JoCI RK

outline

- 1. signalling, the synapse, and the brain
- 2. psychiatric disorders schizophrenia & DISC1

the neural network

- node == neuron edge == synapse
- neurons generally
 release one type of
 transmitter molecule
- transmitters regulate the flow of charge between connected neurons and downstream targets

neurotransmitters

- transmitter molecules are either excitatory or inhibitory
- network complexity & function achieved by localisation and connectivity

neurotransmitters

chemical	[example] functions
glutamate	general excitatory & memory
GABA	general inhibitory & sleep
acetylcholine	memory & movement
serotonin	mood, sleep, & appetite
norepinephrine	arousal & mood
dopamine	movement & pleasure
endorphins	pain relief

neuroreceptors

- to add complexity, the receptor for a given transmitter can be either excitatory or inhibitory
- receptors can be presynaptic or postsynaptic

brain structure

cortical function

- frontal forward planning and conscious thought
- parietal integration of sensory info
- occipital sight
- temporal processes
 complex stimuli & memory

cortical conservation

supporting cast blood

- brain consumes 25%
 of the body's oxygen
- requires continual supply of glucose

supporting cast - glia

- astrocytes
 the link between blood
 and neurons
- oligodendrocytes
 insulate the axon to
 improve conductivity
- microglia immune cells

outline

- 1. signalling, the synapse, and the brain
- 2. psychiatric disorders schizophrenia & DISC1

psychiatric disorders

- all disorders carry 25% lifetime risk for people in the developed world
- serious disorders in US (~4% of pop)
- complex disorders with developmental, genetic, and environmental risk factors

schizophrenia (SZ)

- involves multiple brain regions
- symptoms have three components:
 'positive': hallucinations & delusions
 'negative': depression & withdrawal
 cognitive: working memory deficits
- no single known cause, +ve symptoms likely result from overabundant dopamine

- Anxiety, Alcoholism, Minor Depression
 - * Translocation t(1;11) Carrier

Recurrent Major Depression

DISC1

- inherited non-lethal mutation
- discovered that all affected family members have a balanced translocation between chr1 & chr11
- major gene interrupted is DISC1

DISC1

from year	analysis	reference
2000	protein interaction screens	Millar 2005 Science
2002	association studies	Bradshaw 2011 Neuropharmacology
2002	protein structure & prediction	Soares 2011 ACS Chem Neurosci
2003	animal models	Hikida 2007 PNAS
2006	expression analysis	Lipska 2006 Hum Mol Genet
2008	CNV / 2GS	Song 2008 Neuroscience Letters

protein interactions

Camargo et al. (Mol Psych '07)

used yeast 2 hybrid
 screen to elucidate
 protein network

association studies

Reviewed in Bradshaw et al. 2011 Neuropharmacology

- used to establish DISC1 as a risk factor in the general population
- 36 published positive studies (5 negative)
- positive associations across: multiple populations, disorders, symptom domains, and endophenotypic traits
- conditioning for risk SNPs in DISC1 increases significance of SNPs in interacting proteins

protein structure

Soares et al. 2011 ACS Chem Neurosci

- nobody has managed to crystallise the DISC1 protein
- prediction based on computation, but DISC1 has little conservation with other proteins

animal models

- full knockout produces similar phenotype to Huntington's disease models
- dominant negative & point mutations recapitulate many aspects of psychiatric phenotype incl. changes in dopamine metabolism
- brain anatomy shows neural migration phenotype, resulting from abnormal brain development, implicating GABAergic interneurons

mRNA expression

Lipska et al. 2006 Hum Mol Genet

- qPCR in human tissues
 with risk allele shows
 decrease in binding with
 partner mRNA
- [small scale] arrays run on mouse point mutants shows changes in neuronal migration factors

CNV/2gs

Song et al. 2008 Neuroscience Letters

- compared bipolar and SZ to 5000 HapMap samples
- confirmed risk of 2 common structural variants w/ SZ
- found ultra rare point mutants in important binding areas for BP and SZ
- CNVs associated with autism (not seen in 1.5k controls)

summary

- brain is much more complex than alluded to in these slides
- disorders most likely reflect combination of genetic risk and environmental catalysts
- DISC1 is an example of a simple genetic finding that has led to new discoveries about SZ pathophysiology whilst linking in risk pathways for other disorders