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High order chromatin architecture shapes the
landscape of chromosomal alterations in cancer
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Hypothesis

« 3D chromatin organization and spatial co-localization
influences the set of somatic copy-number alterations in
cancer.

Question

» Are distant genomic loci that are brought together by the 3D
chromatin architecture during interphase more likely to
undergo structural alterations and become end points for
amplification and deletions observed in cancers?



Background

e SCNA:

Somatic Copy Number Alteration(s)

a sequence that is found at different copy numbers in an
individual’s germ-line DNA and in the DNA of a clonal sub-
population of cells

somatic changes in the number of copies of a DNA sequence
that arise during the process of cancer development

the most common genomic alterations in cancer

focal SCNA have led to the identification of cancer-causing
genes and aided the design of potential therapeutic strategies.

challenge:
» discrimination of SCNAs from all CNVs



Chromosomal architecture

L~

SCNA events

DNA damage,
spatial proximity
& repair

v

Positive selection,
purifying selection
& fixation

SCNAs in cancer

Cancer — An Evolutionary Process
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Methods (1)

— 26,022 amplifications and 13,546 deletions
— Intra-arm position (not in near telomeric or centromeric regions)
— L>1Mb
« HIiC*:
— Experimental method for high-throughput chromosome conformation capture
— Capable of identifying long-range interactions in an unbiased genome-wide

fashion
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Methods (2)

« Fractal globule model (FG*):

— A compact polymer state that emerges
during polymer condensation as a result
of topological constraints which prevent
one region of the chain from passing
across another one

Fractal Globule Equilibrium Globule

. . . . . *L.A. Mirny, Chrom. Res. 19, 37 (2011)
. Bayesian information criterion (BIC*) o

— Criterion for model selection given a number of models
— Penalizes the models based on their complexity — number of parameters

L__ :maximum likelyhood achievable by the model

max *

BIC=-2InLuax +kIn N k = number of parameters in the model
N = number of data points in the model
— Adapted for SCNA: *G. Schwarz Annals of Statistics 6, 461 (1978)

BIC = log L(SCNA | Model) — %k log(n) L: length of SCNA

k: number of parameters
» High value for BIC are preferred n: number of SCNA events



Patterns of Chromatin Structure in

Mean number of SCNAs (100-kb bins)
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Chromosome 17

SNCA ~ 3D Structure
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* GMO06990 cell line
* Bin size 1IMb?
* Pearson’s correlation coefficient r=0.55, P<0.001
e =>use Poisson likelihood for rare events analysis ¢



Mutational and Evolutionary
Models of SCNA

* Probability of observing SCNA starting at position “%” & ending at position “”
Pij = Hjj - (L)
— w; = mutation probability - SCNA to occur in a single cell
— n(L) = probability to have this mutations fixed in the population of cancer

cells
— L =i-jis the SCNA length

« Mutation probability depends on the model of SCNA apparition:
— Uniform model - the two ends of the SCNA are selected randomly
— HiC model — the probability of SCNA depends on the probability of a 3D
contact between the 2 points given the HiC data

— FG model — the probability of SCNA depends on the probability of a 3D
contact between the 2 points given the fractal globule model



Model Selection — Results (1)

BIC-corrected

log-likelihood ratio Fold increase in
I P(SCNA /model) likelihood per sample
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 HiC & FG perform better than random selection
* FG coupled with purifying selection fits best the SCNA data



Loglikelihood Ratio (with Uniform*se!)
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Model Selection — Results (2)
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* For long chromosomes FG is better then purifying selection alone
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Purifying Selection: UniforT

* Short gene-rich chromosomes are subjected to stronger purifying selection,

* BUT: purifying selection alone is more depends stronger than SCNA
length rather than the number of gene affected by SCNA !!
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Back to HIiC

SCNA landscape reflects chromatin structure in HiC

Test using permutation a

 randomly relocate the SCNA start points

* keep L the same

nalysis

i L - _- Permuted SCNA
i Observed SCNA
n on L 1 ]
—600 -400 —-200 0

Log-likelihood ratio

200

Log-likelihood ratio

100

| (P(permuted SCNA|HiC)>
0
g P(SCNAJHIC)

Observed SCNA

1234567 8 9101112131415161718192021 22
Distribution by chromosome

HiC fits better the SCNA data than the random selection
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Amplifications vs Deletions
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 Differences in strength of selection on genomic alterations:
— Loss of a loop could easily lead to a deletion
— Amplifications occur through more complex processes (may require
assistance form homologous or non-homologous chromosomes not

related to intra-chromosomal spatial proximity during interphase)
13




Amplifications
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Amplifications All SCNAs
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Deletions are more significant in cancers than amplifications.
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Conclusions

The probability of a 3D contact between 2 loci based on FG model
explains best the length distribution of SCNAs.

There is significant connection between megabase-level, position
specific information, 3D chromatin structure observed in HiC and
SCNA.

SCNA data reflect mutational mechanisms and purifying selection in
addition to commonly considered positive selection.

Experimental evidence support physical proximity as a key factor of
genomic rearrangements.

Cell type specific experimental 3D contacts (HiC) fit the observed
distribution of SCNAs better than the fractal globule model.
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