Introduction

The starting point of this work:

Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels

Nitin Bhardwaj*, Koon-Kiu Yan*, and Mark B. Gerstein*, c. 1

- Motivation most biological processes are regulated by a combination of different regulatory methods.
 - → Study the interplay between these processes.

Agenda

Step 1

Recreate results in paper for the Sc_Tr and Sc_Ph networks:

- hierarchy structure (3 layers per network)
- collaborative propensity for each layer
- inter-layer degree of collaboration

Method

regulatory network to coregulatory network.

hierarchy structure (3 levels)

inter-layer degree of collaboration

Between-level-collaboration results for yeast

The middle level shows the highest collaborative propensity.

Step 2

Combine the two networks to obtain a 6-layer hierarchy and compute:

- collaboration propensity for each layer
- inter-layer degree of collaboration (9 cases):

$$\{T, MB\}_{TF} \times \{T, MB\}_{Ph}$$

TF and phosphorylation combined network

Step 3

Rationalize the trends found.

- Is there a common order in many regulation processes?
- Do the different trends / categories correlate to biological function?

NF-κB signaling