

Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism

Ty C. Voss,^{1,4} R. Louis Schiltz,^{1,4} Myong-Hee Sung,¹ Paul M. Yen,² John A. Stamatoyannopoulos,³ Simon C. Biddie,¹ Thomas A. Johnson,¹ Tina B. Miranda,¹ Sam John,¹ and Gordon L. Hager^{1,*}

¹Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Drive, National Cancer Institute,

National Institutes of Health, Bethesda, MD 20892, USA

²Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 169857, Singapore

³Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

⁴These authors contributed equally to this work

*Correspondence: hagerg@exchange.nih.gov

Baikang Pei Journal Club 09/01/2011

What's it about?

Hit-and-run model: Receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average*

*J.G.MacNally et al. Science 287, 1262-1264 (2000)

Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.

Glucocorticoid Receptor & Estrogen Receptor pBox

- Both GR and ER are steroid hormone receptors
- pBox mutations: three amino acids changes in the ER
- GR and ER pBox interact with GRE consensus sequence

Lack of Competition and Assisted Loading

Design of Experiments

The 6644 mouse mammary carcinoma cell line was engineered to to express GFP-GR and CH-ER pBox

The 6644 cell line also contains Tandem repeat of MMTV LTR promoter-reporter cassettes

Simultaneous or individual treatment of Dex and E2, which are respective ligands of GR and ER.

Tandem repeat of MMTV LTR promoter-reporter cassettes

Assisted Loading from ChIP Assay

Assisted loading is observed in ChIP assay results, as in image analysis;

Assisted loading phenomenon indicates the GREs are not saturated, and lack of receptors is not the reason

ER is less efficient in recruiting cofactors required for GRE binding

GR Produces More Chromatin Access than ER pBox

Protein-Protein Interactions? Not Likely

7438 cell line is same as 6644 cell line, except it expresses Ch-ER wile type, but not ER pBox

Ch-ER WT protein does not interact with MMTV promoter following the treatment of estrogen, which indicates the binding of ER pBox with GRE is sequence specific, but not due to protein-protein interaction

The decrease of GR binding after simultaneous treatment of Dex and E2 is due to sequestration of cofactors

Another Evidence for no PPI

8

Cort: ligand of GR, can be washed out of cell

Following the simultaneous treatment - wash - simultaneous treatment, the GR binding and ER pBox binding changes in opposite direction

Assisted Loading at Endogenous Response Elements

73814000

11

Assisted Loading at Endogenous Response Elements

Intern	al	Unique	DHS peak	DHS peak					ERpBox	ERpBox	ERpBox
Locus	Gene Name	Internal	seq tag	seq tag	DHS ratio	GR ChIP	GR ChIP	GR ChIP	ChIP	ChIP	ChIP
ID	description	locus	count	count	DHS ratio	+ dex	+ dex	Ratio		+ dex	Ratio
#		description	- dex	+ dex	+dex/-dex		+ E2	+dex+E2/+dex	+ E2	+ E2	+dex+E2/+E2
Prepr	ogrammed sites										
1	Slc5a5	chr8_73809380	462	475	1.03	0.0001243	0.00023276	1.872566193	0.00093363	0.00069478	0.74
2	ND	chr7_112937750	34	37	1.09	0.0019598	0.00167482	0.854591125	0.00129272	0.00128267	0.99
3	Spp2/Glrp1	chr1_90306468	107	119	1.11	0.00152132	0.0014933	0.98158272	0.00372546	0.00272714	0.73
4	Tbl1xr1	chr3_22143881	114	155	1.36	0.00138335	0.000967	0.699023533	0.00076966	0.00112488	1.46
5	ND	chr6_28982040	41	66	1.61	0.00345054	0.00292163	0.846717549	0.00169957	0.00202999	1.19
de no	vo sites										
6	Sys1/Sdc4	chr2_164146892	45	494	10.98	0.00959871	0.00992899	1.034408297	0.00789394	0.00941958	1.19
7	Tns1 Intron 4	chr1_73948020	2	42	21.00	0.00454624	0.0035061	0.771210164	0.00026992	0.00210237	7.79
8	Slc44a3 50kb Pr	chr3_121597000	9	224	24.89	0.00646772	0.00515919	0.797682902	0.0013308	0.00255533	1.92
9	Tsku	chr7_98267828	12	347	28.92	0.01080488	0.01104406	1.022136347	0.00491957	0.00935684	1.90
10	Rlbp1l1	chr4_9187915	1	43	43.00	0.00186196	0.0014597	0.783958934	0.00049665	0.00150721	3.03
11	Lcn2	chr2_32210200	1	55	55.00	0.00273052	0.00178083	0.6521947	0.00062448	0.00204808	3.28
12	Ggta1 Intron 1	chr2_35262340	1	57	57.00	0.00284432	0.00295558	1.039116842	0.00165691	0.00419515	2.53
13	Cugbp2 alt pr1 Int	tr chr2_7160037	1	73	73.00	0.00102724	0.00125195	1.218755595	0.00036985	0.00075955	2.05
14	Rpl29	chr9_106271900	1	92	92.00	0.00225594	0.00197216	0.874207234	0.00132128	0.00162055	1.23
15	Slc25a33	chr4_148657510	2	199	99.50	0.00920885	0.00780574	0.847634561	0.00399993	0.00726651	1.82

Assisted Loading at Endogenous Response Elements

Proposed Model

Math Model and Simulation

Math Model and Simulation

Conclusions

• TFs don's compete for binding sites

 Hit-and-run model coupled with chromatin remodeling for assisted loading