[[MG(18sep)2ALL: this is the curr. doc. as of this day incl. Anshul & Manoj’s edits]]
Analysis of the human regulatory network using ENCODE Data 

Abstract: It is widely believed that transcription factors (TFs) work in a combinatorial fashion to specify the on and off states of genes in different cell types. From the mapping of binding sites for a large number of factors (>100), we have undertaken a pilot study for deciphering this regulatory code. Our results illustrate a complex combination of TFs whose co-association both globally and at specific gene targets varies with different cell types; distinct combinations of factors regulate distinct sets of genes. The co-association between TFs can be further reformulated into a regulatory network. We find that the network formed by the ENCODE TFs has an intrinsically hierarchical structure, with the factors at different levels possessing distinct genomic properties (e.g. a differential relationship with target gene expression). This regulatory network was then integrated with miRNA-regulation and protein-interaction networks to form a meta-network, and with this, we found various interlocking network motifs such as feed-forward and feedback loops. Finally, the regulatory network enables us to rationalize various aspects of sequence-variation data, indicating the interplay between selective constraints and features of network topology (e.g. hubs). Overall these results have important implications for the regulatory code in humans, it specialization in different cell types and how regulatory information is organized and varies in different individuals.

[[MG(div)RA: Intro]]

Introduction

Most work so far in the analysis of regulatory and other molecular networks in biology has been done in model organisms like yeast, worm, and fruit fly, where genome-scale experiments have been more tractable. The availability of data from the ENCODE project at whole-genome scale now makes it possible to examine the human genome and human biology directly from a network perspective. The network framework provides an intuitive overview of the ENCODE data and makes it possible to connect the large corpus of ENCODE datasets with data from other sources. 

Here we present an analysis of the regulatory interactions between 122 transcription factors (TFs) across X cell lines. We first consider the regulatory code generated by pairwise co-associations between TFs. Next we examine the composite regulatory network consisting of the union of all data from all cell lines (Table X) [[fig: table_of_cell_lines_and_data]]. We consider two versions of this network -- one including only TFs that bind in a sequence-specific manner (TFSS), and another that also includes a set of less-specific factors (eg including some chromatin binding proteins). 

In the network we rank TFs by a variety of network properties (eg hubbiness) and correlate various genomic properties with this ranking. We also put the TFs into a three-level hierarchy according to their regulatory inputs and outputs (in-degree and out-degree in the network) and examine whether features of the TFs and networks correlate with position in the hierarchy. We examine network motifs enriched in the network and assess how motifs of known function provides insight into overall network function.

We expect TFs in the human genome to be organized in a regulatory hierarchy, with TFs in the top layer regulating other TFs and target genes. Our expectation is that in a composite regulatory network TFs in the top layer should have less tissue-specific expression, or be preferentially expressed early in development, say in embryonic stem cells rather than in specific tissues.  We expect TFs towards the bottom of the hierarchy to be expressed later in development, in a more tissue-specific way, and to activate expression of terminal differentiation cascades – i.e. to be expressed in an exogenous manner rather than an exogenous manner, to use the terminology from a paper discussing the dynamics of regulation in yeast [[cite: SANDY ref]].

Placing this newly generated data about transcription factors (TFs) and their targets into a network context is an attempt to understand how the cell works as an integrated system.  Apart from increasing our understanding about the way regulation is exerted [[cite: Haiyuan et al, Bhardwaj et al PNAS, Sci Signaling, Jothi et al]], restructuring of regulatory networks into hierarchies can also be used to reveal the evolution of networks [[cite: M. Cosentino Lagomarsino]], identify the modules [[cite:Ma et al, Balazsi et al]] and illustrate the topological basis of signal transduction [[cite:Farkas et al]].

[[MG(17sep)2RA: think next para ("We have taken two major approaches – characterizing co-associations between ...") is redundant]]

We have taken two major approaches – characterizing co-associations between pairs of TFs to look for new rules for gene regulation by combinations of TFs, and looking at the TF and TF-miRNA regulatory networks as a whole to find broad features and design principles. A major way to get a broad overview of the regulatory network is to arrange TFs into a regulatory hierarchy based on some combination of the features of individual TFs.

 
One way to understand the function of a large regulatory network is to search for network motifs (Milo et al., 2002), groups of two to five regulatory proteins present in the network more often than expected at random, and to study the dynamics and function of the overall network based on the known function of those motifs (Amit et al., 2007). Some network motifs have been well-studied; for example, the futile cycle or double negative feedback loop, the single-input motif (SIM), and the feed-forward loop (FFL) (Mangan and Alon, 2003). It is possible in some cases to infer function of a network motif simply from network topology [[SANDY]] (Luscombe et al., 2004), although in most cases functions can differ based on the sign of regulatory edges – whether they are activating or repressing. In other cases, as for the bifan motif, more quantitative data on the strength of activation or repression is necessary to understand function [[cite: RA Sci Sig]].



In addition to coding genes, TFs also regulate non-coding RNAs (ncRNAs). In ENCODE, a variety of human ncRNAs are annotated at a whole-genome scale for the first time. In this paper, we perform the first genome-wide computational analysis of TF-ncRNA regulatory interactions.

[[MG(17sep)2RA: we need to develop a short list of bullets similar to Ewan's and put them at the end of the intro. Below is an edited version of what we had earlier.]]

Some of our key findings include:

· For each transcription factor (TF), there are global interacting partner TFs as well as localized, context-specific interactions. For example, in the K562 cell line, at all GATA1 ChIP-seq peak locations we observe strong association with GATA and TAL1 peaks (primary interactions). However, a subset of GATA1 sites shows strong association with FOS/JUN factors and a different subset with MYC/MAX/E2F6. A small subset of sites are strongly associated with CTCF/RAD21/SMC3.

· Context-specific association analysis reveals primary and localized interacting partners.

· We observe that there are hubs of interacting TFs and cross-interactions across those hubs. We also observe that associations between TFs are not necessarily symmetric.

· We have discovered several novel interactions between TFs (e.g. Znf143 with CTCF).

· Associations between TFs differ in regions proximal to TSSs compared to distal regulatory regions.

· We have constructed a filtered regulatory hierarchy encompassing all the ENCODE TFs. We can see how miRNAs fit into the hierarchy.

· We can find enriched and depleted combined TF-miRNA network motifs.

· There are strong differences in genomic properties for each level of the regulatory hierarchy and between hubs and non-hubs. Properties include number of protein-protein interactions (PPI), conservation, and correlation with gene expression.

· Most of the interactions between TFs occur within the same level of the hierarchy, and the middle layer of the hierarchy has the most interactions between TFs. Many of the interactions in the middle level involve well-known motifs such as feed-forward loops and single-input modules.

· The correlation of allelic effects can be seen readily in a network context. 

[[MG(div)RA(+JR): DataFlow + coassoc]]

A. Overview of Data Flow

A schematic of the data flow can be seen in figure 3a. It begins with the ChIP-Seq datasets on the top left. The ENCODE ChIP-Seq datasets were experimentally generated for a total of 122 different transcription factors across multiple cell lines. All datasets include at least two independent biological replicate per datasets. All the datasets were processed through the ENCODE uniform ChIP-Seq scoring pipeline using two different peak callers (to ensure independence from peak caller): PeakSeq (Rozowsky et al. 2009) and SPP (Karchenko et al. 2008). For each dataset the reads from each independent replicate, as well as the pooled reads, are scored relative to the appropriate ChIP-Seq control using a relaxed threshold to generate a ranked list of target binding sites. Using the irreducible discovery rate (IDR) methodology [[cite: Kundaje et al. (in prep)]] the ranked lists are compared to estimate an appropriate threshold, which is then applied to the rank target list obtained from the pooled data. This is done for each dataset. 

One may wonder how representative a sampling of all human TFs the 122 studied TFs represent. A recent census (Vaquerizas et al., 2009) estimates that there are 1800-1900 TFs in the human genome. Of those, ~700 are experimentally confirmed in some mammalian species, ~600 are predicted based on containing the same combination of protein domains as the first group, ~160 are predicted based on containing protein domains found only in DNA-binding proteins, and 340 are predicted based on containing a promiscuous protein domain that only sometimes functions in DNA binding. An additional 25 are predicted from literature and other sources. Concentrating on the 1485 confirmed TFs, we assessed how thoroughly the current set of ENCODE ChIP-seq datasets has sampled TFs of different structural families (Table SX). Overall, while the distribution of selected TFs does not exactly that of known families, it still similar enough for us to extrapolate our conclusions to the whole network. 

[[MG(17sep)2RA: mention 4 nets here? TFSS, TFSS+TFNS?]]

B. Co-association of TFs  

 [[MG(18sep)2ALL: below text is from Anshul as of today.]]
One of the central goals of gene regulation analysis is to understand how a limited cohort of transcription factors is able to choreograph the large diversity of gene expression in different cell-types and in response to different cellular environments and stimuli. Different subsets of transcription factors tend to co-localize at distinct sets of gene proximal and distal regulatory regions to elicit a highly specific genome-wide gene expression profile. Hence, the first step in deciphering the combinatorial regulatory code by is to identify the locus and cell-type specific co-associations of transcription factors. The large number of diverse ENCODE transcription factor ChIP-seq datasets provides us the unique opportunity to partially unravel the context-specific associations of transcription factors.

For this purpose, we developed a novel analysis framework that focuses on the genome-wide binding domain of one transcription factor at a time (termed target TF) to simultaneously learn significant co-associations of other transcription factors (termed partner TFs) with the target TF as well as the pairwise and higher order co-association structure between partner TFs in the context of the target TF domain (GR paper).
First, we defined the genome-wide binding domain of each target TF as the set of all confident and reproducible ChIP-seq peaks of the target TF. For each locus in the target TF domain, we extracted the binding strength of ChIP-seq peaks of all TFs, including the target TF, that overlap that locus, to give us a target TF-centric binding map. Figure 1A shows a clustered version of one such binding map for the GATA1 target TF domain in K562. We observe a set of 'primary partner TFs' such as GATA2, TAL1 and POL2-4H8 that more or less consistently co-associate with a substantial proportion of all GATA1 binding sites. However, there are also subsets of 'local partner TFs' that co-associate with each other at specific subsets of GATA1 sites (Figure 1A,B). These localized co-association 'biclusters' can be mutually exclusive or partially overlapping. This localized 'bicluster' structure is typical of all target TF domains and exemplifies the combinatorial nature of transcription factor associations.
Next, we created randomized instantiations of a target TF binding map by independently shuffling values in each row of the binding map i.e. for each partner TF we randomly re-assigned the binding peak strength at one target TF locus to another. The randomized binding map maintains the marginal distribution of each partner TF within the target TF domain but destroys the co-association structure represented in the joint distribution of the true binding map. In order to identify significant co-associations in the true binding map, we then used a discriminative algorithm called RuleFit (Reference) that learns a sparse set of rules consisting of combinations of TFs that help distinguish the set of loci in the true binding map from those in the randomized binding map. A high discriminative accuracy indicates a significant co-association structure in the true binding map over and above one that might be expected by chance in the randomized map. We only further analyzed models of binding maps if the discriminative accuracies were > 95%. In order to obtain robust results, we aggregated all results over atleast 50 models using multiple instantiations of the randomized maps.

For each target TF binding map, we first evaluated the relative importance of each TF in the discriminative model. TFs that show strong peaks at a large fraction of target TF locations as well as those that show strong local co-association with several other TFs will have a high relative importance. In the GATA1 target domain, as expected we found POL2-4H8, GATA2 and TAL1, which are well-known co-factors of GATA1, to have the highest relative importance (Figure 1C) [Reference]. We also found a strong novel significant association of CCNT2 and HMGN3 with GATA1.
In order to understand the local co-association structure between partner TFs, we then used the learned models to compute association scores between pairs and higher order sets of partner TFs that significantly co-occur in learned rules and account for a significant percentage of discriminative accuracy (See Method/GR paper). Figure 1C shows the co-association scores between all pairs of partner TFs in the GATA1 target domain. We observed a clear separation of partner TFs that co-associate in localized biclusters (Figure 1C). We found a primary coassociation hub consisting of GATA1, GATA2, TAL1, POL2-4H8, POL2B and NRSF which is also clearly visible in the binding map (Figure 1A). HMGN2 and CCNT2 were found to be strongly co-associated. MAX was found to colocalize significantly with MYC and E2F6. However, the association between MYC and E2F6 was weaker. We also detected a significant association hub consisting of CTCF, RAD21 and SMC3 even though they are are collectively found at only a small fraction of GATA1 sites. The (POL2, TAF1, GABP) hub was found to cross-associate with POL2-4H8 and TAL1 but not with HEY1 and TBP. The latter two TFs showed a stronger association with POL2 binding sites in interferon treated cells. P300 and BRG1 are also found to co-associate strongly with some members of the primary hub such as TAL1.

GATA1 binding sites are found proximal as well as distal to gene transcription start sites (Figure 1D). In order to identify, partner TFs that preferentially associate at proximal (< 5 Kbp from TSS) as compared to distal sites (> 100 kbp from TSS), we used the learned models to compute the proximal and distal relative importance of each partner TF in terms of their contribution to accurate prediction of only proximal and only distal loci respectively. We found typical core promoter TFs such as POL2, HEY1, TBP, TAF1, ELF1, YY1, SIN3AK20, GABP, ETS1 as well as E2F6 and MAX to have a significant proximal bias, whereas the FOS and JUN hub (JUND, JUNB, c-JUN, c-FOS, FOSL1) along with enhancer related TFs such as P300, SIRT6 showed a weak but significant distal bias. GATA2, TAL1, POL2-4H8 and c-MYC did not show specific bias towards proximal or distal sites.

We performed similar target domain analyses across all transcription factor ChIP-seq datasets in K562 (GR paper). We collected the relative importance measures for all TFs in the context of each target TF to create a global targeted co-association matrix (Figure 2A) where the rows represent target TF domains and the columns represent partner TFs. By clustering the global K562 co-association matrix, we obtained a summarized overview of the structure and separation of different types of classes of TFs based on co-localization. Cluster A consists of transcription factors that predominantly bind proximal to TSSs and show strong association with POL2 and related factors. Cluster B shows a weaker association with POL2 related factors and consists of known enhancer binding proteins such as P300, BRG1, STAT1, SIRT6 along with GATA-associated TFs and FOS,JUN family TFs. We also found distinct clusters consisting POL3 associated proteins (Cluster C), repressive TFs (ZNF274, KAP1, SETDB1) and the CTCF related complex (CTCT, RAD21, SMC3). A key observation is that the global association matrix is justifiably not symmetric. In the context of the target domains of a sequence-specific transcription factor such as E2F6 that has a significant number of its binding sites proximal to transcription start sites, a generic transcription factor such as POL2 and HEY1 is expected to have a strong and ubiquitous presence. However, only a small fraction of all POL2 peaks overlap E2F6 sites. So in the POL2 target context, E2F6 should not get as high an association score, resulting in the asymmetry. Finally, we collected the set of primary partners from each target TF domain analysis to create a global primary-partner association matrix. In keeping with definition of a primary partner, we observe a significant block diagonal structure in this matrix, which indicates that if a particular TF A is identified as a primary partner of TF B, then TF B is also learned as a primary partner of TF A. Thus, our analyis pipeline, provides a multi-resolution quantitative summary of global and localized context-specific co-localization between transcription factors. In [GR paper], we further explore cell-type specific differences in transcription factor associations as well the the effect of context-specific transcription factor co-associations on gene expression.

If we want to discuss salient, desirable features of the method?

- Treats TF binding as a continuum rather than discrete peak calls. Associations are not simply defined on binary overlap of peaks. Correlations in binding strengths enhance co-association scores.

- Results are highly robust to peak calling thresholds and definitions of peak overlaps.

- The model effectively handles highly correlated variables. Multiple experiments involving the same TF from different production groups or using different antibodies usually show high co-association, supporting the consistency of ENCODE data as the ability of the method to handle correlated datasets.

- Considers the collective effect of all partner TFs in the context of each target TF domain. Multiple sets of co-association partners enhance each other's signal resulting in better tolerance to noise.

- Non-parametric models makes results immune to monotonic transformations of binding strength measures. So one can use peak p-values, signal strengths, q-values, fold changes etc. So no issues regarding data transformations.




C. Networks 

The regulatory code specifies the relationship between multiple regulators (transcription factors, promoters, enhancers etc) and their targets (genes, transcripts, promoter regions etc) and interactions between them in a conditional pairwise fashion by which one can examine which two regulators collaborate to regulate a common target. In order to look at a bigger picture such interactions can be assembled together. Extending the conditional pairwise connections to higher degrees allows one to see how these pairs are connected to other regulators. This results in a large network where the nodes are regulators or their targets and the edges indicate regulatory or co-regulatory interactions. 

[[MG(div)PA(+JJL): "Positioning into"]]

C.1. Positioning TFs into Networks & Hierarchies

Using this uniformly thresholded target list of binding sites from PeakSeq for each TF, an initial set of regulatory target genes are identified which have a TSS within 1.5Kb of an identified binding site. From the result of this process emerges the raw network depicted in the top right of the schematic (fig. 3a). This network consists of 409,699 interactions between the TFs studied and all of their targets. Of these interactions, 3,856 are between two of the TFs being studied.

[[MG(17sep)2PA: how does 1.5kb above play with 2kb?]] 
We next applied a probabilistic model to filter the raw regulatory network. Compared to a simple peak-based method, the model takes more information into account (e.g. the strength and the relative position of TF binding signal near the transcriptional start sites of genes) and therefore gives rise to a higher confidence set of regulatory relationships between TF and target genes. We validated the 
performance of the model using a siRNA interference experiment we did for GATA1, in which GATA1 was knocked down and expression changes of genes were quantified by RNA-Seq experiment. The GATA1 target genes identified were more differentially expressed in GATA1 siRNA versus the negative control than those by a simple peak-based method (See supplementary CC_S1_siRNA).  

When represented in conventional network representation, regulatory or co-regulatory relationships appear as hairballs allowing only limited analysis such as degree distribution, clustering coefficients, diameter etc. One way to elicit more information about the organizational principles of the regulatory networks and to reveal how the regulatory code may be exercised is to rearrange these networks into more intuitive and commonly seen structures such as hierarchies. 
[[MG(17sep)2KKY: we need to move the "Heuristically, out-degree hubs... " sentence below later with the stats. ]] DONE

We organized the transcription factors in three hierarchical levels via simulated annealing such that the number of edges going from upper levels to lower levels is maximized (Supplementary Information). The resultant regulatory hierarchy obtained has 80% of edges directed downward, which is consistent with the biological picture described.  This network, which can be seen in the center left of the figure, is focused only on interactions between studied TFs.

After building the overall framework of the TF regulatory hierarchy, we added edges associated with distal regulatory elements (e.g. enhancers). To obtain these interactions distal regulatory modules (DRMs) were derived by filtering out binding active regions (BARs) within 10kb of annotated transcripts. BARs were identified in the genome by a trained model using TF binding data from ChIP -seq experiments. [[Refer to metatrack GR companion]] Briefly, the model identifies regions distant from known promotors with many TFs binding.  Next, a DRM was connected to a gene if the signal of a histone mark at that DRM correlated highly with the expression of that gene across multiple cell lines. DRMs and genes were pre-filtered by their dynamics, keeping only elements with reasonable changes in histone marking/expression. For each DRM and gene pair that was within 1Mb apart on the same chromosome, we computed the Pearson Correlation Coefficient (PCC) of a histone mark (9 marks used) at the DRM and the RPKM values (4 RNA expression measurement methods) of the gene across several cell lines. Fisher transformation of PCC was used to determine the p-value of the correlation coefficient. Significant pairings were selected by using a cut-off at 0.01 for the Bonferroni corrected p-value. Finally, an edge between a TF and a gene was drawn if the TF bound to a DRM which was connected to the gene. 

[[MG(17sep)2JJL: on enhancer edges, need to find the right balance betw. GR companion, main text & suppl. 2 more sent. of detail on meta-track model?]]

[[MG(div)KKY: "stats"]]

C.2. Calculating Statistics Characterizing TF Connectivity

In addition to generating a three-level hierarchy by simulated annealing to reduce upward feedback, we calculated statistics to rank TFs based on their connectivity. The simplest statistic is the distribution of out and in degrees (kout and kin). This allows us to identify hub TFs that regulate many targets and also TFs that are regulated by many other TFs. For each TF we also calculated its betweenness in the regulatory network, which allowed us to identify TFs that sit at information flow bottlenecks. 
[[MG(17sep)2NB: we need to add in text on betweeness here]]

[[MG(17sep)2KKY: assume histogram of the O-I metric goes in suppl? ]]

Next we developed statistics related to position in the regulatory hierarchy.  The first ranking metric is O-I, that is the out-degree of the TF (O) minus its in-degree (I). In other words, we measure the difference between the number of TFs that regulate and that are regulated by the TF in question.  A histogram of the O-I metric (Figure Xa) shows a nearly normal distribution of TFs – measured this way, most TFs are in the middle of the hierarchy. The second ranking metric is a normalized version of the first, namely (O-I) / (O+I).  With this metric, TFs that regulate no other TFs have a measure of -1; TFs regulated by no other TFs have a measure of 1, and TFs with an exact balance of in- and out-degree have a measure of 0. The histogram in Fig Xb, using the (O-I) / (O+I) metric, shows that our notion of a regulatory hierarchy broken into three distinct layers is fairly accurate. Figure Y shows the correlation between the (O-I) / (O+I) ranking method and the three levels from the simulated annealing hierarchy.

We find 19 of 112 (17%) TFs in the bottom layer (score = -1, B), 13 (12%) of TFs in the middle layer (score = 0, M), 26 (23%) of TFs in the top layer (score = 1, T), with 25 (22%) of TFs between middle and bottom (-1<score<0, MB) and 29 (26%) of TFs between middle and top (0<score<1, TM). 
Heuristically, out-degree hubs are more likely to be found in the upper levels, while in-degree hubs are more likely to be at the lower levels. Indeed, the statistics kout-kin is significantly correlated with the levels (r=0.70, P<10^{-16}).

[[MG(div)CC(+RM): "Relating to other..."]]

C.3. Relating TF-Network Connectivity to Other Genomic Properties

After calculating the hierarchy and 
network statistics we can correlate the TF connectivity and hierarchy positioning with other quantities. In particular, we analyze correlation with other non-TF networks (e.g. how it relates to the protein-protein interaction network), how it relates to gene expression and how it relates to variation and selection. More specifically, we can correlate the O – I or (O-I) / (O+I) rankings with features of the TFs like tissue specificity, protein-protein interactions, SNP density, etc, to determine whether there are significant differences in these features at different levels of the hierarchy.

a. Correlation with Positioning in Other Networks

We find that upper-level regulators have a higher number of transcriptional regulatory targets (both overall and regulators only) and ncRNA targets than the lower-level regulators. Similarly, they also have more partners in the protein-protein interaction network (both in global network and that composed of regulators only) than the lower-level regulators. 
Protein-protein interactions among TFs are extracted from the bioGRID database(Stark, Breitkreutz et al. 2011) or from a more specific study by Ravasi et al (Ravasi, Suzuki et al. 2010). The former data is consisted of a curated set of physical and genetic interactions from literatures, and the latter data is resulted from a systematic screening analysis for protein-protein interaction of human TFs using the M2H system.

Interestingly, middle level regulators have the highest number of distal regulatory and miRNA targets compared to the top and bottom regulators. Some regulators such as BATF, SPI1, NFE2, ATF3, IRF4 and ZEB1 displayed a very high in-degree for distal regulatory edges.  We also correlate these properties with the out-degree of the regulators in the regulatory network to reveal some interesting trends. 

[[MG(17sep)2NB: we need to flush out the " Correlation with Other Networks" sect. -- PPI, miRNA, DRE, etc. ]]

b. Correlation with ncRNA Regulation

We need correlated TF connectivity the degree of ncRNA regulation. Specifically, based on genome annotations from GENCODE Version 7, we use several sub-classes of ncRNAs including microRNA, miscRNA, snRNA (excluding snoRNA), snoRNA, lincRNA, and processed transcripts for constructing a TF-ncRNA regulatory interaction network from ENCODE ChIP-Seq data [[cite: XXX]]. We classify these ncRNAs into host-gene associated or non-host-gene associated according to whether the ncRNAs lie in the regions of coding genes. Based on the cumulative distributions of TF out-degrees on different ncRNA sub-classes, we find that the difference between host-gene associated ncRNAs and non-host-gene associated ncRNAs is small, which suggests that the identified interactions between TFs and ncRNAs are not due to the TF bindings to coding genes. We find that the out-degrees of TFs in TF-ncRNA network is highly correlated with those in TF-coding gene network (r = 0.74, P < 1.00e-21, see Fig. Supp_RM1 in the supplemental material for the plot of the TF out-degrees on ncRNAs vs. the ones on coding genes). 

     Mapping these TF-ncRNA interactions to the hierarchies constructed above, we find that the top/middle-level TFs tend to regulate much more ncRNAs than the bottom-level TFs, which is statistically significant. If we consider each ncRNA sub-class separately each time, we also observe the same statistically significant trend. For each TF, we also quantified its tendency score to regulate each sub-class of ncRNAs, which is based on the ratio of the fraction of the ncRNAs it regulates to the fraction of the coding genes it regulates. Figure Supp_RM2 and Supp_RM3 in the supplemental material show the calculated tendency scores of all the TFs in different levels. Overall, we find that the tendency scores of all TFs for regulating short ncRNAs such as miRNAs, miscRNAs, snRNAs, and snoRNAs are statistically significantly lower than those for regulating lincRNAs and processed transcripts that are longer ncRNAs (P < 1.00e-4). Moreover, these differences for the top/middle-level TFs are much more significant than those for the bottom-level TFs. We also correlate the tendency scores of the TFs regulating all the ncRNAs and the above ordered sub-classes of ncRNAs with the out-degree minus in-degree statistics of TFs that approximately reflect their hierarchical levels. (The correlation coefficient and the p-value pairs are, repectively, (r=-0.27, P=0.0027), (r=-0.30, P=0.0011), (r=-0.30, P=9.49E-04), (r=-0.30,P=9.37E-04), (r=-0.21, P=0.023), (r=-027, P=0.0032), (r=-0.26, P=0.0042))] All the correlation coefficients are negative and statistically significant, which suggests that top-level TFs tend to be more focused on regulating coding genes while bottom-level TFs tend to be more focused on regulating ncRNAs, particularly lincRNAs. 

[[MG(17sep)2RM: specifically which ncRNAs do bot. level ones reg.? long ones?]]

c. Correlation with Gene Expression

We used an integrated method to calculate correlations between TFs and many network features, as well as gene expression (see methods). Here we examine the biology of each of those correlations in turn. Ravasi et al. have quantified the expression levels of ~1200 human transcription factors (TFs) in 34 different tissues using qRT-PCR and calculated their tissue specificity scores (TSPS)(Ravasi, Suzuki et al. 2010). Higher TSPS indicates that a TF is expressed in a more tissue specific manner, with zero indicating uniform expression across all tissues. In addition, we calculated the average expression levels of TFs across the 34 tissues. The tissue specificity of transcription factors increases as one moves from the top level to the bottom level of the regulatory hierarchy (Figure 4). The two methods for ranking TFs hierarchically correlate with their tissue specificities -- out-degree minus in-degree (r=-0.31, P<0.002) and normalized out-degree minus in-degree (r=-0.21, P<0.05). This indicates that TFs that are more evenly expressed across different tissues in general regulate more target TFs.  




[[MG(17sep)2CC: need to add in more here on how TF binding can be corr w genex]]

[[MG(div)NB(+CC): "Cooperation"]]

C.4. Cooperation between Levels of the Regulatory Hierarchy

[[MG(17sep)2ALL: " Cooperation between Levels of the Regulatory Hierarchy" sect. seems a bit confused]]

Now we turn to analyzing the relationship between levels in the regulatory hierarchy. To explore the inter-level communications in the hierarchical network, we examined three types of interactions of TFs: the co-association in genomic occupation, protein-protein interaction, the additive effect on gene expression levels. We also took into account the how distal regulatory edges fit in. 

 [[MG(17sep)2RA: this needs to meld with co-assoc sect.]]
General co-association is determined by examining the overlap of the genomic occupation of two TFs (see Section “” for details). The co-associated TFs are significantly overlapped in their binding profiles across the genome.

[[MG(17sep)2NB: assume below para ("Specifically, we counted the number of interactions of TFs within each level ") is about co-assoc.]]

Specifically, we counted the number of interactions of TFs within each level (TT, MM, BB) and between different levels (TM, TB, MB). We find that TFs at the top and the middle levels are more likely interacted with each other. As shown, the TF-TF interactions are 1.66 (P=6x10-6), 1.32 (P=0.07), and 1.28 (P=0.01) fold enriched in TT, MM and TM, respectively, with respect to the expected number of interactions; In contrast, the TF-TF interactions are significantly depleted in BB (P=0.004), MB (P=0.001) and TB (P=0.01). As the master regulators, TFs at the top and middle levels require more interaction events to coordinate the regulation of the down-stream genes.

To examine the whether TFs with a same level or between two levels are more likely to physically interact, we calculated the enrichment of protein-protein interactions in TT, MM, BB, TM, TB and MB. First, we calculated the probability of a pair of random selected genes to be interacted: p=s/[N(N+1)/2], where s was the total number of TF-TF interactions extracted from the PPI data, and N was the total number of TFs in the hierarchical network. Second, the number of TF-TF interactions i within a level or between two different levels follows a binomial distribution: p(x=i)=f(i;b,p)=choose(b,i)pi(1-p)b-i, where b is the number of possible TF-TF interactions. Considering the self-interactions, b=m(m+1)/2 for intra-level interactions with m TFs (TT, MM or BB), and b=m1m2 for inter-level interactions with m1 and m2 TFs (TM, TB and MB). Finally, the P-value for enrichment of PPI interactions in the target gene set was calculated as P(x>=i) for enrichment and P(x<=i) for depletion, the probability of observing equal or larger/fewer number of interactions.

The TF-TF pairs with additive effect on gene expression are defined as follows. First, for a TF pair X and Y, we determine their common target genes (XÇY) as well as the target genes regulated only by X or Y according to their ChIP-seq binding data in K562 cell line. Then we compared the expression levels of genes in XÇY with those in X and Y based on RNA-Seq data in K562. If the genes in the intersection (X ^ Y) have significant higher or lower expression levels than those in both X and Y (P<0.001), we claim that X and Y have significant additive effect on gene expression. 

[[MG(17sep)2JJL: is this where DREs fit into betw. level thing??]]

The incorporation of the distal regulatory edges together with the promoter edges in the regulatory network enables us to further investigate how two TFs are cooperated by the interplay between promoter regulation and distal regulation. We identified co-regulatory pairs of transcriptional factors which bind to the promoter and distal regulatory region of a target genes respectively (see Supplementary information). We found that the co-regulatory pairs are not randomly distributed in the hierarchy, but enriched at the upper levels. Moreover, there is an asymmetry between promoter regulation and distal regulation, with TFs associated with promoter regulation more likely to be at the upper levels. This suggests a dominant role of promoter regulation compared with distal regulation. 

[[MG(div)KKY: "Motifs"]]

C.5. Analysis of Network Motifs

The holy grail of systems biology is to decipher the biological functions of the regulatory network. A fruitful approach is to examine network motifs, the small connectivity-patterns enriched in networks, which carry out canonical functions. To explore the complexity of multi-level regulation, we integrated the transcriptional regulatory network with the post-translational miRNAs-targets network. We systematically searched for all possible 2-nodes and 3-nodes network motifs that consist of TFs, target genes and miRNAs, and then looked for their enrichment. We integrated the motifs with the regulatory hierarchy, and found that many well-studied motifs in literature have distinct characteristics in terms of their locations in the hierarchy. For instance, auto-regulators are depleted at the top level, while miRNA-TF feedback loops are enriched at the bottom level. The TF-TF feedback loop, which plays an important role in cell-fate determination, are more common in the lower levels (see Figure 4). We further examined the occurrence preference of several 3-node motifs -- e.g. the conventional feed forward loop and miRNA-mediated feed forward loops (see Figure 5B). Being consistent with other inter-TF properties, transcription factors participated in these motifs tend to be in the middle level (cite NB). Nevertheless, we found tendency for miRNA-mediated motifs associated with TFs targeting from the bottom level to the upper levels, indicating the usage of miRNAs for feedback homeostasis. Many of the discussed motifs have hundreds of copies, which 






we could not examine in detail for individual functions. Nevertheless, we found that the expression of constituent nodes across different tissues tend to be positive correlated (see Supp). The correlation hints that the enriched motifs indeed are functional.
[[MG(17sep)2KKY: I think the corr. across motif with genex should be shown in main fig. ]]

[[MG(17sep)2KKY+RM: not sure how the ncRNA 4-way motifs fits into this sect. We need to go over the logic. ]]

With the incorporation of distal regulatory edges, we found several novel motifs which are enriched in the meta-network (see Supplementary information).  One is a 3-nodes motif which consists of three types of edges: distal regulation, promoter regulation and protein-protein interaction (P<0.001, see Figure 3d). This is consistent to the common biological picture that TFs bind to the promoter and enhancer of a gene form a complex that mediated by DNA looping. Adding in ncRNA regulation allowed the analysis of more complex motifs. In particular, we analyzed the 4-node motif where a miRNA targets a pair of transcription factors which bind to the promoter and distal regulatory region of a target gene (Figure 3d, P<1e-6). The motif suggests a miRNA represses the expression of both transcription factors (for promoter regulation and distal regulation) in order to shut down the transcription of a target gene.

By further incorporating TF-ncRNA interactions into the networks above, we identified several other types of enriched and depleted motifs involving ncRNAs (see Figure Supp_RM4 for details). For example, the motif in which a miRNA targets a TF and the TF targets a snRNA is highly enriched (z-score = 3.32), which suggests that the transcriptional regulation of snRNAs is likely to be controlled by some miRNA regulation. The motifs in which two different lincRNAs are co-regulated by a common TF, a lincRNA and a processed transcript are co-regulated by a common TF, and two different processed transcripts are co-regulated by a common TF are also highly enriched (z-scores = 11.74, 7.93, and 5.42, respectively), which suggests that pairwise longer ncRNAs tend to share a common TF regulator. The top/middle-level TFs have much larger out-degrees on lincRNAs and processed transcripts than bottom-level TFs, which contributes most to the significance of these three types of motifs. In contrast, the motif in which any short ncRNA and any longer ncRNA share a common TF regulator is highly depleted.

[[MG(div)EK: "Var"]]

D. Relating the Regulatory Network to Genomic Variation

In this section we inter-relate genomic variants with the regulatory network. Firstly, we study selection pressure on TFs and target genes. This is followed by analysis of allele specific binding and expression. 


Selection pressure amongst modern-day humans is obtained from SNPs from 1000 Genomes pilot project data. Similarly, selection pressure over longer evolutionary time is obtained from human-chimp ortholog alignments and the ratio of non-synonymous to synonymous substitutions.  We find that selection constraints on TFs as well as target genes are negatively correlated with their out-degree and in-degree respectively. Thus, TFs regulating more targets and targets regulated by more TFs tend to be under stronger negative selection. On relating the TF hierarchy levels with selection pressure, we find that TFs in the top layer tend to be under significantly stronger negative selection. 

The network seen in figure 6 was generated to depict the relationship between allele-specific binding and allele-specific expression, this was done by integrating data from the ChIP-Sew datasets and the AlleleSeq pipeline. Using all the ChIP-Seq datasets for the GM12878 cell line (a total of XXX different transcription factors) we used the AlleleSeq pipeline [[Rozowsky et al. 2011]] in order to identify sites of allele-specific binding (ASB). Combining with RNA-Seq data for GM12878 we could also identify, using the same AlleleSeq pipeline, potential target genes that exhibit allele-specific expression (ASE). The AlleleSeq pipeline uses a diploid genome sequence that has been constructed for the NA12878 individual using variation data from the 1000 Genomes Project [ref]. ChIP-Seq or RNA-Seq reads are competitively mapped to both maternal and paternal haplotypes. Reads mapping to each haplotype are counted over heterozygous SNPs and assessed for allele-specific activity using a binomial test which is then corrected for multiple hypothesis testing by explicit simulation.

Using the output from the AlleleSeq pipeline for each transcription factor – the set of binding sites that exhibit allele-specific binding (which can be biased towards either the maternal or paternal allele is the heterozygous SNP was able to be phased in the original construction of the diploid genome). Allele-Specific regulatory target genes for each TF are the set of genes that have an allele-specific binding site within the genomic coordinates of the target gene or within 2.5 KB of the TSS of the gene. Regulatory edges for each TF are labeled as either maternal or paternal. In addition allele-specific regulatory targets that exhibit allele-specific can be identified using the output from the RNA-Seq data and can similarly be labeled as maternal or paternal ASE. In figure 6 you can see the integration of all the data described above. The central circle in the figure contains the TFs while all the other (blue and red) nodes are the targets of these TFs that exhibit ASE. The edges show ASB and the circles are organized by the difference between the number of maternal ASB and paternal ASB, with the circle directly to the right of the TFs being the targets with an equal number of paternal and maternal ASB edges. There is a clear correlation that can be seen between ASB and ASE.

This trend strengthens with the number of ASBs, while it is only a weak trend with single ASBs. The number of single ASBs to ASE target  where they are both paternal or both maternal is 2734 while the number for mismatches (paternal ASB and maternal ASE and vice-versa) is 2064. While this shows a trend it is not a very strong signal however this signal is quickly intensified when looking at multiple ASBs to the same target. When counting the number of network motifs where two ASBs and the ASE target are all either paternal or maternal the number is 7183, while the count for the two ASBs matching each other but in disagreement with the targets ASE is 4152. This correlation can be easily seen when looking around the network, the pearson correlation between the difference of paternal and maternal ASBs to a target (number of paternal ASBs minus number of maternal ASBs) and the ASE of the targets is 0.96.

[[MG(17sep)2PA: can we do larger network motifs than 2 ASBs here?]]

[[MG(17sep)2EK: remove ASE and ASB jargon and move much to suppl.]]

[[MG(div)RA: Disc.]]

Discussion

“one or two short paragraphs of discussion” -- Nature Article description

Supplementary documents

CC_S1_siRNA (1/2 supplementary Figure)

To understand the effect of GATA1, we down-regulated the expression of GATA1 by RNA interference experiment, and measured the expression levels of genes in GATA1 knockdown (gata1) and a control experiment (wt). Reads from RNA-Seq experiments are mapped to human reference genome (hg19) by Bowtie. The expression levels of all human genes were then calculated using Cufflink and represented as RPKM (fragments per kilobase of exon per million fragments mapped). We calculated the expression changes of genes in GATA1 knockdown with respect to the control (log2(gata1/wt)). In principle, we would expect to see that the expression of GATA1 target genes were down-regulated as a consequence of the GATA1 knockdown. We found that the target genes identified by the probabilistic model are more likely to be down-regulated in GATA1 knockdown then those identified by the peak based method (Figure_CC_S1).

[[MG(17sep)2JJL: add DRE stuff to suppl.]]

[[MG(17sep)2PA: add allele stuff to suppl.]]

