Relating genomic sequence variants with structural and network data provides insight about human disease

- Mutations in which genes are more likely to cause disease
- Mutations of which sites in those genes are more likely to cause disease
- We integrate sequence, structure and networks data to answer these questions
- Since now have much more data for polymorphisms in healthy humans (1000 Genomes) can answer these questions
- Also now have more structural data and larger networks (PPI, regulatory network and signaling pathway)

MUTATIONS IN WHICH GENES ARE MORE LIKELY TO CAUSE DISEASE

Fig 1 PPI

- 1a Disease genes tend to show higher degree centrality and betweeness centrality
- 1b allele freqs. of nonsyn snps are negatively correlated with degree (if remove p53 snps) so polymorphisms in hubs occur at low allele freqs.
- 1c allele freqs. of indels are negatively correlated with degree
- 1d picture of PPI network with hgmd genes and polymorphic genes

Fig 2 SIN

- 2a Cartoon of division of hubs into multi- and singlish- interface hubs
- 2b Multi- interface hubs have significantly more disease genes than singlish- hubs
- 2c Allele freqs of nonsyn snps are significantly lower in multi-interface hubs than singlish-hubs

Signaling pathways?

- Do disease genes tend to have higher degree in signaling pathways ?? No significance difference
- 2) allele freq positively correlated with indegree– not sure why
- 3) Enrichment of number of disease/ polymorphic genes in signaling pathways?

MUTATIONS AT WHICH SITES TEND TO CAUSE DISEASES

Fig 3. Sequence constraints (novel for deletions)

- 3a: Disease causing single nucleotide variants have lower dN/dS than polymorphic sites
- 3b: allele freq of snps is positively correlated with dn/ds per site
- 3c: disease deletion sites have lower gap scores
- 3d: alternate allele freq of deletions is positively correlated with gap scores

Fig 4: Structural constraints

- 4a: Disease variants tend to occur at structurally conserved sites within protein families
- 4b: structural alignments of protein structure with disease and 1KG snps