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Graph-based learning: label propagation

Graphical models: Probabilistic PCA, Mixture of
Gaussians, Hidden Markov Models

Neural Networks: traditional neural nets,

Boltzmann machines, deep belief nets, deep
Boltzmann machines

Machine Learning vs. Human Learning:

Challenges and limitations of existing modeling
frameworks

Future research



Machine Learning is different from data mining
or statistics

 High-dimensional data (often more than 100 dimensions)

« The noise is not sufficient to obscure the structure in the
data if we process it right.

 There is a huge amount of structure in the data, but the
structure is too complicated to be represented by a simple
model.

 The main problem is figuring out a way to represent the
complicated structure so that it can be learned.



Graph-based learning (Xiaojin Zhu, Dengyong Zhou)
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Applications (Rui Kuang)
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(1) Normalize the bipartite graph by computing B=Dy,* * W+ Dy, *.
(2) Choose parameter & and perform a two direction propagation, until
convergency (f denotes the time step):
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(3) The sequence f* converges to its limit f* and f* gives the class labels
on the unlabeled vertices in both V and U.



Graph-based learning with mutiple networks
(Tsuda, Bioinformatics, 2005)
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Graphical Models: nodes as variables

instead of data points
* Define joint probability distributions
intuitively and conveniently using graphs.

* Nodes represent variables and edges
represent statistical dependencies.

* Missing edge patterns correspond to
conditional independencies.



CoNTINUOUS LATENT VARIABLES

e In many models there are some underlying causes of the data.
e Mixture models use a discrete class variable: clustering.

e Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe. Geometrically, this is
equivalent to thinking of a data manifold or subspace.
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e To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.



FAcTOR ANALYSIS

e When we assume that the
subspace is /inear and that the »
underlying latent variable has a
Gaussian distribution we get a -
model known as factor analysis: NC—"
— data y (p-dim);

— latent variable x (/k-dim) o

o

p(x) =N(x[0, 1)
ply[x,0) = Niy|p + Ax, U)

where i is the mean vector, A\ is the p by k factor loading matrix, and
U is the sensor noise covariance (ususally diagonal).

e Important: since the product of Gaussians is still Gaussian, the joint

distribution p(x,y), the other marginal p(y) and the conditional
p(x|y) are also Gaussian.



MARGINAL DATA DISTRIBUTION

e Just as with discrete latent variables, we can compute the marginal
density p(y|#) by summing out x. But now the sum is an integral:

plyl|l) = / p(x)p(y|x,8)dx = N(y|pn, AN +T)
X

which can be done by completing the square in the exponent.

e However, since the marginal is Gaussian, we can also just compute
its mean and covariance. (Assume noise uncorrelated with data.)
Ely] = EFpt + AX + noise] = pt + AE[x] + E[noise]
=pu+AN-04+0=pu
Covly] = Elly — )y — )
= F|(pt + AX + noise — p1) (2 + AX + noise — )
= F[(Ax+n)(Ax+n)' | = AExx" A" + E(nn")
=AN" + 0

']

']
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FA = CoONSTRAINED COVARIANCE (GAUSSIAN

e Marginal density for factor analysis (y is p-dim, x is k-dim):
p(y|8) = N(y|p, AN +T)

e S0 the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

N
Cov[¥] A \P

e In other words, factor analysis is just a constrained Gaussian model.

(If I were not diagonal then we could model any Gaussian and it
would be pointless.)

e Learning: how should we fit the ML parameters?

e |t is easy to find yi: just take the mean of the data.
From now on assume we have done this and re-centred y.

e What about the other parameters?
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EM ror FACTOR ANALYSIS

e We will do maximum likelihood learning using
(surprise, surprise) the EM algorithm.
E- step (] / n|yn Qt
M-step: 9”1 = awnmxy don v Bl (xmy™) log p(y™, x7|0)dx"

o For E-step we need the conditional dlstrlbutlon (mference)
For M-step we need the expected log of the complete data.

E — step: qt+1 = p(x n|yn (_)t _ \' n|nln’Vn)
M — step : AT —awm&uZ (((x",y'

) q;z.+ l

it —&I”I]l&\q,z (La(x",y' ),-'q{.H
n
n

12



FiNnAL ALcoriTHM: EM FoOrR FACTOR ANALYSIS

e First, set 1 equal to the sample mean (1/N) > y,, and subtract
this mean from all the data.

e Now run the following iterations:
E - step: ¢! = p(x[y, 6") = N (x"|m", V")
V= T4+ A0 It
m" = VAU Yy — p)

—1
M — step : AiT! = (Z y'nmnT) (Z Vn.)

n

\I’t+1 dl&g [Z yn nT \t-i-l Z llln nT]
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Bayesian Networks

EXAMPLE
.;':_ .C) The key is to factor and then apply the distributive law.
'l\_ ‘Y‘ ¢ - 3 { - 3\ f= \
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= _ f .\ / § : v ! <
-"'.‘/—-\ (.-—\{" - p'\XI‘XGJ/ p'kkl b XG)'
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X1)p(Xa Xa, X5)

X1 )p(Xq[Xa)p(X5[X3)p(Xe

pxnXe) =Y Y Y Y pixp(xs

X2 X3 X4 X3

= p(Xy) E p(Xs|Xyq) E piXg|Xyq) E P(X4/Xs2) E p(X5|X3)p(Xg|X2, X5)
X9 Xg x4 X3

= p(X1) E P(Xa|Xy) E p(Xa[xq)Ps(X2,X3) E P(X4|X2)
X9 Xg x4

= p(X1) E p(xX2|x1)Py(x2) E p(Xa|x1)Ps(x2, X3)
X Xg

= p(Xy) E P(Xa| X1 )Py(X2)Pa(Xy, Xo)

X3

= p(Xy)Pa(Xy)
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* Examples:
HMMs, Chow-
Liu Trees

e Efficient Belief
Propagation
algorithms

Trees

BELIEF PROPAGATION (SUuM-PrODUCT) ALGORITHM

e Choose a root node arbitrarily.

E E

e If j is an evidence node, 1" (x;) = d(x;,7;), else V=(x;) = 1.

e Pass messages from leaves up to root and then back down using:
mji(z;) = E o (a2, ;) H myi(2;)
T; kee(7)
e Compute node marginals using the product of incoming messages:

plz;|XE) oE(2;) H M T3)

kee(i)

O S

15



HMNM GraprHICAL MODEL

e

e Hidden states {x;}, outputs {y;}
Joint probability factorizes:

T
P({x}.{y}) = [ Plz¢[x¢—1)P(ye|z¢)
t=1
71
= Tx, Szt,z41 H Aze(yt)
t=1 t=1

e NB: Data are not i.i.d.
There is no easy way to use plates to show this model. (Why?)
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Links TO OTHER MODELS

e You can think of an HMM as:
A Markov chain with stochastic measurements.

or

e The future is independent of the past given the present.

However, conditioning on all the observations couples hidden states.

17



HMNMs: INFERENCE OF HIDDEN STATES

e What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

oy — fy _ PUY ) p(a)
plzely ) = v(ze) = ()
B pl y’i ¢ )p( ny-l ¢ )plae)
p(y?)
pl yli ,x)p( yzi_l |2¢)
p(y1)
afxt)(xe)

plriy}) = v(2t) = ——F
ST p(y1)

where  aj(t) = p( yi. z¢=7j)
Bi(t) = p(yiey |ze=7)

vilt) = plag =i | yi)
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ForwWARD-BACKWARD ALGORITHM

e We compute these quantites efficiently using another recursion.

Use total prob. of all paths going through state i at time ¢ to
compute the conditional prob. of being in state i at time ¢:

ilt) = pl Tt = 'i | ¥i)
= oy(t)3;(t)/ L
where we defined:
Bit) = plyisr | = =7)
e There is also a S|mple recursion for [3;(f):
Z S_]zj t+1)Ai(¥i+1)

."3_7' (1) = 1

e o;(t) gives total inflow of prob. to node (%, )
3;(t) gives total outflow of prob.
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ForRWARD-BACKWARD ALGORITHM

e ;(t) gives total inflow of prob. to node (t,7)
/3;(t) gives total outflow of prob.

4 R
b 5l . 4 >
- RIS - .
F§ 4 ‘&\ 4
: 2 T
7 4 . 4
. y S . 23
| 1
o> time <«—f

e Bugs again: we just let the bugs run forward from time 0 to £ and
backward from time 7T to .

e In fact, we can just do one forward pass to compute all the a;(?)
and one backward pass to compute all the 3;(¢) and then compute
any ~;(t) we want. Total cost is O(K2T).
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Undirected Graphical Models:
Boltzmann Machines (Hinton)

a) A Boltzmann machine. b) A Boltzmann machine partitioned into visible (shaded) and
hidden units. ¢) A restricted Boltzmann machine.

1
E(vb) =~ S Wiy~ Sam-Yoh  P0=1= s Sy
i i ]
1
_E(v ;= 1/h) = - , —
p(v.h) = exp(=£(v.h) 5 _ > E(V.H). p(v:=1lh) L+-exp(—ai =X, Wijh;)
vk

AW;j o< <Vj]’j)data - <Vz']/j>recon-
AWj < (vif 1j )data — Vil 1j )model- Ad; o< (Vi)data — Vi) recon:

Abj os <]’j>data - <l’j>recon- 21



Gated RBM (Hinton)

Hidden
layer

O O

k A
O 0
O O

Input layer Output layer
E (V. th) = — Z W}jkvihj.\‘k — Z (’,'J'V,'hj — Za,fv,- — ijllj
ijk ij i j

Anfzjk o< <vihjxk> data — <Vihjxk>recon-
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Factorization to reduce parameters
(Hinton)

Input layer Output layer

E(v.hjx)=-)) W}}W}}W,j}vl-h Xe— Y civihy — Y ayv;— Y bih;
T ik i i ;
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Supervised Learning: First-Generation
Neural Networks

* Perceptrons (~1960) used a Bomb  Toy

layer of hand-coded features
and tried to recognize objects
by learning how to weight
these features.
— There was a neat
learning algorithm for

adjusting the weights.

— But perceptrons are
fundamentally limited
in what they can learn
to do.

output units e.g.
class labels

non-adaptive
hand-coded
features

input units
e.g. pixels

Sketch of a typical perceptron
from the 1960’s
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Second-generation neural networks (~1985)

Back-propagate
error signal to get
derivatives for
learning

Compare outputs with
correct answer to get
error signal

s

outputs

hidden
layers

s

input vector

25




Third-generation neural networks

hidden

visible
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Deep Models (Rus, Tijimen, Hinton)

Pretraining

: 112 o h2 é
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___RBM:

Boltzmann Machine Learning Procedure:
p(h.} =1|v,h?) = cr( Z 1*1»""1-1]- v; + Z IVJ‘-Z,,I h?) \ Given: a training set of N data vectors {Vv }1_.
i m 1. Randomly initialize parameters " and M fantasy parti-
2 1 2 11 . (01 101 ~0,M 1,0,M
p(h;, =1/h") = U(Z W I__mh_l,), cles. {v:" h™"}, .. {¥v"" h"" )
j 2. For t=0to T (# of iterations)
: - For each training example v, n=1to N
v =1h') = o(S Wi, @ s
p(vi [b7) (Z A ) e Randomly initialize ;¢ and run mean-field up-
J dates Eq. 8 until convergence.
1 1 e Setpu" = p.
Inp(v:0) = 5 Z Lirvivy + 5 Z Jim bt (b) For each fantasy particle m=1 to M
ik s e Obtain a new state (VvitH™ hith™) by run-
+ Z Wijvip; —InZ(6) ning a k-step Gibbs sampler using Egs. 4. 5. ini-
i tialized at the previous sample (v, h*™).
+ Z[/.ljlll/.[j+(1_/.lj)lll(l_/JJ')]. (c) Update N
! ctr1 it (LN ong T
%! =W +af(Nz_:lv (u™)' —
| M
7 ~ Jm - my T
/-LJ — U(Z””l‘z +Z.Jm_j/_l,m). EZ Vt+1 (ht+1 ) )
(2 m\ j o m=1
' Similarly update parameters L and J.
(d) Decrease .




Extend Supervised Linear Embedding Methods

with Deep Neural Networks (Min et al., 2010)

Maximize Margin for kNN classification
(LMNN)

MaX|maII?/ Collapsing Metric Learning
(MCML) learns a linear mapping to collapse
all the points in the same class to one point

Neighborhood Component Analysis (NCA)
learns a linear mapping by maximizing the
expected number of points correctly
classified

We can use a deep neural network pre-
trained with RBMs to learn a deep
supervised non-linear embedding by
optimizing the cost of LMNN, MCML, and
NCA for both high-dimensional data
visualization and classification

30
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Embedding Results on USPS Digits (dt-MCML)

68
58
48
38
28
18

O
OQoOoO~NOoOO OGP, WN-~0

-73 -58 -43 -28 62 76



Supervised Learning: SVM as First-
Generation Neural Networks

Linear SVM: a margin
maximization linear
separating hyperplane

Non-linear SVM: adaptive

feature mapping using
kernel functions, and a
linear classifier in the

feature space

Linear separation
based on margin
maximization

non-adaptive
features from
a kernel function

input units
e.g. pixels
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Supervised Learning: SVM

1
Minimize 5||w||2

subject to y;(w!x; +b) > 1 Vi

2
m = ——
C Wl
"~.. Class 2
. wlix+b=1
0
Class 1
T To 4 p—0
wx+b=-1" W X+ b=

31



Supervised Learning: SVM

Minimize 3||w|[? + C Y7, &
subject to y;(wlx, +b)>1—-¢, & >0

max. W(a) = > o; — 5 > QY Y X X
i=1 i=1,=1

n
subject to C > ; > 0, > ayy; =0

=1
Class 2 S
W = c 4 Ot . X+
0“ X . Z]_l t]yt] t,]
.‘0 ““
|
H wix+b=
Class 1 wix4b=
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Non-linear Mapping

Input space Feature space

n 1 n
max. W(a) = ) a; — 5 > oziozjyz-y
=1

i=1,=1

n
subject to C > a; >0, Y oy, =0 /

K(x,%j) = ¢(x;)" (%)
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e-SV Regression Estimation [64]

—£ +€

B. Scholkopf, Canberra, February 2002
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Formulation as an Optimization Problem

Estimate a linear regression
f(x) = (w,x) +b

with precision € by minimizing

1 ™m
minimize T(w, &, €%) = —||W||2 +C E (& + &)
2 1
1=
subject to (W, x;) +b) —y; <e+¢&

yi — (W, x;) +0) <e+§&
.6 >0

foralli=1,...,m.

B. Scholkopf, Canberra, Fel

ruary 2002
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Dual Problem, In Terms of Kernels

For C' > 0,e > 0 chosen a priori,

m
maximize  W(a, = —¢ Z -+ o) Z(Of;;k — ;)Y
= 1=1
1 m
-5 > (of — og)(ef — ay)k(x,%;)
1,7=1

m
subject to 0 < «j,af <C,1=1,...,m, and Z(az —

The regression estimate takes the form

f(x) = Zil(af — ) k(x4,x) + b,

B. Scholkopf, Canberra, February 2002
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v-SV Regression

Again, use v to eliminate another parameter:
Estimate € from the data s.t. the v-property holds.

Primal problem: for 0 < v < 1, minimize

1 m
T(W,¢) =§||WH2+C ve+1/m Y |y — f(xi)le
i—1

B. Scholkopf, Canberra, February 2002
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Dual Problem

forv >0,C>0,

maximize W(a") = Z(a —m)y.— 5 z<a a)(ef —

aeRm =1 l}—

subject to Z(a; —a;) =0,
i=1

o € [0, 7],

m
Y(ait+aj)<C-v.

i=1

= 3'(a7 — ak(xi, 1) + b

1=1

aj)k(xi: x]')z
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Kernel Methods : the mapping

e

Original Space 0 Feature (Vector) Space
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Kernel : more formal definition

* A kernel k(x,y)

IS a similarity measure

defined by an implicit mapping ¢,

from the original space to a vector space (feature
space)

such that: k(x,y)=o(x)*o(y)

» This similarity measure and the mapping include:

Invariance or other a priori knowledge

Simpler structure (linear representation of the data)

The class of functions the solution is taken from

Possibly infinite dimension (hypothesis space for learning)
... but still computational efficiency when computing k(x,y)

40



Valid Kernels

« The function k(x,y) is a valid kernel, if there exists a
mapping ¢ into a vector space (with a dot-product) such
that k can be expressed as k(X,y)=0(X)*d(y)

 Theorem: k(x,y) is a valid kernel if k is positive definite and
symmetric (Mercer Kernel)
— A functionis P.D. if j K(xy)f(x)/(y)dxdy 20 Yfe L,

— In other words, the Gram matrix K (whose elements are k(x;,x))
must be positive definite for all x;, x; of the input space

— One possible choice of ¢(x): k(*,x) (maps a point x to a function
k(s,x) - feature space with infinite dimension!)

41



Kernels

* Polynomial kernel with degree d

K(x,y) = (xl'y + 1)

e Radial basis function kernel with width o

K(x,y) = exp(—|x —y||?/(209))
— Closely related to radial basis function neural networks
— The feature space is infinite-dimensional
* Sigmoid with parameter K and 0
K(x,y) = tanh(kx!y + 6)

— It does not satisfy the Mercer condition on all K and 0

42



Example of Kernels (I)

+ Polynomial Kernels: k(x,y)=(x+y)

— Assume we know most information is contained in
monomials (e.g. multiword terms) of degree d (e.g. d=2:
X412, Xo?, X1X5)

— Theorem: the (implicit) feature space contains all
possible monomials of degree d (ex: n=230; d=5; dim
F=1019)

— But kernel computation is only marginally more
complex than standard dot product!

— For k(x,y)=(x*y+1)4, the (implicit) feature space
contains all possible monomials up to degree d !

43
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Example: SVM with Polynomial of Degree 2

2
Kernel: K(%.%) = [%i-%+ 1]

plot by Bell SVM applet




Example: SVM with RBF-Kernel

2 2
Kernel: K(.\",-,.?cj) = exp(—l.%,--.%jl /G) plot by Bell SVM applet




Selecting a Kernel

Things to take into consideration:

« kernel can be thought of as a similarity measure
. examples in the same class should have high kernel value
. examples in different classes should have low kernel value
+ ideal kernel: equivalence relation K(3.%;) = sign(yy;)

- normalization also applies to kernel
. relative weight for implicit features
 normalize per example for directional data
K(%:.%)

JEG 3 JKG %)

. potential problems with large numbers, for example polynomial

a4 -~
kernel K(%:.%) = [%;-%;+1]1 for larged

A2 2N —
I&(.\,‘,.‘(j) =

47



Selecting a Kernel

There is no absolute rules for choosing the right kernel,
adapted to a particular problem

Kernel design can start from the desired feature space,
from combination or from data

Some considerations are important:
— Use kernel to introduce a priori (domain) knowledge
— Be sure to keep some information structure in the feature space

— Experimentally, there is some “robustness” in the choice, if the
chosen kernels provide an acceptable trade-off between

« simpler and more efficient structure (e.g. linear separability), which
requires some “explosion”

» |Information structure preserving, which requires that the “explosion” is

not too strong.
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Fitting a degree-1 polynomial
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Fitting a degree-2 polynomial
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Fitting a degree-3 polynomial
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Fitting a degree-19 polynomial
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Random-Walk Kernel (Positive K)

Given a base kernel X' let P;; be the probability P(x; — x;)

P'= (D'K)! Dy = >, K
L =D 3KD 3 L = UAUT
L = UNUT K =D3LD3

D 1s a diagonal matrix with D;; = L

1

K=D"1DiPtD3D"3

&
| =

3
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Learned Random-Walk Kernel (Min et. al,.
2009)

normalized
profile

Kernel

1-step 2-step
Random Random
Walk Walk

Kernel Kernel

m-step
Random
Walk

Kernel

Labels of training
data

Learned
Random
Walk

Kernel




Learned Random-Walk Kernel

min,naz, 2071 — aT(Kt p 5 ny)a,

SVM learning

K = oK+ 3 e K*,

2.

295 > Os

~

m Kernel learning

K" is the base kernel for deriving the improved random-walk kernel, K*

is the random-walk kernel with a k-step random walk, and, m, is the maximal

number of random steps performed.



Proofs (Vapnik thought | was wrong)

i o ¢ t,
st. t = (l‘T(I;'f; @ yya — 2071, k=0,....m,
aly=0
0 <ao<C1,

MM >0, S up=1 MATqo. oTy=0, 0<a<C1

m
2071 — (1-'T[(Z 1 KE) @ yy'la
k=0

— Tn'a';ra: ol y=0, OSQSC']_ mi In‘/.tl H 20, ZZ;O [_Lkzl

m

2071 — at [(Z R KE) @y y' o

=0

Mary. oTy=0, 0<a<c1 MM, />0, ST k=1
m

Z pe[2a”1 — ol (KE @ yy')al

k=0

= TNAT .07 y=0.0<a<C1 VT [2(1‘T 1 — o (KE @ yy” Jox]

=TMalTq, . GTy—0, 0<a<C1t=<2aT1—al (KE @uyT)a !
= Mg :aTy=0,020<C1, tzaT (K oyyT)a—2aT1 !
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Discovered Protein Sequence Motifs
(PDB id 1c1l)

1 r r . . . . protein sequence with PDB id 1c1l
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Experimental Results on Protein
Remote Homology Identification

Glutathione S-transferases, N-terminal domain

Methods ROC5g on the hardest protein family
eMOTIF (see reference [52] and [36]) 0.000
SVM-pairwise [PSI-BLAST] (see reference [42] and [36])  0.000
spectrum-kernel [PSI-BLAST] (see reference [38]) 0.000
neighborhood (see reference [70]) 0.000
the second best profile kernel (the second best result) 0.045
the best profile kernel (the best result) 0.122
improved RWK using the second best profile kernel 0.454
empirical-map kernel using the second best profile kernel — 0.455
improved RWK using the best profile kernel 0.509
empirical-map kernel using the best profile kernel 0.903
HMMER 0.000
SAM 0.000
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Debate on (Artificial) Human Learning:

Connectionism or Symbolism?

Multi-stage information processing
Reasoning and perception
Mathematics

Theorem proving

Logic

Creative thinking
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Conclusions

Machine learning is not data mining or statistics, and it has
some many hard-core computer science problems remaining
to solve

Machine learning has already come into our everyday life
Machine learning still has a long way to go
Human intelligence is nothing but more “complex” systems

We need biologically plausible models to build machine brains



The Ultimate Future of Machine
Learning

We Are “Equal”
Mike Robort
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