# Brainseq Transposons modENCODE developmental timecourses 3D Structure of the Genome

Roger Alexander Gerstein lab group meeting Thurs 11 Aug 2011

# Brainseq Transposons modENCODE developmental timecourses 3D Structure of the Genome



#### **Brainseq Dataset**

| Region                             | Acronym   |
|------------------------------------|-----------|
| Amygdala                           | AMY       |
| Cerebellum                         | CBL (CBC) |
| Hippocampus                        | HIP       |
| Striatum                           | STR       |
| Thalamus                           | THM (MD)  |
| Primary auditory (A1) cortex       | A1C       |
| Inferior temporal cortex           | ITC       |
| Posterior inferior parietal cortex | IPC       |
| Primary somatosensory (S1) cortex  | S1C       |
| Posterior superior temporal cortex | STC       |
| Primary visual (V1) cortex         | V1C       |
| Dorsolateral prefrontal cortex     | DFC       |
| Primary motor (M1) cortex          | M1C       |
| Medial prefrontal cortex           | MFC       |
| Orbital prefrontal cortex          | OFC       |
| Ventrolateral prefrontal cortex    | VFC       |

We have 75nt single-end RNAseq reads in 16 brain regions from 6 people.

| BRAIN                           |                                        |                                                   |  |  |  |  |
|---------------------------------|----------------------------------------|---------------------------------------------------|--|--|--|--|
|                                 | NEOCORTEX                              |                                                   |  |  |  |  |
| THM<br>HIP<br>AMY<br>STR<br>CBL | V1C<br>S1C<br>STC<br>ITC<br>A1C<br>IPC | FRONTAL CORTEX<br>DFC<br>MFC<br>VFC<br>OFC<br>M1C |  |  |  |  |

Neural progenitor cells (NPCs) give rise to 3 main lineages of the nervous system: neurons astrocytes oligodendrocytes

To determine whether human NPCs can support L1 retrotransposition, Gage transfected human fetal brain stem cells (hCNS-SCns) with expression construct containing retrotransposition-competent human L1 (RC-L1) driven from its native promoter (L1RP).

- LINE L1 retrotransposition often occurs at
  - L1 endonuclease consensus cleavage sites (59-TTTT/A and derivatives)
- flanking target site duplications
- 16 of 19 events were <100 kb from a gene, some expressed in neurons



L1 retrotransposition in human neural progenitor cells *Nature* (2009) 460: 1127

work by Fred Gage lab, Salk Institute, San Diego



"We propose that less L1 promoter methylation in the developing brain may correlate with increased L1 transcription and perhaps L1 retrotransposition, and the differential interaction of SOX2 and MECP2 with L1 regulatory sequences may modulate L1 activity in different neuronal cell types.

Although NPCs are useful to monitor L1 activity, they only allow monitoring of a single L1 expressed from a privileged context. By comparison, the average human genome contains ~80–100 active L1s, the expression of which may be affected by chromatin structure."



"hippocampus samples contained ~1,000 more L1 copies than the heart or liver genomic DNAs, suggesting a theoretical increase in ORF2 of approximately 80 copies per cell."



Ultimate proof that endogenous L1s are retrotransposing in the brain requires identification of new retrotransposition events in individual somatic cells."

### Jumping of Active Transposons can lead to Somatic Genome Variation during Development

Hypothesis: Active retro-transposons have positioned themselves differently in the somatic genomes of different brain tissues in the same individual.

=> search for transposons present in one region and missing in others in the same individual

L1 retrotransposition in human neural progenitor cells *Nature* (2009) 460: 1127 Do Jumping Genes Spawn Diversity? *Science* (2011) 332: 300

### Jumping of Active Transposons can lead to Somatic Genome Variation during Development

Method:

- Start with HSB123 sample RNAseq data for 16 brain regions
- Filter out completely repetitive RNAseq reads (bowtie on hg19 Repeat Masker)
- Filter out RNAseq reads that map completely to genome (bowtie on hg19)
- Scan remaining reads for partial overlap with hg19 Repeat Masker (BWA)
- Map non-repeat portion of split reads against hg19 (bowtie)
- Generate split read library and map all reads from each region against it (bowtie)
- Look for split reads with differential mapping between regions
- Analyze other brain samples are the retrotransposon insertion sites random or common across individuals (i.e. regulated)?

L1 retrotransposition in human neural progenitor cells *Nature* (2009) 460: 1127 Do Jumping Genes Spawn Diversity? *Science* (2011) 332: 300

#### Method: Assemble a library of repeat / non-repeat split reads



#### Assemble a library of repeat / non-repeat split reads



#### Example

Assemble a library of repeat / non-repeat split reads

One final filtering step allows us to map our read sets against just the split read library and still expect ~unique mappings.



#### Map reads from different regions to split read library



Compare location of retrotranspositon events across brains:

Are the locations shared, and thus somehow regulated, or random?









#### Example in HSB123 hippocampus

non-repeat: chr11:118767422-118767448 3'UTR of BCL9 repeat: chr20:60762775-60761884 L1MEf LINE L1 2



function of BCL9: Transcriptional activator of beta-catenin; plays a role in tumorigenesis. Found in a complex with CDC73; CTNNB1 and PYGO1. Interacts with CTNNB1 and enhances its neoplastic transforming activity.

#### Example in HSB123 hippocampus

non-repeat: chr11:118767422-118767448 3' repeat: chr20:60762775-60761884 L1

3'UTR of BCL9 L1MEf\_LINE\_L1\_2

| read         | AGCTGCCAGTGCACGACCAGGCCCTCCTCTCGTTTTCCTGATCAGGCTAGAAGTGTGTTAGTTA |  |  |  |
|--------------|------------------------------------------------------------------|--|--|--|
| non-rep      | AGCTGCCAGTGCAAGACCAGGCCCTC                                       |  |  |  |
| rep 26S47M2S | CTCTCGTTTTCCTGATCAGGCTAGAAGTGTGTTAGTTAGCTTGTCTC                  |  |  |  |

#### Sample Region

| I      | I I | No | on-re | ep Stra | nd (c | on chr11) |           |                                    |
|--------|-----|----|-------|---------|-------|-----------|-----------|------------------------------------|
| I      | 1   |    | Rep   | Strand  | (on   | chr20)    | Distance  | e from chr11:118767422             |
| I      | 1   | I. | I     | chr11   | pos   | chr20 pos | I         | Repeat Element Name                |
| HSB145 | OFC | +  | -     | 8269    | 9062  | 60761884  | -36068360 | L1MEf_LINE_L1_2                    |
|        |     |    |       |         |       |           | (36Mb)    |                                    |
| HSB126 | S1C | _  | +     | 11848   | 5586  | 14588616  | -281836   | AluSq2_SINE_Alu_2                  |
| HSB145 | MD  | -  | +     | 11848   | 5586  | 14588616  | -281836   | AluSq2_SINE_Alu_2                  |
| HSB123 | IPC | -  | -     | 11851   | 4600  | 33495966  | -252822   | L2a_LINE_L2_2                      |
| HSB123 | VFC | -  | +     | 11851   | 7002  | 21651144  | -250420   | AluYk4_SINE_Alu_2                  |
| HSB123 | S1C | +  | +     | 11852   | 7875  | 54189037  | -239547   | (A)n_Simple_repeat_Simple_repeat_2 |
| HSB144 | MFC | -  | +     | 11862   | 2277  | 15026365  | -145145   | (T)n_Simple_repeat_Simple_repeat_2 |
| HSB123 | HIP | -  | -     | 11862   | 3158  | 36207939  | -144264   | AluSx_SINE_Alu_2                   |
| HSB123 | DFC | +  | +     | 11862   | 4014  | 35270278  | -143408   | AluSx_SINE_Alu_2                   |
| HSB123 | STR | -  | +     | 11864   | 5431  | 56028200  | -121991   | AluJb_SINE_Alu_2                   |
| HSB144 | AMY | -  | +     | 11866   | 6636  | 42170568  | -100786   | AluSx_SINE_Alu_2                   |
| HSB123 | HIP | -  | -     | 11876   | 7422  | 60761884  | 0         | L1MEf_LINE_L1_2                    |
| HSB144 | STC | +  | +     | 11882   | 9570  | 35670229  | 62148     | AluY_SINE_Alu_2                    |
| HSB123 | MFC | +  | -     | 11887   | 1482  | 31358416  | 104060    | AluSp_SINE_Alu_2                   |
| HSB144 | S1C | _  | _     | 11887   | 1580  | 49221469  | 104158    | AluJo_SINE_Alu_2                   |
| HSB123 | DFC | +  | _     | 11887   | 1580  | 49261363  | 104158    | AluSq_SINE_Alu_2                   |
| HSB123 | S1C | +  | -     | 11887   | 2468  | 57554507  | 105046    | AluJr4_SINE_Alu_2                  |
| HSB123 | AlC | _  | +     | 11887   | 2609  | 43910012  | 105187    | AluSz_SINE_Alu_2                   |
| HSB145 | VFC | +  | +     | 11887   | 2616  | 43910012  | 105194    | AluSz_SINE_Alu_2                   |
| HSB123 | MFC | +  | +     | 11887   | 3358  | 10648740  | 105936    | (A)n_Simple_repeat_Simple_repeat_2 |
| HSB145 | M1C | -  | -     | 11887   | 4289  | 39867632  | 106867    | AluY_SINE_Alu_2                    |

#### Same L1mEf\_LINE L1 in HSB145 OFC

non-repeat: chr11:82694062 repeat: chr20:60762775-60761884 intron of RAB30 L1MEf LINE L1 2



function of RAB30: isoform CRA\_a, member RAS oncogene small GTPase family

#### I am currently stuck building the split read library..



#### Suggestion from Alex: Search for polyA ends of LINE elements



# Brainseq Transposons modENCODE developmental timecourses 3D Structure of the Genome

### Ontogenetic Tree of Cell Types in Human Development







Understanding gene circuits at cell-fate branch points for rational cell reprogramming *Trends Genet.* (2011) 27: 55

### Ontogenetic Tree of Cell Types in Human Development



Understanding gene circuits at cell-fate branch points for rational cell reprogramming *Trends Genet.* (2011) 27: 55

#### Dynamical Model of Cell Differentiation Networks



A Dynamical Model of Genetic Networks for Cell Differentiation *PLoS ONE* (2011) 6: e17703

#### Dynamical Model of Cell Differentiation Networks



A Dynamical Model of Genetic Networks for Cell Differentiation *PLoS ONE* (2011) 6: e17703

#### Chaotic Dynamics in Pluripotent Cell Differentiation



Chaotic expression dynamics implies pluripotency: when theory and experiment meet *Biol. Direct* (2009) 4: 17

### Ontogenetic Tree of Cell Types in Human Development



Cell Fate Potential of Human Pluripotent Stem Cells Is Encoded by Histone Modifications *Cell Stem Cell* (2011) 9: 24

#### Regulation of Early Embryogenesis in *C. elegans*





Structure and evolution of the C. elegans embryonic endomesoderm network BBA-Gene Regul Mech (2009) 1789: 250



PHARYNX

BBA-Gene Regul Mech (2009) 1789: 250



PHARYNX

BBA-Gene Regul Mech (2009) 1789: 250

## Jing's JC about Developmental Hourglass model

phylotypic period



# Jing's JC about Developmental Hourglass model

- phylotypic period
- "To explain the resistance to evolutionary" changes of this period, one hypothesis suggests that it is characterized by a high level of interactions...We propose that the phylotypic period may rather be the expression at the morphological level of strong conservation of molecular processes earlier in development."

# Idea

- the phylotypic period may...be the expression at the morphological level of strong conservation of molecular processes earlier in development
- Development proceeds from early, multipotent cognitive stages, to lineage specification, through to terminal differentiation cascades. Recall SANDY.
- If zebrafish authors are correct, then early developmental stages should be characterized by "cognitive" network motifs, e.g. FFLs; see Yarden 2007 Nat Genet article
- => look at PPI density in Dmel, Cele devel timecourses
- => look at network motif distribution in Dmel, Cele timecourses

# Brainseq Transposons modENCODE developmental timecourses 3D Structure of the Genome



At the DC ENCODE meeting, I had the idea that folding chromatin segmentations into a polymer model of chromatin dynamics might help predict higher-order chromatin structure.

#### 3D Structure of the Genome: Ridges and Anti-Ridges



#### 3D Structure of the Genome: Ridges and Anti-Ridges





The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules *Nat. Struct. Molec. Biol.* (2011) 18 107



Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome *Science* (2009) 326: 289



A three-dimensional model of the yeast genome *Nature* (2010) 465: 363



42

# Brainspan

# Acknowledgements

human



- Andrea
- Alex
- Jasmine
- Lukas
- Mark
- Sestan lab

