs, as described in SOM/F.1) with many of the genome properties outlined above. We analyzed many of these correlations. Two notable ones are that TFSSs exhibit a greater degree of tissue-specificity and are more highly regulated by miRNAs than general and chromatin factors (P=1e-7 and P=0.001). These p-values were determined via Wilcoxon test. 

G. Collaboration between hierarchy levels

G.1 TF-TF interaction

To examine whether TFs are more likely to physically interact within the same level or between two levels, we calculated the enrichment of protein-protein interactions in all pairs of levels: TT, MM, BB, TM, TB and MB. For significance estimation, we assume that the interaction between TFs is independent of their levels -- i.e. the interaction is randomly distributed in the hierarchical network. As such, the probability of interaction for any TF-TF pair is calculated as the number of observed interactions divided by the total possible TF-TF pairs. First, we calculated the probability for a pair of randomly selected genes to interact: p=s/[N(N+1)/2], where s is the total number of TF-TF interactions extracted from the PPI dataset25,26, and N is the total number of TFs in the hierarchical network. Second, we assumed that the number i of TF-TF interactions within a level or between two different levels follows a binomial distribution:
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, where b is the number of possible TF-TF interactions. Considering self-interactions, b=m(m+1)/2 for intra-level interactions with m TFs (i.e., TT, MM or BB), and b=m1m2 for interactions between two levels with m1 and m2 TFs, respectively (i.e., TM, TB and MB). Finally, the p-values were calculated as P(x>=i) for enrichment (i.e., the probability of observing an equal or greater number of interactions) and P(x<=i) for depletion (i.e., the probability of observing an equal or smaller number of interactions) of PPI interactions in the TFs.

In relation to Fig. 3, Physical interactions are enriched in TT (P=6e-6) and TM (P=0.01), while depleted in TB (P=0.01), MB (P=0.001) and BB (P=0.004). Co-associated TF-TF pairs are enriched in TT (P=2e-27), TM (P=2e-151), and MM (P=2e-53), while depleted in TB (P=4e-78), MB (P=4e-14) and BB (P=1e-172). 

G.2 TF-TF co-operation 

Two TFs are co-operative if the targets they share are significantly different in expression from the targets that they do not share. Specifically, a TF pair X and Y are defined as cooperative if their common targets exhibit significantly higher or lower expression levels than the targets unique to X or Y (P<0.001). The expression levels of genes (more accurately, promoters) were measured by CAGE. Expression in the matched cell lines is employed for the cooperativity inference.

Cooperative pairs are significantly enriched in TM (P=0.004) and MM (P=0.01), while depleted in TB (P=0.01) and BB (P=1e-8). 

G.3 Identification of proximal and distal co-regulatory pairs

Proximal and distal co-regulatory pairs were identified as follows: based on the TF-target network with both proximal and distal regulatory edges, we further generated an ensemble of 1000 random networks with the same degree distributions. For each pair of TFs, there are three types of co-regulation: proximal-proximal, distal-distal, proximal-distal. For proximal-proximal (distal-distal) co-regulation, we counted the number of common targets which are targeted by one TF via promoter binding (distal binding) and another also by promoter binding (distal binding) in the real network, as well as all random networks in the ensemble. If the TF pair appears to have more common targets in the real network than the mean of the ensemble, it is referred as a co-regulatory pair. Similarly, for proximal-distal, we counted the number of common targets which are targeted by one TF (via promoter binding) and another by distal binding in the real network, as well as all random networks in the ensemble. If the TF pair appears to have more common targets in the real network than the mean of the ensemble, it is referred as a co-regulatory pair. 


H. Enriched network motifs

We systematically examined the enrichment of motifs in the meta-network. We focused on several template patterns, consisting of triads and quartets, which have particular biological meaning. For each template, we instantiated all possible motifs and then determined which of these were significantly over or under represented versus a random control. The control was defined by an ensemble of random networks obtained by rewiring the original network yet preserving in- and out- degree distributions. For general reference, we provide the code for counting various motifs in the Section O. A similar approach was employed in Cheng et al.40.

In parallel with the above method, we also used the FANMOD algorithm104-106 to enumerate all 3-node network motifs in both the TF-only and TF-target networks. To determine significance, FANMOD compares the number of observed motifs with the number found in 1000 randomly shuffled networks. That number of motifs in the set of shuffled networks is normally distributed, and the z-score column shows the distance, in multiples of the standard deviation, of the real network from the center of that distribution. The FANMOD analysis showed that the single input motif (SIM) is enriched in the TF-target network but depleted in the TF-TF network (Fig. S9B), while the feed forward loop (FFL) is enriched in both networks (Fig S9.C,D). These results are partly consistent with previous work in yeast which characterized two types of environmental conditions, one in which FFLs are enriched and SIMs depleted (endogenous), and another in which SIMs are enriched and FFLs depleted (exogenous)107. In endogenous conditions, TF networks are characterized by a high degree of TF-TF interactions. In exogenous conditions, on the other hand, TF networks are more linear and irreversible; they implement decisions made at the endogenous level. In multi-cellular organisms, SIMs are characteristic of terminal differentiation cascades.

H.1 Correlating expression levels in network motifs

We studied various types of motifs in the integrated TF-miRNA-target network, including a miRNA-mediated feed-forward loop (TF->miRNA, TF->target, and miRNA->target). Out of 2377 motifs of this kind, 651 of them have expression levels available for all three constituents. We further analyzed the expression levels of the constituent genes over many different tissues 108. More specifically, for each regulatory edge, we correlated the expression of its source and target over tissues, and therefore for each motif, we arrived at 3 Pearson correlation coefficients. Fig. S9G shows the histogram of the average of these correlation coefficient. As our regulatory network constitutes a superposition of several cell lines, and the expression data originate from 90 tissue samples, the correlation coefficients can be positive and negative. Nevertheless, we found that the distribution of correlation coefficients for the real motifs are significantly more positive relative to motifs obtained from a random network (P=2e-7 by Wilcoxon rank-sum test). This suggests that, on average, motifs are tightly correlated in different tissues, and these patterns of regulation are related to the specific biological functions of those tissues.

H.2 Motifs involving ncRNAs

We systematically searched for network motifs involving ncRNAs, and found that different sub-classes of ncRNAs exhibit different enriched or depleted network motifs, suggesting that different sub-classes of ncRNAs tend to have different regulatory mechanisms. For example, Fig. S9E shows SIM motifs in which two different ncRNAs are regulated by a common TF. The following motifs involving pairs of “long” ncRNAs regulated by a common TF are highly enriched: a TF regulating two lincRNAs (z-score = 11.74), a TF regulating a lincRNA and a processed transcript (z-score = 7.93), and a TF regulating two processed transcripts (z-score = 5.42). Moreover, the top/middle-level TFs have much larger out-degrees on lincRNAs and processed transcripts than do bottom-level TFs, which contributes most to the significance of these three types of motifs. In contrast, the motif in which any short ncRNA and any longer ncRNA share a common TF regulator is highly depleted. Fig. S9E shows three-node and four-node motifs with miRNA regulatory interactions involving different sub-classes of ncRNAs. For example, the four-node motifs in the middle row clearly shows that snRNA is regulated differently by TFs, relative to other ncRNAs. Furthermore, in the bottom row, the motifs involving snRNAs (enriched) and lincRNAs (depleted) are different from other ncRNAs, suggesting that the transcriptional regulation of snRNAs and lincRNAs are influenced by miRNA regulation in ways which differ from other ncRNAs, and specifically, the transcriptional regulation of snRNA is significantly controlled through miRNA regulation.

I. Analyzing allelic behavior in a network framework

I.1 Determining allele-specific expression and binding

In order to study allele-specific expression (ASE)109,110 and allele-specific binding (ASB)43, we used the AlleleSeq pipeline44, which is based on a diploid genome for the NA12878 individual constructed using variation data from the 1000 Genomes Project21,111-113. ChIP-seq or RNA-seq reads were competitively mapped (i.e. reads that mapped best to one unique location on one allele compared to the other) to both maternal and paternal haplotypes. Reads mapped to each haplotype were counted over heterozygous SNPs and assessed for allele-specific activity using a binomial test which was then corrected for multiple hypothesis testing by explicit simulation.

Using the output from the AlleleSeq pipeline for each TF, the set of binding regions that exhibit ASB for heterozygous SNPs within binding regions of a given TF that pass a read depth filter were determined112. These binding regions are significantly biased towards either the maternal or paternal allele using the phased heterozygous SNPs in the diploid genome. Allele-specific regulatory target genes for each TF are the set of genes that have ASB regions of that particular TF within their gene bodies or 2.5 kb promoter regions of genes.

I.2 Assessing coordinated allele-specific activity

Using a “allele-specific” regulatory network; where edges (indicated in blue and red, in Fig 5A) correspond to allele-specific binding and nodes correspond to target genes that exhibit allele-specific expression (also indicated in blue (paternal) or red (maternal)). Thus, we can use network motif analysis to assess the consistency of the allele (maternal or paternal) being regulated with the one being expressed, especially as the number of TFs regulating a target gene increases. Fig. 5A represents a purely “allelic effects network” (see caption to Fig. 5A). Each peripheral “circle” of nodes defines a set of targets such that the difference between the number of paternally and maternally regulating TFs is the same for all other targets within the same set. For the right-most set, this difference is zero (i.e., each gene within this set has an equal number of maternally and paternally regulating TFs). Within this set, ~51% of genes show ASE from the paternal allele. As we progress away from the right-most set in either direction, the difference between the number of maternally and paternally regulating TFs for each gene is incremented by one for each successive set, with paternally regulating TFs outnumbering maternally regulating TFs in the counter-clockwise direction, and vice-versa for the clockwise direction. For instance, each gene in the set immediately counter-clockwise from the right-most set has one more paternally than maternally regulating TF, and each gene in the set immediately clockwise has one more maternally than paternally regulating TF. For this pair of sets only one “step” away from the right-most set, ~52% of the targets exhibit ASE from the allele which is bound by more TFs. That is, if we expect all genes counter-clockwise (clockwise) from the right-most set to exhibit ASE from the paternal (maternal) allele, then for the pair of sets immediately adjacent to the right-most set, ~52% of genes show the expected ASE. Within the pair of sets three, five, and six or more steps away from the right-most set, ~64%, ~71%, and ~84% of genes exhibit the expected allelic behavior, respectively. These metrics may be further computed for each step from the right-most set, and we find that the correlation between the number of steps and the fraction of genes that exhibit the expected ASE is 0.96 (Pearson Correlation Coefficient; P=1e-8). Note that the growing imbalance between the number of paternally and maternally regulating TFs is reflected in the edges’ colors becoming predominantly blue or predominantly red as we proceed away from the right-most set. We see a similar trend for the peripheral distribution of colored nodes. Thus, this network provides a clear picture of the correspondence between ASB (in the form of edges) and ASE (in the form of the peripheral nodes).

I.3 TF allelicity

The allelicity of a TF is defined as the fraction of SNPs that exhibit ASB out of all the SNPs that may potentially exhibit ASB within TF-binding regions (heterozygous SNPs that have a read depth >6) (Fig. S10A). We also checked the relationship between allelicity of TF genes and the selection pressure acting on them by measuring the correlation between allelicity and dN/dS values as well as non-synonymous SNP density (Fig. S10B). However, we do not find a significant correlation between allelicity and selection pressure on TF genes.

J. Analyzing selection in a network context

Selection constraints between human and chimp were estimated using dN/dS values for TF and target genes. dN/dS values for human-chimp orthologs were obtained from Ensembl (version 56) using Biomart114. One way to estimate selection constraints over shorter evolutionary time (amongst human populations) is to use SNP density115. Since synonymous SNPs do not alter the amino acid sequence and are hence assumed to be silent mutations, we used non-synonymous SNP density as a measure of selection pressure on genes. For the calculation of non-synonymous SNP density, SNPs were obtained from the low-coverage pilot data of the 1000 Genomes Project21. GENCODE (v7) transcripts were used for annotation of non-synonymous SNPs, and the length of the longest transcript was used for the calculation of SNP density. 

Besides the correlation between non-synonymous SNP density and degree centrality of genes (as discussed in the main text) we also checked the correlation between the alternate-allele frequency of those SNPs with degree centrality. Polymorphisms at sites under stronger purifying selection occur at lower allele frequencies 21. The allele frequencies of SNPs for three different populations (CEU, YRI, JPT+CHB) were also obtained from the low-coverage pilot data of the 1000 Genomes Project 21. We observe a negative correlation between allele frequencies of non-synonymous SNPs with the in-degree of targets, although it is significant only for the YRI population (SCC=-0.0214, P=0.009) (CEU: SCC=-0.008, P=0.4; JPT+CHB: SCC =-0.0064, P=0.5). Thus, these results are in agreement with our observation that targets with higher in-degree tend to be under stronger selective constraints. We note that SNPs were identified independently in different populations in 1000 Genomes pilot study; hence, allele frequencies of many SNPs are not available in all the populations, which reduces the statistical power to identify significant correlations. 

To get better statistical power, we have repeated these calculations with draft versions of the 1000 Genomes Phase I dataset (downloaded from 1000genomes.org), which is considerably larger than the pilot dataset, comprising ~1000 individuals. For this larger dataset, the negative correlations with allele frequency are significant for target in-degree and TF out-degree (respectively, SCC=-.0132, P=3.6e-8 and SCC= -.0098, P=6.7e-4). (For phase I, one uses derived allele frequency (DAF) instead of alternate allele frequency.) There is also a marginally significant negative correlation with hierarchy height h (SCC=-.053, P=.05).
As a final check, we repeated the non-synonymous SNP density calculations, using pN/pS, the ratio of non-synonymous to synonymous substitutions per site. This is a related statistic that normalizes to some degree for chromosomal variations in mutation rate. All the correlations that we observed for non-synonymous SNP density (i.e. with out-degree of TFs, in-degree of targets, and hierarchy height) were borne out with this statistic. However, for genes with few SNPs pN/pS cannot be calculated; thus, one does not get as good power with this statistic and only the correlation with in-degree reaches significance. 
The list of loss-of-function (LoF) tolerant genes was obtained from MacArthur et al46. There are a total of 253 LoF genes. These genes have been found to be inactivated homozygously in at least one (assumed) healthy individual in the 1000 Genomes Pilot Project. The average total degree (in-degree plus out-degree) of LoF-tolerant genes (2.15) is significantly lower than the average total degree of all the other genes in the network (6.08) (P=0.04 by Wilcoxon rank-sum test). 

K. Glossary

aggregate factor importance matrix (RIM)

  Definition: A matrix which summarizes the relative importance scores of all TFs in all focus-factor contexts in a cell-line. Each row in the matrix represents a focus-factor context and contains the relative importance scores of all TFs (columns) in that particular context.

aggregate primary-partner matrix (PPM)

  Definition: A matrix that summarizes the pairwise co-association scores of all TFs in a cell-line with its potential primary-partners. Each row of the matrix represents a TF and contains the context-specific pairwise co-association scores of the TF with all other factors (columns) based on the context defined using the TF as the focus-factor. Hence, for a particular row (TF), all high-scoring columns (factors) are primary-partner factors of the TF.

allele-specific binding (ASB)

  Definition: A phenomenon in which a transcription factor preferentially binds to either the maternal or paternal allele for a given target gene43,109.

allele-specific expression (ASE)

  Definition: A phenomenon in which a gene is differentially expressed from the maternal or the paternal allele116.

betweenness centrality

 Definition: The betweenness of an edge (or a node) is the number of a shortest paths (between every pair of two nodes) passing through it117.

bottlenecks

  Definition: Network elements that have high betweeness. That is, they serve as the only intermediaries through which two or more sets of other network elements interact. Bottlenecks are thus part of many of the shortest paths between network elements118.

centrality

  Definition: A general term used to denote “degree centrality” or “betweenness centrality” (see respective definitions)

co-association

  Definition: The extent to which two or more TFs have overlapping and dependent genome-wide or context-specific DNA binding profiles, as measured by ChIP-seq experiments.

co-association score (CS)

  Definition: A context-specific, multivariate statistical score (assigned to a set of two or more TFs) that quantifies the non-random dependence of the binding profiles of the group of TFs within the context. For a particular context, we learn a discriminative function that distinguishes the joint distribution of all TF binding profiles in the context from an equivalent randomized control distribution. The raw co-association score of a pair of TFs is defined as the fraction of variance of the discriminative function that is explained by the joint interaction (dependence) of the pair of factors over and above that explained by each factor independently. The raw co-association score of a higher-order set of TFs is defined as the fraction of variance that is not explained by any of the lower-order subsets of TFs. The raw co-association scores range from 0 to 1. Co-association scores (obtained by normalizing raw co-association scores) range from 0 to 7. Co-association scores >= 5 are considered to be highly confident.

co-binding map

  Definition: A co-binding map of a focus-factor context is a matrix that contains the normalized intensities of peaks of all TFs that overlap each of the focus-factor peak locations that define the context. The columns of the co-binding map represent the genomic locations of all high-confidence peaks of the focus-factor. The rows represent the quantitative binding profiles of TFs across all focus-factor peak locations.

degree centrality

  Definition: In the context of a regulatory network, the degree centrality of a regulator is defined as the number of targets regulated by that network element (i.e., its out-degree), whereas the degree centrality of a non-regulator is defined as the number of network elements responsible for the regulation of that non-regulator (i.e., its in-degree).

focus-factor

  Definition: A TF whose peak locations (based on ChIP-seq data) are used to define a specific genomic context.

focus-factor context

  Definition: The focus-factor context is a set of genomic locations or intervals corresponding to all high-confidence ChIP-seq peaks of the focus-factor.

(functional) module

  Definition: A sub network of cellular species, such as proteins, which are co-localized within a cell and interact as a unit in order to carry out specific biological functions119.

general transcription factors

  Definition: Factors which constitute basic elements of the transcriptional machinery, which often constitute core elements of transcription complexes, such as POL2 or TBP, and therefore play roles in regulating many genes, rather than small subsets of targets.

hierarchy height (h)

  Definition: With possible values ranging from -1 to 1, this metric provides a normalized measure of the disparity between a given TF’s roles as a regulating factor and a regulated target. Specifically, it is calculated by normalizing the difference between the out- and the in-degrees by the sum of the out- and in-degrees:
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Lower h values indicate that a TF is heavily regulated and without many targets of its own (i.e., it is lower within a regulatory hierarchy), whereas higher h values indicate that a TF is a regulator of many other elements, and without many other elements responsible for its regulation (i.e., it is higher within a regulatory hierarchy).

importance correlation matrix (ICM)

  Definition: A symmetric matrix of pairwise similarities between all focus-factor contexts in a cell-line, where the similarity between a pair of contexts is computed as the Pearson correlation between vectors of relative importance scores of all TFs in the two contexts.

in-degree (I)

  Definition: The number of interactions which represent the regulation of a given network node.

local-partner factor

  Definition: A local-partner of a focus-factor is a TF that has high pairwise co-association scores with one or more other factors (excluding the focus-factor itself) within the focus-factor context. A local-partner of a focus-factor is a TF whose binding profile has a significant non-random dependence relationship with profiles of one or more other factors localized to a subset of focus-factor peak locations.

maximal co-association matrix (MCS)

  Definition: A matrix that contains the maximum pairwise co-association scores between all pairs of TFs over all focus-factor contexts in a cell-line.

meta-network

  Definition: A term used to describe a dense, highly heterogeneous network comprised of many types of interacting elements (such as small RNAs, proteins, and target genes) and forms of regulation (such as phosphorylation and inhibitory binding)

network hierarchy

  Definition: The reorganization of conventional hairball representations of networks into more intuitive frameworks, in which nodes belonging to higher levels tend to regulate nodes within lower levels.

network hubs

 Definition: A general term which is assigned to network elements which directly interact with many other network elements; the precise threshold for the number of interactions needed to constitute a hub may vary1,7.

network motif

 Definition: A sub network built from a small number of nodes (usually three to five) with distinct, well-defined intra-connectivity patterns (such as feed-forward loops) which are often enriched in biological (or other real-world) systems, relative to randomly-generated networks12.

out-degree (O)

  Definition: The number of a network node's interactions which represent the regulation of other network elements by that node.

partner-factors

  Definition: All TFs other than the focus-factor in a focus-factor context.

primary-partner factors

  Definition: A primary-partner of a focus-factor is a TF that has a high pairwise co-association score with the focus-factor in the focus-factor context. Primary-partners of a focus-factor have binding profiles that show significant non-random dependence with the focus-factor’s profile over a significant fraction of the focus-factor context (for instance, a primary-partner may co-bind to a very high fraction of the focus-factor's binding regions).

relative importance (RI)

  Definition: A context-specific statistical score (assigned to a single TF) that measures the extent to which the TF’s quantitative binding profile has a non-random dependence relationship with profiles of any other factors within the context. A TF that co-binds with several other factors across a significant fraction of the context will have a high relative importance score in that context. Mathematically, this score represents the relative contribution of a TF to the discriminative performance of a model trained to distinguish the joint distribution of all binding profiles in a particular context from an equivalent randomized control. The relative importance of a TF ranges from 0 to 100.

rewiring score

  Definition: For a given TF, the rewiring score is a metric used to represent the difference in its sets of targets in different cell lines (set S1 and set S2), with a low value indicating a high degree of similarity between sets of targets. The rewiring score is calculated as
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single-input module (SIM)

  Definition: A sub-network in which a given node is the only regulator to regulate a number of other network elements. Notably, the regulator node is often self-regulatory in such modules39.

tendency score (for regulating ncRNAs)

  Definition: For each TF T, we calculate the fraction of coding genes that it regulates (denoted by a), as well as the fraction of a sub-class of ncRNAs (such as miRNAs) that it regulates (denoted by b); the tendency score of T regulating miRNAs is the ratio of b to a, b/a.

variability-map

  Definition: The variability-map of a TF in a cell-line is a matrix that contains the pairwise co-association scores of the TF with all other factors over all focus-factor contexts in the cell-line. Each row in the variability-map represents a focus-factor context and contains the pairwise co-association scores of the TF with all other factors (columns) in the focus-factor context. Thus, the variability-map of a TF represents the variability (or stability) of co-associations of the TF with other factors over all focus-factor contexts in a cell-line.

L. Supplementary Figures

Figure S1 - ChIP-seq workflow, data processing, and TF knock-down 

This figure provides more information on ChIP-seq workflow and unified scoring pipeline, TF knockdown experiment results and details on TF target assignment.

A) Summary of ChIP-seq workflow, with emphasis on reported quality control procedures. General flowchart for generation of a ChIP-seq dataset is shown with steps for which standard quality controls are implemented (in red). Prior to immunoprecipitation, all antibodies were characterized by immunoblotting, followed by at least one of the indicated secondary assays. ENCODE ChIP-seq libraries were characterized for library complexity and signal enrichment. For submission of a dataset, replicates had to exceed the indicated consistency thresholds unless a specific justification was given for the failure to meet the standard.

B) Schematic of data flow for the ENCODE unified scoring pipeline. First, ChIP-seq datasets for all TFs and cell-lines were paired with an appropriate matching control. All datasets were scored using both PeakSeq and SPP using an initial relaxed threshold. The IDR method was then applied, which uses consistency of peak calling results across biological replicates to uniformly threshold ranked peak sets for each TF (from pooled data). Datasets that failed QC passed through a Rescue Pipeline based on a pooling and resampling strategy (pseudo-replicates). Final thresholded peak sets for each TF were stored for both PeakSeq and SPP using the ENCODE narrowPeak format120. 

C) Summary of knock-down experiments in K562 cell line. We have carried out siRNA interference experiments for 11 TFs in K562, and measured the expression changes of genes in each knock-down (relative to a control) using RNA-seq. Efficiency of siRNA is represented as the reduction in expression level of a TF in its knock-down, relative to a control. For instance, >900 genes were significantly altered in their expression after a reduction in the mRNA level of JUND, a middle-level TF. Another example is RAD21, a top-level TF: knock-down of its mRNA led to significant expression changes of ~1200 genes. Only the knock-down experiments with an efficiency exceeding 30% are shown. All siRNA interference experiments were performed in K562. #DE gene: the number of genes that are differentially expressed in the knock-down, relative to the control (P<0.05). Note the #Targets indicates the number of target genes in K562 only if not clarified. 

D) Expression changes of target genes in TF siRNA interference experiments. To validate the performance of the TIP-based filtering, we selected four siRNA interference experiments for which the knock-down efficiency is greater than 30% (expression levels of the knocked down TF decreased by more than 30%), and the numbers of target genes identified by TIP and the peaked-based method exceed 150 (to ensure effective comparison). It is notable that, in all four cases, the target genes identified by TIP are more differentially expressed than those identified by the peak-based method (P=0.01 for GATA1, P=0.02 for RAD21, P=0.001 for TAL1 and P=2e-7 for YY1). FC means fold change of gene expression in knockdown versus the control.

E) Expression change of YY1 target genes in YY1 knock-down experiment. The absolute values of expression changes in YY1 target genes identified by the peak-based method and TIP in YY1 knock-down, relative to a control. FC means fold change of gene expression in knockdown versus the control.

Figure S2 - More information on TF co-association

A) Schematic of analysis pipeline for context-specific TF co-association. ChIP-seq datasets were processed to produce peak calls. Each cell-line was analyzed separately. Each TF in a cell-line was used as a focus-factor to define a focus-factor context. The stacked panels in the pipeline represent parallel analyses for each focus-factor context. A co-binding map for the focus-factor context was generated. A corresponding control map was generated as shown in the top-right panel. The co-binding map and control map were used as positively and negatively labeled input data to a discriminative machine learning algorithm known as RuleFit3. RuleFit3 learns a model encoding the multivariate co-association structure enriched in the co-binding map. The model was used to extract the context-specific relative importance (RI) of all TFs and the pairwise co-association matrix. These scores were aggregated in different ways across all focus-factor contexts in a cell-line to reveal different aspects of context-specific TF co-association. SOM/C.2.1 has details.

B-1) Relative strengths of co-association statistics of true features and control-features. In order to calibrate the co-association statistics, i.e. relative importance (RI) and co-association scores (CS), we artificially added randomized control-features to the GATA1 co-binding map and compared the relative strengths of their co-association statistics to those obtained for true features. Panel (1) shows that control-features (marked in blue and with the suffix _random) have lower RI than relevant true features. The height of each bar is the median RI a TF over 50 models of the focus-factor trained using multiple randomized control maps. The whiskers represent 0.25 and 0.75 quantiles. Panel (2) shows that co-association scores of relationships involving control features are significantly lower than those between true-features. SOM/C.2.4.7 has details.

B-2) Calibration of co-association scores based on distribution of scores involving true features and control-features. The 4 panels compare the distributions of co-association scores (CS) of relationships involving only true-features, i.e. the actual TF binding profiles (red histogram in top sub-panel of each panel) to the distribution of CS involving some control-feature (blue histogram in bottom sub-panel of each panel), in 4 representative focus-factor contexts. The blue vertical line (CS = 0) indicates the lower-bound used to weed out low-scoring spurious co-associations. The red vertical line indicates the maximum co-association score over all relationships involving control features. It is used as a calibration threshold to distinguish high-confidence (>5) from low-confidence co-association scores. SOM/C.2.4.7 has details.

C-1) Binding profiles of multiple TFs in the GATA1 focus-factor context in K562. Panel (1) shows the co-binding map of the GATA1 focus-factor context. The columns represent genomic locations of GATA1 ChIP-seq peaks in K562. Each row contains the quantitative binding profile of peaks of a TF that overlap all GATA1 peaks. 8 main clusters (shown as colored rectangles) of functionally distinct TFs emerge by clustering the co-binding map. Panel (2) shows a zoomed in view of ChIP-seq signal of the different TF clusters at three representative GATA1 peaks - left-most column represents chr11: 9377900-9378000 (signal range from 10-60 fold); central track represents chr7: 22390000-22391000 (signal range from 15-150 fold) and right-most track represents chr10: 91020000-91021000 (signal range from 5-50 fold). These locations exemplify the context-specific, combinatorial nature of TF co-association. SOM/C.3.1.1 and SOM/C.3.1.4 have details.

C-2) Co-association statistics for the GATA1 focus-factor context. The matrix in the top sub-panel displays the co-association scores (CS) between all pairs of TFs in the GATA1 focus-factor context. The 8 groups of TFs that emerge by clustering the rows and columns of the matrix (shows as colored rectangles) match those found in the co-binding map (Fig. S2C-1). The rectangular heatmap in the bottom panel displays the relative importance (RI) of all TFs in the GATA1 context. The order of TFs in the same as the order of the columns in the co-association matrix. SOM/C.3.1.2 and SOM/C.3.1.4 have details.

C-3) Partner-factors of GATA1 in K562 that are preferentially enriched at proximal and distal GATA1 peaks. The 4 panels show the differential importance (DI) (SOM/C.2.4.3) of each TF in the GATA1 focus-factor context obtained by comparing the relative importance of the TF with respect to distal and proximal subsets of GATA1 peaks. Each panel uses different cut-offs for defining proximal and distal peaks. TFs with positive values of DI (shown in blue) have enriched co-associations at distal GATA1 peaks and those with negative DIs (shown in red) have enriched co-associations at proximal GATA1 peaks. The key TFs with high DI are shown. In all 4 panels, we observe near-identical ranking of TFs. Thus, the results are robust to the exact cutoff used for definition distal and proximal focus-factor peaks. SOM/C.3.1.6 has details.

D) Co-association variability map of partners of GATA1 in K562. The rows represent focus-factor contexts in K562 that have at least one significant co-association relationship involving GATA1. The columns are partner-factors that show significant co-association scores (CS) with GATA1 in at least one focus-factor context. The matrix represents the CS of GATA1 with all partner-factors over all focus-factor contexts. Clustering the matrix reveals that TAL1 and GATA2 (multiple datasets) have consistently high CS with GATA1 over most focus-factor contexts. SOM/C.3.1.7 has details.

E-1) Co-binding map of the E2F4 focus-factor context in K562. The columns correspond to 4874 E2F4 peaks in K562 and the rows contain binding intensities of peaks of all factors that overlap the E2F4 peaks. We observe a significant bicluster structure. Both E2F6 datasets show consistent co-binding with a majority of E2F4 peaks. SOM/C.3.2 has details.

E-2) Co-association statistics in the E2F4 focus-factor context in K562. Panel (1) is a bar graph representing the relative importance (RI) of all factors in the E2F4 focus-factor context. The height of each bar is the median RI of a TF over 50 models of the focus-factor context trained using multiple randomized control maps. The whiskers represent 0.25 and 0.75 quantiles. Panel (2) is the pairwise co-association score matrix of the E2F4 context. E2F6 is a primary-partner of E2F4. SOM/C.3.2 has details.

E-3) Co-association variability map of partner of E2F4 over all focus-factor contexts in K562. The rows represent focus-factor contexts in K562 that have at least one significant co-association relationship involving E2F4. The columns are partner-factors that show significant co-association scores (CS) with E2F4 in at least one focus-factor context. The matrix represents the CS of E2F4 with all partner-factors over all focus-factor contexts. Clustering the matrix reveals that E2F6 has high CS with E2F4 over a large fraction of focus-factor contexts compared to other partner-factors. However, the GATA1 focus-factor context is distinctly missing from the variability map indicating that the (E2F4, E2F6) co-association is not sufficiently enriched in the GATA1 focus-factor context. SOM/C.3.2 has details.

E-4) Expression of genes associated with GATA1 and E2F4. Panel (1) shows the cumulative distribution of CAGE (Cap Analysis of Gene Expression) tag expression of genes associated with all GATA1 peaks and E2F4 peaks in K562. Each GATA1 peak was assigned to its nearest gene (GENCODE (v7) TSSs). PolyA+, cytoplasmic CAGE tag expression (in reads per million) for each TSS was obtained from the ENCODE Consortium77. The red (blue) curve is the cumulative distribution of expression values for genes associated with GATA1 (E2F4). The red (blue) dotted horizontal lines indicate the fraction of genes associated with GATA1 (E2F4) that have CAGE expression of 0. Only ~9% of E2F4 associated genes are not expressed, whereas ~48% of GATA1 associated genes are not expressed in K562. Panel (2), shows the number of genes associated with GATA1 peaks (the set of closest genes to all GATA1 peaks) that are significantly up-regulated (94 genes) and down-regulated (54 genes) after si-RNA knockdown of GATA1. A p-value of 0.01 was used to identify differentially expressed genes in the knockdown data. Both the figures indicate that a substantial fraction of GATA1 target genes are not expressed in K562 and a larger fraction of these genes are up-regulated after GATA1 knockdown. The co-association of repressors such as NRSF and HDAC2 with GATA1 peaks may be responsible for maintaining the GATA1 enhancers in a repressed or poised state.

F-1) Aggregate factor importance matrix in K562. Each row represents a focus-factor context and contains the relative importance (RI) of all factors (columns) extracted from the model trained on the focus-factor context. The clustered matrix reveals 9 functionally distinct clusters of focus-factor contexts that can be broadly classified as TSS-distal, TSS-proximal, mixed and repressive. The alternating light and dark blue rectangles simply highlight partner-factors that have high RI in the different clusters. A few representative examples of relevant partner-factors are listed at the top of the matrix. SOM/C.2.5.1 and SOM/C.3.4.1 have details.

F-2) Importance correlation matrix in K562. The rows and columns represent focus-factor contexts in K562. The matrix represents the similarity between focus-factor contexts computed based on the Pearson correlation of the vectors of relative importance scores of all TFs in each pair of focus-factor contexts. SOM/C.2.5.2 and SOM/C.3.4.1 have details.

F-3) Maximal co-association matrix in K562. The matrix contains the maximum co-association score between each pair of TFs in K562 computed over all focus-factor contexts. SOM/C.2.5.3 and SOM/C.3.4.1 have details.

F-4) Aggregate primary partner matrix in K562. The matrix aggregates over all focus-factor contexts, the co-association scores of each focus-factor (row) with all its potential primary-partners (columns). SOM/C.2.5.4 and SOM/C.3.4.1 have details.

F-5) Discriminative performance of models of all focus-factor contexts in K562. The discriminative performance of each model is measured using the area under the receiver-operating curve (ROC). 50 models are learned for each focus-factor context using multiple instantiations of randomized control maps. The height of the bars represent the median auROC over all models of a focus-factor context. The whiskers represent the 0.25 and 0.75 quantiles. Models with auROC < 0.9 should be analyzed conservatively. SOM/C.2.3.4 and SOM/C.3.4.1 have details.

G-1) Aggregate factor importance matrix in GM12878. Each row represents a focus-factor context and contains the relative importance (RI) of all factors (columns) extracted from the model trained on the focus-factor context. SOM/C.2.5.1 and SOM/C.3.4.2 have details.

G-2) Importance correlation matrix in GM12878. The rows and columns represent focus-factor contexts in GM12878. The matrix represents the similarity between focus-factor contexts computed based on the pearson correlation of vectors of relative importance scores of all TFs in each pair of focus-factor contexts. SOM/C.2.5.2 and SOM/C.3.4.2 have details.

G-3) Maximal co-association matrix in GM12878. The matrix contains the maximum co-association score between each pair of TFs in GM12878 computed over all focus-factor contexts. SOM/C.2.5.3 and SOM/C.3.4.2 have details.

G-4) Aggregate primary partner matrix in GM12878. The matrix aggregates the co-association scores of each focus-factor (row) with all its potential primary-partners (columns). SOM/C.2.5.4 and SOM/C.3.4.2 have details.

G-5) Discriminative performance of models of all focus-factor contexts in GM12878. The discriminative performance of each model is measured using the area under the receiver-operating curve (ROC). 50 models are learned for each focus-factor context using multiple instantiations of randomized control maps. The height of the bars represent the median auROC over all models of a focus-factor context. The whiskers represent the 0.25 and 0.75 quantiles. Models with auROC < 0.9 should be analyzed conservatively. SOM/C.2.3.4 and SOM/C.3.4.1 have details.

H-1) Aggregate factor importance matrix in HeLa-S3. Each row represents a focus-factor context and contains the relative importance (RI) of all factors (columns) extracted from the model trained on the focus-factor context. SOM/C.2.5.1 and SOM/C.3.4.3 have details.

H-2) Importance correlation matrix in HeLa-S3. The rows and columns represent focus-factor contexts in HeLa-S3. The matrix represents the similarity between focus-factor contexts computed based on the Pearson correlation of vectors of relative importance scores of all TFs in each pair of focus-factor contexts. SOM/C.2.5.2 and SOM/C.3.4.3 have details.

H-3) Maximal co-association matrix in HeLa-S3. The matrix contains the maximum co-association score between each pair of TFs in HeLa-S3 computed over all focus-factor contexts. SOM/C.2.5.3 and SOM/C.3.4.3 have details.

H-4) Aggregate primary partner matrix in HeLa-S3. The matrix aggregates the co-association scores of each focus-factor (row) with all its potential primary-partners (columns). SOM/C.2.5.4 and SOM/C.3.4.3 have details.

H-5) Discriminative performance of models of all focus-factor contexts in HeLa-S3. The discriminative performance of each model is measured using the area under the receiver-operating curve (ROC). 50 models are learned for each focus-factor context using multiple instantiations of randomized control maps. The height of the bars represent the median auROC over all models of a focus-factor context. The whiskers represent the 0.25 and 0.75 quantiles. Models with auROC < 0.9 should be analyzed conservatively. SOM/C.2.3.4 and SOM/C.3.4.3 have details.

I-1) Aggregate factor importance matrix in HepG2. Each row represents a focus-factor context and contains the relative importance (RI) of all factors (columns) extracted from the model trained on the focus-factor context. SOM/C.2.5.1 and SOM/C.3.4.4 have details.

I-2) Importance correlation matrix in HepG2. The rows and columns represent focus-factor contexts in HepG2. The matrix represents the similarity between focus-factor contexts computed based on the Pearson correlation of vectors of relative importance scores of all TFs in each pair of focus-factor contexts. SOM/C.2.5.2 and SOM/C.3.4.4 have details.

I-3) Maximal co-association matrix in HepG2. The matrix contains the maximum co-association score between each pair of TFs in HepG2 computed over all focus-factor contexts. SOM/C.2.5.3 and SOM/C.3.4.4 have details.

I-4) Aggregate primary partner matrix in HepG2. The matrix aggregates the co-association scores of each focus-factor (row) with all its potential primary-partners (columns). SOM/C.2.5.4 and SOM/C.3.4.4 have details.

I-5) Discriminative performance of models of all focus-factor contexts in HepG2. The discriminative performance of each model is measured using the area under the receiver-operating curve (ROC). 50 models are learned for each focus-factor context using multiple instantiations of randomized control maps. The height of the bars represent the median auROC over all models of a focus-factor context. The whiskers represent the 0.25 and 0.75 quantiles. Models with auROC < 0.9 should be analyzed conservatively. SOM/C.2.3.4 and SOM/C.3.4.4 have details.

J-1) Aggregate factor importance matrix in H1-hESC. Each row represents a focus-factor context and contains the relative importance (RI) of all factors (columns) extracted from the model trained on the focus-factor context. SOM/C.2.5.1 and SOM/C.3.4.5 have details.

J-2) Importance correlation matrix in H1-hESC. The rows and columns represent focus-factor contexts in H1-hESC. The matrix represents the similarity between focus-factor contexts computed based on the pearson correlation of vectors of relative importance scores of all TFs in each pair of focus-factor contexts. SOM/C.2.5.2 and SOM/C.3.4.5 have details.

J-3) Maximal co-association matrix in H1-hESC. The matrix contains the maximum co-association score between each pair of TFs in H1-hESC computed over all focus-factor contexts. SOM/C.2.5.3 and SOM/C.3.4.5 have details.

J-4) Aggregate primary partner matrix in H1-hESC. The matrix aggregates the co-association scores of each focus-factor (row) with all its potential primary-partners (columns). SOM/C.2.5.4 and SOM/C.3.4.5 have details.

J-5) Discriminative performance of models of all focus-factor contexts in H1-hESC. The discriminative performance of each model is measured using the area under the receiver-operating curve (ROC). 50 models are learned for each focus-factor context using multiple instantiations of randomized control maps. The height of the bars represent the median auROC over all models of a focus-factor context. The whiskers represent the 0.25 and 0.75 quantiles. Models with auROC < 0.9 should be analyzed conservatively. SOM/C.2.3.4 and SOM/C.3.4.5 have details.

K) Comparison of TF co-associations in GM12878 and K562. Panel (1) shows the clustered aggregate primary-partner matrix in K562 restricted to TFs (antibodies) that have ChIP-seq datasets in the K562 and GM12878 cell-lines. The rows are focus-factors and columns are potential primary-partners. Panel (2) shows the aggregate primary-partner matrix in GM12878 such that the rows and columns are in the same order as those in the K562 matrix shown in panel (1). Panel (3) computes the log ratio of the raw co-association scores (SOM/C.2.4.5) in the aggregate primary-partner matrices in K562 and GM12878. The order of rows and columns are the same as in Panel (1). Co-associations involving pairs of factors with high log-ratios (darker red) are K562-specific whereas those with low log-ratios (white) are GM12878-specific. SOM/C.3.5 has details.

L-1) Co-association variability maps of partners of FOS and JUND in GM12878. The top panel shows the variability of co-association scores (CS) of all TFs in GM12878 (columns) with FOS over all focus-factor contexts in GM12878 (rows). The key context-specific partners of FOS are listed to the left of the matrix. JUND shows no significant co-association with FOS in any of the focus-factor contexts. The bottom panel shows the analogous variability map of co-associations of JUND in GM12878. BATF, IRF3 and BCL11A are key partners of JUND over a large number of focus-factor contexts. FOS does not show a significant co-association with JUND in any of the focus-factor contexts. SOM/C.3.5 has details.

L-2) Co-association variability maps of partners of FOS and JUND in K562. The top panel shows the variability of co-association scores (CS) of all TFs in K562 (columns) with FOS over all focus-factor contexts in K562 (rows). The key context-specific partners of FOS are listed to the left of the matrix. 3 distinct sets of partner-factors (columns) have high CS with FOS in 3 distinct sets of focus-factor contexts (rows). JUND co-associates strongly with FOS in several focus-factor contexts. The bottom panel shows the analogous variability map of co-associations of JUND in K562. FOS has a high CS with JUND in a majority of focus-factor contexts. SOM/C.3.5 and SOM 3.6.1 has details.

L-3) Co-association variability maps of partners of FOS and JUND in HeLa-S3. The top panel shows the variability of co-association scores (CS) of all TFs in HeLa-S3 (columns) with FOS over all focus-factor contexts in HeLa-S3 (rows). The key context-specific partners of FOS are listed to the left of the matrix. JUND co-associates strongly with FOS in several focus-factor contexts. The bottom panel shows the analogous variability map of co-associations of JUND in K562. FOS has a high CS with JUND in a majority of focus-factor contexts. SOM/C.3.5 has details.

M-1) Co-binding map of the FOS focus-factor context in K562. The columns correspond to 5810 FOS peaks in K562 and the rows contain binding intensities of peaks of all factors that overlap the FOS peaks. We observe significant bicluster structure. We find that the FOS peaks form two distinct clusters such that each set of peaks overlaps peaks of distinct groups of partner-factors. The light-blue biclusters is enriched for overlapping peaks of JUND, JUNB and JUN whereas the dark-blue cluster is enriched for overlapping peaks of SP2, CHD2, SP1, POL2 and IRF1. SOM/C.3.6.1 has details.

M-2) Partner-factors of FOS in K562 that are preferentially enriched at proximal and distal FOS peaks. The figure show the differential importance (DI) (SOM/C.2.4.3) of each TF in the FOS focus-factor context obtained by comparing the relative importance (RI) of the TF with respect to distal and proximal FOS peaks. Peaks within 2.5 Kb of annotated GENCODEv7 transcription start sites were considered proximal. Peaks > 10 Kb from TSSs were considered distal. TFs with positive values of DI (shown in blue) have enriched co-associations at distal FOS peaks and those with negative DIs (shown in red) have enriched co-associations at proximal FOS peaks. SOM/C.3.6.1 has details.

M-3) Co-association variability map of partners of ZNF143 in GM12878. The matrix shows the variability of co-association scores (CS) of all TFs in GM12878 (columns) with ZNF143 over all focus-factor contexts in GM12878 (rows). Both SIX5 and CTCF have high consistent CS with ZNF143 over a large number of focus-factor contexts. SOM/C.3.6.2 has details.

M-4) Co-association variability map of partners of CTCF in GM12878. The matrix shows the variability of co-association scores (CS) of all TFs in GM12878 (columns) with CTCF over all focus-factor contexts in GM12878 (rows). While ZNF143 strongly co-associates with CTCF over most focus-factor contexts, SIX5 has a significant CS with CTCF exclusively in the ZNF143 context. SOM/C.3.6.2 has details.

M-5) Co-association variability map of partners of SIX5 in GM12878. The matrix shows the variability of co-association scores (CS) of all TFs in GM12878 (columns) with SIX5 over all focus-factor contexts in GM12878 (rows). ZNF143 has strong CS with SIX5 over a majority of focus-factor contexts (rows). However, CTCF (as well as RAD21 and SMC3) show significant CS with SIX5 only in the ZNF143 context. SOM/C.3.6.2 has details.

M-6) Venn diagram of the genome-wide binary overlap of peaks of ZNF143, CTCF and SIX5 in GM12878. The Venn diagram is not to scale and is only an approximate representation of the relative peak overlaps between the three factors. 14319 of 18310 (78%) ZNF143 peaks overlap 42808 (33%) CTCF peaks. 659 of 4442 (15%) SIX5 peaks overlap 42808 (1.5%) CTCF peaks. 2710 of 4442 (61%) SIX5 peaks overlap 18310 (15%) ZNF143 peaks. Only 541 genomic locations are co-bound by all 3 factors. Only 108 genomic locations overlap SIX5 and CTCF peaks but not ZNF143 peaks. SOM/C.3.6.2 has details.

M-7) Summary of the global and context-specific co-associations between all pairs of factors in K562. We binarized pairwise co-association scores in all focus-factor contexts in K562 and computed the fraction of contexts in which each co-association is ‘active’. The matrix represents the ubiquity of each co-association across all contexts. Dark-red cells in the matrix represent globally consistent co-associations (active in > 60% of contexts) and orange cells represent relatively context-specific co-associations (active in 20-60% of contexts). SOM/C.3.6.3 has details.

M-8) Variance of active co-associations scores over all focus-factor contexts in K562. We binarized pairwise co-association scores (CS) in all focus-factor contexts in K562 to identify all contexts in which each pair of TFs is ‘actively’ co-associated. For each pair of TFs, we computed the median absolute deviation (MAD) of all ‘active’ co-association scores and created the matrix shown in panel (1). Only a sparse set of pairs of factors have high MAD of ‘active’ co-association scores, i.e. if a pair of TFs actively co-associate in multiple contexts, then the co-association scores in these contexts are generally similar. The red curve in panel (2) shows the distribution of the MAD scores shown in panel (1). We independently shuffled the values in the pairwise co-association matrices of each focus-factor context and then recomputed the MAD using these shuffled matrices. The blue curve in panel (2) shows the distribution of MAD values of these randomized co-association scores. The true-scores have significantly lower MAD than the randomized scores. SOM/C.3.6.3 has details.

N) Comparison of local pairwise co-association matrices to the maximal co-association score matrix in K562. Panels (1) and (2) show the pairwise co-association matrices of the ZNF274 and E2F4 focus-factor contexts in K562. Panel (3) shows the maximal co-association matrix (MCS) over all focus-factor contexts in K562. The MCS can be used to spot all groups of co-associated TFs over all contexts. The colored rectangles represent equivalent groups in the three matrices. The ZNF274 context is highly isolated and is specifically enriched for the blue cluster of TFs. On the other hand, the E2F4 context contains a substantially larger fraction of all clusters found in the MCS. SOM/C.3.6.3 has details.

O) Effect of changing definitions of peak overlap on co-association scores in the GATA1 focus-factor context in K562. Typically, in our analyses, a pair of peaks is considered to overlap if their peak intervals intersect by at least 1 bp (direct overlap). We relaxed this definition and allowed medium-range indirect overlaps (peaks within +/- 5 Kb of each other were considered to overlap). We applied our analysis pipeline separately to GATA1 co-binding maps in K562 based on direct and indirect peak overlap and extracted the context-specific pairwise co-association matrices which are shown in panel (1) and panel (2) respectively. The overall structure of the two matrices are very similar highlighting the robustness of the analysis to changing definitions of peak overlap. SOM/C.4 has details.

P) Effect of relaxing peak calling thresholds on co-association scores in the GATA1 focus-factor context in K562. We created a variant of the co-binding map of the GATA1 focus-factor context using significantly relaxed sets of peak calls for all TFs in K562. We then applied our analysis pipeline to this co-binding map and extracted context-specific pairwise co-association scores. Panel (1) shows the original context-specific co-association score matrix based on the default stringent peak calling thresholds and panel (2) shows the analogous matrix based on the relaxed peak calling thresholds. The overall structure of the two matrices is very similar highlighting the robustness of the analysis to changing peak calling thresholds. SOM/C.4 has details. 

Figure S3 - TF hierarchy, continuous statistics for ranking the TFs and the robustness of networks

This figure shows the correlation between continuous statistics and TF hierarchy levels, and the robustness of the networks. The connectivity statistics of a TF can be correlated with its position in the hierarchy. For instance, out-degree (degree centrality) is correlated with level (SCC=0.51, P=1e-8). As the hierarchy is constructed by maximizing the number of edges from top to bottom, out-degree hubs are more likely to be found in the upper levels, while in-degree hubs are more likely to be found in the lower levels. 

A-1) The statistic O-I is significantly correlated with level (SCC=0.71, P=1e-19), as visualized here by ranking TFs by O-I and coloring them by level. 

A-2) The hierarchy height statistic is more strongly correlated with level (SCC=0.81, P=1e-25) than is O-I. 

B-1) A plot of in-degree (I) vs out-degree (O) of all the TFs in the regulatory network. 

B-2) Panel B-2 focuses on those factors with I and O of 6 or lower. 

C) A histogram of the O-I metric (top) shows a nearly normal distribution. In this sense, most TFs are in the middle of the hierarchy. Another statistic to probe the hierarchical level is a normalized version of O-I, given by (O-I) / (O+I). We call this statistic the hierarchy height h. TFs with no in-degree (i.e., those regulated by no other TFs), have a value of 1 using this metric. TFs with no out-degree (i.e., those regulating no other TFs), have a value of -1. TFs with balanced regulation (i.e., those regulated by the same number of TFs that they themselves regulate), have a value of 0 using this metric. A histogram of the hierarchy height metric (bottom) shows that our notion of a regulatory hierarchy broken into three distinct layers is fairly accurate.

D-1) It is apparent from panel B) that there are a significant number of TFs with zero I or O, which might affect the stability of hierarchy height h, (O-I)/(O+I) for a TF as new data are collected. If new data adds new in- or out-degree edges to a TF, or if some of TF interactions are false positives, h can change from -1 or 1, and the trimodal character of the distribution might be affected.

This plot shows a series of histograms of how h changes as factors with total degree (O+I) lower than some threshold are removed from the network. Even when half the factors in the TF-TF network are removed, the trimodal character of the h distribution remains.

D-2) This panel assesses how h changes for individual TFs as low-degree TFs are removed and h skews towards higher out-degree. The crossing trajectories of various TFs imply that h does not preserve rank as low-degree TFs are removed.

E) This set of plots show the quite high correlation between h in the original network and in networks where increasingly many low-degree TFs are removed. Additionally, TFs are colored by their level of the 3-level hierarchy in the full network, and sub-sampling of the nodes does not noticeably alter their separation into three levels.

F) Consistency between the values of h in the original TF-TF network versus the values of h in the down-sampled networks. For each value of down-sampling fraction, 100 trials were performed. Out of the 100 trials, the fraction of significant correlations (P<0.05) are plotted against the down-sampling fraction. A 100% score is obtained even when the sampling fraction goes down to 50%.

G) The in- and out- degree distributions of the TF-TF network (left) and the TF-target network (right). The mean values of the distributions are shown.

H) The distribution of h in the TF-TF regulatory network (top), versus the distribution of h in random networks. The bottom distribution is the superposition of 1000 random networks. The random networks are generated by preserving the density of edges in the TF-TF network. Out of the 1000 random networks, the distribution of h in 984 of them significantly (P<0.05) deviated from the original tri-modal distribution. The bottom distribution is a Gaussian with mean close to zero, as opposed to the TF-TF regulatory network.

I) The fraction of feedback edges in an ensemble of 1000 random networks. A random network has no preference of direction, and the number of feedback edges is roughly the same as the number of forward edges. The TF-TF network has a much lower fraction of feedback edges, thus significantly deviated away from the ensemble (z=-10.69).

J) The distribution of the directionality score (D score) in an ensemble of 1000 random networks. A large value of D means a strong preference of downward direction. The value of D in the TF-TF regulatory network is significantly larger than values in the random ensembles (z=13.3).

K) Assessing the robustness of the level assignment in the TF hierarchy. Though simulated annealing is a probabilistic algorithm, we found that the output construction is very stable. We repeated the hierarchy generation algorithm 1000 times, and defined a confidence score for each TF by the fraction of consistent level assignments out of 1000 runs. As shown in the histogram, 87 out of 118 TFs have a score greater than 95%, indicating that the uncertainty in level assignments is small. Using the 87 confident TFs, the relationship between levels and genomic features are consistent with the results of using the 118 TFs. 

L) This graph shows the distribution of Δ scores for TFs in the Encode TF-miRNA networks against 10,000 randomized TF-miRNA networks (with a constant number of TF-miRNA and miRNA-TF edges). As seen here, the distribution is significantly skewed towards the extremes, with both high and low Δ scores in the actual ENCODE network. This indicates that TFs are either strong regulators of miRNAs, or are strongly regulated by miRNAs.

M) This graph shows the same data as in part L, but now analyzing the miRNAs. The same trend can be observed here.

Figure S4 - Construction and analysis of the TF hierarchical network

A) Schematic of processing from peak calls to networks. This figure shows the flow of information from the raw data to networks of integrated datasets. The first step is filtering the raw data and constructing a network of interactions between the TFs and their respective targets. Data is then integrated with ncRNA, miRNA, and protein-protein interaction data to construct a network that is used to analyze the relationships between these different datasets. The TFs are also separated into hierarchical levels on the basis of their mutual relationships, and motif analyses are performed on the networks. 

B, C) Close-up of the TF hierarchy. These two panels are “shadow figures” for the main text Fig. 2A. This panel shows the TF-TF interactions organized hierarchically. The regulatory hierarchy has ~80% of its edges directed downward (Fig. 2A). It offers a more intuitive picture than does the conventional “hairball” representation. Nodes depict TFs categorized in three different ways. Node shape divides the TFs into sequence-specific (triangles) and non-sequence specific classes (circles). Node color indicates whether TFs are activators (green), repressors (red), or both (yellow), based on the categorization in Table S5D. Nodes with thick black borders have been knocked down via RNA interference, as discussed in section B2. Both proximal (B) distal (C) edges are depicted. Note how the distal edges do not follow the proximal-edge hierarchy. In particular, 50 out of 266 total distal edges point upwards, compared to 26 out of 336 edges in proximal network (P=8e-5, Fisher Exact Test). 

The TFs shown in this figure are:

top level, from left to right and top to bottom:

NFKB1, GABPA, EP300, RAD21, TRIM28, ELK4, HDAC2, ZBTB7A, PBX3, GTF2B, NFYB, SUZ12, EBF1, CCNT2, E2F1, NFYA, ESR1, TAF1, SMC3, REST, SIX5, STAT3 ,YY1, NANOG, CTBP2, SMARCA4/BRG1, TCF12, SPI1, KAT2A, JUN, HMGN3, TFAP2C, TBP, SETDB1, MEF2C, SREBF1, CTCF, SMARCB1/INI1, SRF, IRF1

middle level:

MYC, BCLAF1, SIN3A, RXRA, USF1, TAL1, SIRT6, ZBTB33, HNF4G, ZNF263, BATF, BCL11A, FOXA2, ELF1, JUND, POU2F2, GATA1, PPARGC1A, NR3C1, BCL3, CEBPB, TCF7L2, IRF3, RFX5, GATA2, TAF7, FOS, NRF1, SP1, MEF2A, NR2C2, STAT2, CHD2, PAX5, MAX, ETS1

lower level:

ZEB1, FOXA1, HNF4A, NFE2, ZNF143, SP2, E2F6, SREBF2, CTCFL, EGR1, GATA3, ATF3, PRDM1, BRCA1, MAFK, FOSL1, IRF4, USF2, BHLHE40, BRF2, GTF2F1, SMARCC2, POU5F1, FOSL2, ZZZ3, MXI1, SMARCC1, RDBP, STAT1, BDP1, POLR3A, E2F4, TFAP2A, HSF1, THAP1

D) Closeup on TF-miRNA regulation. This panel is a shadow for main text figure Fig. 2B.The panel shows the relationships between regulatory edges between miRNAs and TFs and how they relate to the hierarchical levels. The inner circle of nodes contains all the TFs while the outer circle contains all miRNAs. ∆ is defined as the number of TF to miRNA interactions subtracted by the number of miRNA to TF interactions for each node. A ∆ of zero indicates a balance between these two types of interaction while a large positive or negative number shows a bias towards one or the other. The nodes in both inner and outer circles are sorted from highest ∆, at 6 o’clock, counter-clockwise to lowest ∆. Furthermore the size of each node is determined by the total number of interactions for each node, while the color of the TFs are on a gray scale from white to black, from top to bottom of hierarchical score, respectively. (The TF coloring and sizing here is different from that in the main text figure.) As shown in the figure, miRNAs most involved with TF-regulation tend to either regulate TFs or be regulated by them. This can be seen when randomizing the regulatory edges, as shown in Fig. S3L and S3M and observing the number of significant TFs and miRNAs. This shows that a large number of TFs and miRNAs are highly significant for this type of enrichment, as shown in the figure as green-yellow borders around the nodes. Another observation that can be made in this figure is that most of the regulatory edges between miRNAs and TFs involve TFs in the top and middle level of the TF hierarchy, meaning that the master TF regulators are generally involved with miRNA regulation, which matches the pattern for ncRNAs in general (Fig. S6A).

E) Average values for three-level hierarchy. This panel is a shadow for main text Fig. 2C. As in Fig. 2C, average values of various properties (topological, dynamic, expression-related, and selection-related - consistent with Table 1) and betweenness centrality for each level are shown for the proximal-edge hierarchy. The top, middle, and bottom rows correspond to the top, middle, and bottom hierarchies, respectively. Size of the grey circles indicate the relative ordering of the values for the three levels. Significantly different levels (P<0.05) using the Wilcoxon-rank-sum test are indicated by black brackets. The proximal-edge hierarchy depicted on the right is for the number of TF partners in the protein-protein interaction (PPI) network. The shade of the blue for each node corresponds to the number of TF partners in the PPI network for the associated TF.

Figure S5 - Comparison between proximal and distal TF networks 

This figure provides more results on comparisons between proximal and distal TF networks, as well as methods on obtaining distal TF network. 

A) In-degree (I) values in proximal and distal TF networks are slightly negatively correlated.

B) Out-degree (O) values in proximal and distal TF networks are positively correlated.

C) Histograms showing the distribution of I in the distal TF network.

D) Histograms showing the distribution of I in the proximal TF network.

The two distributions in parts (C) and (D) are significantly different. (chi-square test using in-degree counts from 0 to 55 with an interval of 5, P=0.005)

Figure S6 - Correlations between TF-ncRNA interactions and the regulatory hierarchy 

This figure provides more information on TF-ncRNA interaction and its correlation with network hierarchy. Note that these statistics are not influenced by potential host gene-associated regulation, as described in the caption.

A) A scatter plot of each TF’s out-degree on coding genes (Y axis) versus its out-degree on ncRNAs (X axis). The TFs at the top, middle, and bottom level are red, green, and blue, respectively.

B) and C) Bar plots of the tendency scores of all the TFs at different levels regulating different sub-classes of ncRNAs. The tendency scores of TFs regulating short ncRNAs, such as miRNAs, miscRNAs, snRNAs, and snoRNAs are shown in panel B, and the tendency scores corresponding to regulation of longer ncRNAs, such as lincRNAs and processed transcripts, are shown in panel C (see the glossary for detailed information about tendency score calculations). In both panel B and C, top-, middle-, and bottom-level TFs are listed in the top two rows, the middle two rows, and the bottom two rows, respectively. Furthermore, the TFs at each level are sorted according to the mean tendency score of each TF in an increasing order in panel B and C, respectively. The blue lines in both panels correspond to tendency scores which equal one.

Figure S7 - Interaction between phosphorylation and transcriptional regulatory hierarchies 

This figure provides more information on the inter-level communication within the TF hierarchy. In addition to transcriptional and post-transcriptional regulatory mechanisms, regulation may be mediated post-translationally, via inhibition through direct binding of other proteins or by post-translational modifications, such as phosphorylation. Data collected through mass spectrometry may be used to identify phosphorylated sites. Parts (A) to (C) relate the TF hierarchy to the phosphorylation network. 

A) Hierarchical structure of the phosphorylation network. There are 123 regulators and 1,734 interactions, based on networKIN 121. The hierarchy is constructed with the same algorithm as that described in the main text for the TF network. 

B) Hinton plot of regulatory propensities between different levels. Regulatory propensity is defined as 
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where L is the regulating level and M is the regulated level, and i and j are members of levels L and M, respectively. The area of each square is proportional to the degree of regulatory propensity between the two levels considered. In Ph ->TF (left), the highest propensities are seen when the top Ph level functions as the regulator, and especially when it regulates the middle TF level. In TF ->Ph, we see a similar tendency of the top TF level regulating all Ph levels. We also see a tendency of the bottom Ph level to be regulated by each of the TF levels.

C) Regulatory propensities between different sets of TFs. TFs are sorted by the hierarchy height statistics defined in the main text. Higher values of the statistics correspond to the upper levels. We used a sliding window of size 10 and a step size of 1 to calculate the combinations of regulatory tendencies seen in the Ph->TF heat map. Because the TF network is more sparse, we generated a more coarse-grained heatmap, with a window size of 40 and a step size of 5. The results discussed in (B) are easily seen in the heat maps; the higher (red) values in the upper left corner are for Ph->TF; the higher values along the upper row and leftmost column are for TF->Ph. 

Figure S8 - Analysis of bias and robustness of the TF hierarchy

A) A visualization of TF families in the TF hierarchical network shows no clear patterns, i.e., no TF family appears enriched in any of the three layers of the hierarchy (See Table S2).

B) A stacked bar plot shows how general, chromatin-related, and sequence-specific (TFSS) regulatory factors are distributed across the three layers of the TF hierarchy.

C) The relationships between h and various genomics features between the original network and the down-sampled networks. 

C-1) the number of miRNA interactions

C-2) the SNP densities

C-3) the amount of rewiring

C-4) the number of ncRNA targets

C-5) the correlation between binding and expression 

The correlation between the values of h and the values of genomic feature for each down-sampling fraction were calculated. For each sampling fraction, 100 trials were performed, and the distribution of Spearman correlation coefficients are shown in the boxes. The black line shows the P-value cutoff (P<0.05). In C-1), for sampling fraction of 80% or above, almost all the trials are significant (the black line P<0.05). When the sampling fraction is down to 50%, a majority of trials (75%) are still significant. In C-2) and C-3), the correlation remains significant even when the sampling fraction goes down to 60%. In C-4) and C-5), the significance drops when the sampling fraction goes down to 80%. It is important to point out that while further down-sampling generates a wider range of correlation coefficients, the average value of correlation coefficients for each sampling fraction stays rather consistent. This suggests that, taking merely network geometry into account, our results should remain consistent even as the number of TFs further increases.

D) The correlation between the values of h and the values of genomic feature for each disruption percentage were calculated. 

D-1) the number of miRNA interactions

D-2) the SNP densities

D-3) the amount of rewiring

D-4) the number of ncRNA targets

D-5) the correlation between binding and expression 

For each sampling fraction, 100 trials were performed and the distribution of Spearman correlation coefficients are shown in the boxes. The black line shows the P-value cutoff (P<0.05). In D-1), D-2) and D-3), though the disruption frequency goes up to 60% (i.e. 60% of the original edges are replaced), the correlation remains significant. In D-4), there is a significant correlation as long as the disruption rate is lower than 30%. In D-5), the tolerable disruption is only 10%.

Figure S9 - Characterization of motifs in the network


This figure provides more information on network motifs and correlations to gene expression.

A) We identified 10511 FFLs in the TF-target network in which the target node is not one of the 118 TFs. The FFLs are binned according to the location of the two TFs in the network hierarchy. As shown in the figure, most FFLs involve regulators in the middle level. 

B,C,D) Panel B shows that SIMs are significantly depleted in the TF-only network, but significantly enriched in the TF-target network. For reference, we include the FANMOD results for all 3-node network motifs in the TF-only network (C) and the TF-target network (D). Some of the 13 possible 3-node network motifs are not shown, simply because none of those motifs are observed or expected.

E) and F) The enrichment p-values (in blue) and depletion p-values (in red) of all possible SIM motifs in which different pairwise ncRNAs in different ncRNA sub-classes are co-regulated by a common TF (E) and of three-node and four-node motifs involving different sub-classes of ncRNAs (F). (F) Top: FFL motifs involving different sub-classes of ncRNAs; Middle: the four-node motifs with miRNA regulatory interactions forming FFLs; Bottom: the motifs in which the transcriptional regulation of different sub-classes of ncRNAs are controlled by regulatory interactions with miRNA.

G) Correlating expression levels in network motifs. The histogram of correlation coefficients between expression levels of constituents in the miRNA-mediated FFLs (TF => miRNA, TF => target, and miRNA => target) over many different tissues. The distribution of correlation coefficients for the real motifs are significantly more positive relative to motifs obtained from a random network (P=2e-7 by Wilcoxon rank-sum test).

H) These panels are “shadow figures” for Fig. 4. 

H-1) Systematic search of 3-node motifs in the TF-TF regulatory network. The frequency and enrichment of each motif are reported. Green stands for enrichment and red stands for depletion. The motifs are sorted such that those in the two ends have more significant p-values. The most enriched motif is the feed-forward loop. A particular example formed by STAT1, STAT,3 and RUX1 is shown. The “+” sign on an edge means the correlation between gene expression of source and target across tissues are positively correlated. The rest of the enriched motifs are presented for 6 pairs of mutually regulating TFs (toggle switches): FOXA1, FOXA2; EGR1, GTF2B; FOXA1, HNF4A; EGR1, JUND; SP1, SP2; STAT1, STAT2.

H-2) List of motifs involving promoter regulation, distal regulation, and protein-protein interaction. The frequency and enrichment of each motif are reported. Green stands for enrichment and red for depletion. Motifs in the two ends have more significant P-values. A motif mediated by the co-regulation of two promoter edges with (without) a protein-protein interaction is enriched (depleted). The same is true for the other two kinds of co-regulation. Two TFs targeting the promoter and the enhancer of a target gene tend to be physically interacting.

H-3) Examples of enriched motifs showing that miRNAs coherently shut down TF-modules: a protein complex of two TFs, and a cooperative pair of promoter and distal regulatory TFs. The motif frequency and enrichment are reported.

Figure S10 - TF allelicity 

A) TF allelicity. In this figure we depict visual how TF allelicity is defined. First TF bind peaks are separated into those that do not include heterozygous SNPs from those that do (black peaks vs red peaks). The SNPs are indicated with a black rectangle. The subset of peaks with a hetSNP that exhibit allele-specific binding (ASB) are indicated with a blue bar. The TF allelicity is then defined as the fraction of peaks that contain a hetSNP with a sufficient sequencing depth that exhibit allele-specific binding, i.e the peaks with the blue bar, over all the peaks that contain a hetSNP that could have been assessed for allele-specific activity, i.e. the red peaks.

B) Relationship between TF allelicity and selection. This is a “shadow figure” for main text Fig. 5B. Selection pressure in TF-binding peaks that show allelic behavior is compared to that in all the other peaks. Bar height represents the ratio of a selection measure in allelic regions over the other TF-binding peaks. Asterisks represent significant differences between the two sets of genomic elements (P<0.05 by Wilcoxon rank-sum test). 
C) DAF spectra of genomic in allele-specific TF-binding peaks and non-allele-specific TF-binding peaks. This figure complements Fig. 5b and Fig. S10b. The genomic variants examined here are SNPs (C-1), indels (C-2), and SVs (C-3) that are heterozygous in GM12878 (i.e. those that can potentially show ASB), and are within the regions between upstream 2kb and the end of genes. 

Figure S11 - Hierarchy and genomic features 

A) Correlation of various topological, dynamic and expression-related properties to different levels in the hierarchy (middle column) and centrality (last column). This is a graphical version of some results from Table 1 and Fig. 2c. Only the properties that are significantly different between different hierarchical levels, or are significantly correlated with centrality are listed (P < 0.001). For full set of features and p-values, see Table S4. Absence of any significant differences or correlation is indicated by a ‘-’. In the first column, various properties are placed in different categories. In the second column, the length of the bars indicate the average value (on a linear scale) of the property for the 3 different hierarchical levels. A number in the middle column indicates the correlation of that property with the hierarchy height (also highlighted by an upward or downward pointing arrow in case of positive or negative correlation, respectively). The third column lists the correlation of the corresponding property with one of the two measures of centrality: degree centrality (number of targets in the regulatory network, shown by a big green central node connected to many smaller ones) or betweenness centrality (number of shortest paths passing through a certain node, shown by a thicker green edge between two nodes with many shortest paths passing through them). 

B) Correlation of various evolutionary properties to different levels in the hierarchy (middle column) and centrality (last column). The legends are similar to those in Tables 1, S4, and S6, except that a negative correlation with degree centrality is indicated by a small central node connected to many larger red ones. For selection properties in TFs, a significant negative correlation is shown between SNP density and centrality (P=0.03), and a significant positive correlation is shown between allelicity and centrality (SCC=0.28, P=0.04) (See Table S6D for more details). For selection properties in targets, a significant negative correlation is shown between SNP density and centrality (P=3e-5), and a significant negative correlation is shown between dN/dS and centrality (P=7e-6) (See Table S6E for more details). Schematic of relationships between TFs, their binding regions, and their target genes in the genome is shown in Table S6F.

M. Supplementary Tables

Table S1 - Details of ENCODE ChIP-seq datasets

This table lists all the transcription factor ChIP-seq experiments performed by the ENCODE consortium. In total, there are 480 datasets (with at least 2 replicates), representing 125 TFs (including Pol II, but excluding the elongating form of Pol II as an independent factor). After quality control, we are left with 458 datasets representing 119 TFs. Each row corresponds to a different experiment. Column 1 represents a summarized data-quality flag (0 = GOOD; -1 = USE WITH CAUTION; -2 =REJECTED DUE TO POOR QUALITY). Column 2 contains the peak-calls file name. Column 3 contains the cell line. Column 4 has an lab identifier representing the production group that generated the dataset. Column 5 shows the HGNC (HUGO Gene Nomenclature Committee) name of the factor. Column 6 is an extended identifier for the dataset encoding the TF name, with any specific treatments or protocols that describe the experiment are enclosed in single brackets, the production lab enclosed in enclosed in curly braces (BROAD = Broad Institute, HA = Hudson Alpha, SYDH = Stanford/Yale/Davis/Harvard, UCD = University of California Davis, UTA = University of Texas Austin, UW = University of Washington), and with an antibody specifier enclosed in parentheses. The sub-tables are segregated on the basis of the cell-line used.

Table S2 - Regulatory TFs used in this study 

A) This table lists all the TFs used in this study. In total, there are 88 sequence-specific TFs (TFSSs), 16 general TFs (like Pol2- and Pol3-associated factors), and 15 chromatin-associated factors (as noted in the main text, we abbreviate all these transcription-related factors as TFs for simplicity). Data from the Luscombe lab census of human transcription factors28 was used to classify TFSS into families based on the presence of DNA binding domains from the Interpro database. The “TF Domains” column lists all Interpro domains found in the TF, while the “TF Family” column lists the category to which it was assigned for this study. Also listed for each TF is the evidence category to which it is assigned in the Luscombe census: (a) genes for which there is experimental evidence of regulatory function in some mammalian organism, (b) genes with the same protein domain arrangement as genes in class a, (c) genes containing DNA binding domains from InterPro found only in TFs, (o) probable TFs from other curated sources like Gene Ontology (GO) and TRANSFAC, but missed in the Luscombe analysis, and finally (x) unlikely TFs containing InterPro DNA binding domains found not just in TFs, or that have an established molecular function outside transcription28. The 1390 TFs predicted by the Luscombe census consist of classes a,b, and o. (Note that 1391 TFs were reported, but TF PBX2 was double-counted.28) For general and chromatin-associated factors, a more detailed annotation of the factors’ function is given in this table. For each factor, whether a dataset is available in one of the ENCODE Tier 1 or Tier 2 cell lines is indicated by an X; the number of datasets in other cell lines is also indicated. Complete cell line data for each factor is provided in Table S1.

B) This table compares the distribution of TF families in the ENCODE ChIP-seq dataset and in the human genome. Families with 10 or few members in the human genome have been grouped into a single “Smaller Families” category. By far the most abundant class of TFs in the genome is Zinc Fingers (ZNF), representing 50% of the TFs in the genome. The 19 ZNF TFs represent more than 20% of the TFs in the ENCODE dataset, while 3% of the almost 700 factors in this family have been assayed so far. In contrast, for the STAT, AP2, and MADs-box families, more than 40% of the small number of such factors in the genome have been assayed by ENCODE. Although not random in their selection from the entire repertoire of ~1400 human transcription factors28, the 119 factors represent a wide range of families. 

Table S3 - Co-association 

A) Anti-CEBPB coimmunoprecipitation. Proteins co-immunoprecipitated with anti-CEBPB antibodies, but not control IgG, are shown in the table. Anti-CEBPB IP-MS experiment method. Co-immunoprecipitation experiments from K562 cells were carried out using anti-CEBPB antibodies (santa cruze, sc-150). Control experiments were performed paralleled using normal rabbit IgG. Proteins were separated by SDS-PAGE gel, and then subjected to in-gel trypsin digestion. Eluted peptides were separated and analyzed by nanoLC-MS/MS using LTQ-Orbitrap. All mass spectrometry raw files were searched against a human protein IPI database (v3.42) conjugated with reversed database using SEQUEST algorithm (version: SRF v. 5). SEQUEST parameters were setup as below: mass tolerance of 0.50 Da for precursor ions and 0.100 Da for fragment ions; full tryptic constraint allowing maximum two missed cleavage; variable modification on methionine (oxidation, +16) and cysteine (Carbamidomethyl, +57). The database search result was processed using Scaffold Software (version 2). Both peptide and protein confidence were greater than 95%, and a minimum of two peptides per protein was required.

B) Functional enrichment of genes associated with biclusters in the E2F4 focus-factor context in K562. The table shows top 20 biological processes that are enriched in gene-sets associated with different mutually co-associated sets of TFs in the E2F4 context. Column 1 has the ontology terms for the enriched biological processes. Columns 2-4 represent the statistical significance of enrichment of these categories. The last column indicates the partner-TFs that co-associate with E2F4 in the biclusters. SOM/C.3.3 has details.

C) Functional enrichment of genes associated with biclusters in the E2F6 focus-factor context in K562. The table shows top 20 biological processes that are enriched in gene-sets associated with different mutually co-associated sets of TFs in the E2F6 context. Column 1 has the ontology terms for the enriched biological processes. Columns 2-4 represent the statistical significance of enrichment of these categories. The last column indicates the partner-TFs that co-associate with E2F6 in the biclusters. SOM/C.3.3 has details.

D) Functional enrichment of genes associated with biclusters in the MAX focus-factor context in K562. The table shows top 20 biological processes that are enriched in gene-sets associated with different mutually co-associated sets of TFs in the MAX context. Column 1 has the ontology terms for the enriched biological processes. Columns 2-4 represent the statistical significance of enrichment of these categories. The last column indicates the partner-TFs that co-associate with MAX in the biclusters. SOM/C.3.3 has details.

Table S4 - Analysis of various properties of the network in a hierarchical framework and their correlation with centrality (degree and betweenness centrality)

This table lists various properties of the hierarchical network. All data is divided into 7 smaller sub-tables (labeled A through G) for easier readability. A summary of the most significant correlations is shown in Fig. S11A, and detailed statistics, including significance, are available in here. Download-able versions of the table are available (see enets13.S4_Excel_tables.zip in SOM/N). 

Here is a more detailed description of the tables:

A) Various topological features are listed for each TF, such as various kinds of targets (proximal and distal targets) and regulators (miRNA, Kinases), along with their partners in interaction networks. The “Targets that are TF” column lists the targets of a given TF that are TFs with in 119 TFs that chip-seq experiments were done on.

B) Various dynamic and expression-related features are listed for each TF, such as tissue specificity and rewiring score (a measure of how much the connections change across different cell lines), in addition to overall expression level (over various tissues and conditions) and the correlation between binding and expression. Source study for expression data collected the values for a subset of TFs for 34 human tissues so there are a few TFs with no expression value.

C) Hierarchical levels and continuous hierarchical statistics. In this sub-table, we list a statistic that maps each TF to a continuous hierarchy (a value of -1 maps the TF to the bottom of the hierarchy, and a value of 1 maps the TF to the top), the hierarchical level to which each TF belongs (B=bottom, M=middle and T=top), and their betweenness centrality. This last quantity is the number of shortest paths from all vertices to all others that pass through that TF in the full filtered proximal regulatory network. In order to calculate some of these statistics in and out degree values are used. The in-degree of a node is defined as the number of edges that originate from that node, in a directed network, such as the ones in this paper; conversely, the out-degree of a node is the number of edges that originate in any other node and go to the node in question.

D) Average value of various TF properties for each hierarchical level, such as the number of targets, the degree in the PPI, and other dynamic and evolutionary features. P-values using the Wilcoxon rank-sum test are also given for a significance calculation between each pair of levels.

E) Correlation of various TF properties for each TF’s hierarchical statistics (as described above and in main text). P-values using the Wilcoxon rank-sum test are also provided for calculating significance.

F) Correlation of various TF properties for each TF’s centrality (degree centrality and betweenness centrality). P-values using Wilcoxon rank-sum test are also given for calculating significance. Degree centrality is the number of targets that a TF has in the full filtered proximal regulatory network.

G) This table shows the spearman correlation of various TF properties with TF’s hierarchical statistic along with their P-values and average values of TF properties for each hierarchical level along with Wilcoxon rank-sum test P- values for TFSSs. For comparison the values for all the TFs are also shown (as seen in Table 1 and Fig. 2c).

Table S5 - Functional analysis and annotation of TFs and their target genes 

This table shows the results of functional analysis of TFs and their target genes. There are four sub-tables:

A) This sub-table shows an assessment of whether major TF classes are enriched in each of the three levels of the TF hierarchy. Statistical significance was calculated using a hypergeometric test comparing the observed and expected number of members of each group in each level. There were two significant findings. First, chromatin factors are enriched in the top level of the hierarchy. This finding suggests that, for most TFSSs in the TF hierarchy, chromatin remodeling is a prerequisite for factor binding, opening the chromatin and making the DNA accessible to the TFSS122. Secondly, TFSSs are enriched in the middle level of the hierarchy. The same type of calculation was performed for TF families, with no significant enrichments. 

B) This sub-table examines whether major factor classes and TFSS families are differentially enriched for different topological features of the regulatory hierarchy. The topological features are degree centrality (O), hierarchy height, normalized hierarchy height, and betweenness, both in the TF-target network and in the TF-only network. 

C) Functional enrichment analysis of the coding gene targets of the TFs at different levels. The functional categories listed here are selected from a huge number of GO categories based on the p-values for statistical significance. Similar functional categories are listed in the same group with the same font color. Using the Benjamini-Hochberg method, the p-values are adjusted by correction for multiple hypothesis testing123. 

We applied the DAVID Gene Ontology (GO) annotation tool101,102 to the targets of TFs in each of the three levels of the TF hierarchy, as well as to targets shared by two or all three levels. These results suggest that top-level TFs tend to be multi-taskers, and the bottom-level is enriched with TFs involved in membrane functions. This analysis also shows the cross-talk between TFs at different levels from the perspective of gene ontology. For example, the common targets of TFs between pairwise levels are significantly enriched for nucleosome organization and chromatin assembly or disassembly. The functional enrichment of targets common to different levels of the TF hierarchy illustrates cross-talk between different levels. In particular, target genes shared by all three levels of the TF hierarchy are enriched for histone proteins, which tend to be active in all cell types.

D) Transcriptional regulation-related functional enrichment analysis of TFs at different levels. TFs in bold are annotated in DAVID as being involved in both positive and negative regulation of gene expression. The p-values listed in the table are also corrected for multiple hypothesis testing using the Benjamini-Hochberg method, as in Table S5C.

We used the DAVID annotation tool to map all the TFs into functional categories related to gene regulation, and assigned them into three groups: only positive regulators of gene expression (activators), only negative regulators of gene expression (repressors), and both positive and negative regulators of gene expression (both). Using all human genes as background, we find that all three levels in the hierarchy are significantly enriched with annotations for both positive and negative regulation of gene expression.

Table S6 - Various evolutionary features for both TFs and targets 

This table lists various evolutionary features for TFs and hierarchical levels, and the correlations between evolutionary features with hierarchy, centrality and betweenness for TFs and/or targets. Download-able versions of the table are available (see enets14.S6_Excel_tables.zip in SOM/N). 

A summary of the significant correlations is shown in Fig S11B.

Significance calculations between different levels of the hierarchy are performed using the Wilcoxon rank-sum test. P-values for the correlation between these properties and degree centrality are calculated using a hyper-geometric test. Here is a detailed description of the sub-tables:

A) This sub-table lists the various evolutionary features for the TFs, such as allelicity, fraction of low-frequency SNPs in TF-binding motifs, dN/dS, and SNP density.

B) Average value for each hierarchy level (for TFs). 

C) Correlation with hierarchy statistic (for TFs). The Spearman correlation coefficient and the corresponding p-values are indicated.

D) Correlation with degree centrality and betweenness (for TFs). The Spearman correlation coefficient and the corresponding p-values are indicated.

E) Correlation with degree centrality (for targets), along with the corresponding p-values.

F) Schematic showing that in a typical TF-binding reaction, a TF binds to its TF-binding site, which then regulates the expression of a target gene. Variation patterns and selection pressure maybe investigated in all three players of the reaction. 

G) Statistics of allele-specific binding peaks at the upstream 2 kb and gene bodies that overlap with heterozygous SNPs, indels, and SVs. There is an enrichment of indels that potentially cause allelic events relative to SNPs (SNP/Indel = 5.8 in allelic peaks, whereas SNP/indel = 8.4 genome-wide).

Table S7 - Comparison of network properties between human and model organisms 

We compare the properties of human regulatory network with corresponding results for regulatory networks for E.coli, yeast (S.cerevisiae), worm (C.elegans), fly (D.melanogaster) and human. For the most part the results from this paper are consistent with the comparable results from other species. Dashes indicate results that are non relevant, while N/A indicates results that are not available. In particular TFs on the top, have their binding more strongly correlated with the expression of their gene targets. Many of these properties are shared between human and the model organisms -- e.g. the more influential TFs being on the top. Also, TFs in the middle level (and to a lesser extent, in the top level) tend to cooperate the most in terms of co-regulation48. We also find that the result that TFs on the top tend to have more interaction partners (PPI network, phosphorylation partners) is consistent with E.coli and S.cerevisiae, but not with C.elegans.

Table S8 - TF expression variation

Expression variation of TFs at different levels of the hierarchical network. Standard deviation (SD) of all TFs are calculated based on their expression levels in 34 different tissues from Ravasi et al26. NAs are shown for TFs that have no expression data in the Ravasi et al26 dataset. 

N. Supplementary Data Files

N.1 Overview

Data files can be accessed from the supplementary web site, http
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org, in three different ways. First, raw files can be downloaded directly from the web site. Tables in the network files enets1-enets3 and enets5-enets11 follow the same format, with the three columns representing (in order): regulator, interaction type, target; or two columns when no interaction type is given (regulator, target). Second, some network files are available in Simple Interaction File (.sif) format. These files are loaded into an instance of tYNA50 integrated to the web site for visualization and data analysis such as network statistics computation and motif finding. Third, the exact graphical layouts of Figures 2A, 2B, 5A and S4 (B, C, D) are available in Cytoscape (.xgmml) format 51. A Web-based Cytoscape viewer is provided on the web site for visualizing these files.

The whole web site is hosted on an Amazon EC2 m1.medium virtual machine (VM). A Tomcat server is installed to serve static web pages, as well as Java server pages and servlets of tYNA. PHP pages of the Cytoscape viewer are served by using the Quercus Java library. Some data of tYNA are stored in a MySQL database on the VM. Further details on the configuration of the virtual machine are available through the website. 

N.2 Listing of files 

enets1.Proximal_raw.txt

- This file contains all the proximal regulatory interactions from the TFs in the raw network.

Primary contact: C Cheng

enets2.Proximal_filtered.txt

- This file contains the subset of interactions from enets1 in the filtered network.

Primary contact: C Cheng

enets3.Distal.txt

- This file contains all the distal regulatory interactions from TFs.

Primary contact: K Yip

(Secondary: N Bhardwaj, J Leng)

enets4.Distal_cell_line.txt

- This file contains the distal regulatory modules connected to transcripts, with cell-line specific TF binding information.

Primary contact: K Yip      
(Secondary: J Leng)

enets5.K562_proximal_unfiltered_network.txt

- This file contains all the TF-gene regulatory interactions in K562. It has the subset of interactions from enets1.Proximal_raw.txt which are present in K562.

Primary contact: C Cheng

enets6.GM_proximal_unfiltered_network.txt

- This file contains all the TF-gene regulatory interactions in GM12878. It has the subset of interactions from enets1.Proximal_raw.txt which are present in GM12878.

Primary contact: C Cheng

enets7.K562_proximal_filtered_network.txt

- This file is a subset of enets2.Proximal_filtered.txt, it contains the filtered TF-gene regulatory interactions in K562.

Primary contact: K Yan

enets8.GM_proximal_filtered_network.txt 

- This file is a subset of enets2.Proximal_filtered.txt, it contains the filtered TF-gene regulatory interactions in GM12878.

Primary contact: K Yan

enets9.Allele_binding.txt 

- This file contains all the allele-specific binding edges from figure 5A. It is approximately a subset of enets6.

Primary contact: J Rozowsky

(Secondary: P Alves, A Harmanci)


enets10.TF-miRNA.txt 

- This file contains all the regulatory interactions of TFs to miRNAs.

Primary contact: R Min

enets11.miRNA-gene.txt 

- This file contains all the regulatory interactions of miRNAs to genes based on the TargetScan program.

Primary contact: C Cheng

enets12.ncrnaNames.txt 

- This file contains all the names of the ncRNAs from the enets19.TF-ncRNA.txt file

Primary contact: R Min

enets13.S4_Excel_tables.zip 

- This file contains various topological features from the network. It contains all of Table S4 in Excel and CSV format.

Primary contact: C Cheng

(Secondary: K Yan, N Bhardwaj, X Mu)

enets14.S6_Excel_tables.zip 

- This file contains various evolutionary features from the network. It contains all of Table S6 in Excel and CSV format.

Primary contact: E Khurana

(Secondary: X Mu, N Bhardwaj)

enets15.allele-peaks.tgz 

- This file contains the haplotype specific peaks (in BED format) called for GM12878 using the personal genome and ENCODE ChIP-Seq experiments for TF binding.

Primary contact: A Harmanci

enets16.hierarchy_levels.m 

- Code to assign nodes into hierarchical level via simulated annealing

Primary contact: K Yan

enets17.count_all_3nodes_motifs.m 

- Code to enumerate the number of all 3-node motifs in a directed network

Primary contact: K Yan

enets18.Allele_expression.txt 

- This file contains all the allele-specific expression values for all nodes from figure 5A

Primary contact: J Rozowsky

(Secondary: P Alves, A Harmanci)

enets19.TF-ncRNA.txt

- This file contains all the regulatory interactions of TFs to ncRNAs

Primary contact: R Min

enets20.coassoc-data.zip 

- This file contains all the supplementary data underlying the co-association calculations in figure 1 and SOM/C. The details of the included files are described in the README in the archive file.

Primary contact: A Kundaje

enets21.coassoc-code.tgz 

- This file contains all the code underlying the co-association calculations in figure 1 and SOM/C.

Primary contact: A Kundaje

enets22.gsc_coassoc_zscores.txt 

- Z-scores for global co-association of TFs

Primary contact: K Yip

N.3 Alternate location for co-association code

The RuleFit3 package was downloaded from http
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html. The R code base for learning the models and all subsequent analysis can be obtained from http
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N.4 Online cytoscape viewer

The networks from figures 2A, 2B, 5A and S4 (B, C, D) can be visualized online. These visualization contain the same layout, coloring and information used to generate their respective figures, more details can be found in each figures’ respective caption. (Primary contact: P Alves.)

enets23.figure2a_proximal.xgmml & enets24.figureS4b.xgmml 
- These files contains a subset of the interactions found in enets2.Proximal_filtered.txt involving the TFs studied.

enets25.figure2a_distal.xgmml & enets26.figureS4c.xgmml

- These files contains a subset of the interactions found in enets3.Distal.txt involving the TFs studied.

enets27.figure2b.xgmml & enets28.figureS4d.xgmml

- These files contains a subset of the interactions found in enets10.TF-miRNA.txt and enets11.miRNA-gene.txt involving the TFs studied.

enets29.figure5a.xgmml 

- This file contains a subset of the interactions found in enets9.Allele_binding.txt and enets18.Allele_expression.txt involving the TFs studied and where interactions involve both ASB and ASE.

O. Contacts

Table 1 - Analysis of various properties in the context of network centrality and hierarchy

Primary contact: C Cheng

Secondaries: K Yan, X Mu

Table S1 - Details of ENCODE ChIP-seq datasets

Primary contact: J Rozowsky

Secondaries: A Kundaje

Table S2 - Regulatory TFs used in this study

Primary contact: R Alexander

Table S3 - Co-association

Primary contact: A Kundaje

Table S4 - Analysis of various properties of the network in a hierarchical framework and their correlation with centrality (degree and betweenness centrality)

Primary contact: C Cheng

Secondaries: K Yan, N Bhardwaj

Table S5 - Functional analysis and annotation of TFs and their target genes

Primary contact: R Min

Table S6 - Various evolutionary features for both TFs and targets

Primary contact: E Khurana

Secondaries: X Mu, N Bhardwaj

Table S7 - Comparison of network properties between human and model organisms

Primary contact: J Rozowsky

Table S8 - TF expression variation

Primary contact: C Cheng

Figure 1 - Context-specific co-association of transcription factors

Primary contact: A Kundaje

Figure 2 - Network Hierarchy

Primary contact: K Yan

Secondaries: C Cheng, P Alves

Figure 3 - Analysis of various properties in the context of hierarchy and network centrality

Primary contact: C Cheng

Figure 4 - Analysis of network motifs

Primary contact: K Yan

Figure 5 - Interplay between network topology, allele-specific effects of TFs, and selection pressure

Primary contact: J Rozowsky

Secondaries: X Mu, P Alves

Figure S1 - ChIP-seq Workflow, data processing, and TF knock-down

Primary contact: J Rozowsky

Secondaries: S Landt, C Cheng

Figure S2 - More information on TF co-association

Primary contact: A Kundaje

Figure S3 - TF hierarchy, continuous statistics for ranking the TFs and the robustness of networks

Primary contact: K Yan

Secondaries: R Alexander, P Alves

Figure S4 - Construction and Analysis of the TF Hierarchical Network

Primary contact: K Yan

Secondaries: P Alves

Figure S5 - Comparison between proximal and distal TF networks

Primary contact: J Leng

Secondaries: K Yip, N Bhardwaj

Figure S6 - Correlations between TF-ncRNA interactions and the regulatory hierarchy

Primary contact: R Min

Figure S7 - Interaction between phosphorylation and transcriptional regulatory hierarchies

Primary contact: G Zilberman-Schapira

Secondaries: K Yan

Figure S8 - Analysis of the Hierarchy Bias & Robustness 

Primary contact: R Alexander

Secondaries: K Yan

Figure S9 - Characterization of motifs in the hierarchical network

Primary contact: K Yan

Secondaries: R Alexander, R Min

Figure S10 - TF Allelicity

Primary contact: X Mu

Secondaries: R Alexander, J Rozowsky

Figure S11 - Hierarchy and genomic features

Primary contact: X Mu

Secondaries: N Bhardwaj
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