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Why Study Non-Coding RNAs

Protein-coding genes only account for
about 1.5% of the human genome (about 3
billion base pairs), and the rest is dark
matter, among which there is ncRNA

The expressions of coding genes are
regulated not only by proteins (TFs), but
also by some ncRNAs

NncRNAs have been found to be associated
with Cancer, Autism, and Alzheimer’s
disease

NcRNAs are candidate bio-markers



Overview of ncRNAs in ENCODE Data

* We consider the following RNAs from Gencode v7 annotation as
non-coding RNAs:

number avg. length (End Pos — Start Pos)

-microRNA: 1756 92
-misc-RNA: 1187 153
-SNRNA: 1944 107
-SnoRNA: 1521 110
-lincRNA: 1239 43970 (11828, median)
-processed transcript: 8401 26346 (6372, median)

-rRNA(excluded from regulation and functional analysis): 531

* Total Length (annotation): 276,588,160 bases
* Transcribed region: 11,884,948 bases



Host-Gene Associated ncRNAs

* The ncRNAs that lie in the protein coding
regions

miRNA miscRNA snRNA  snoRNA lincRNA  pro_tran



NcRNAs in Protein Coding and
Promoter Regions

mMiRNA miscRNA snRNA  snoRNA | CRNA  pro_tra



Histone Signal Peaks in Promoter
Regions of ncRNAs

| consider three obvious cell-line consistent

histone modification experiments: 1.
wgEncodeBroadHistoneGm12878CtcfStdAInRep0

,2.WgEncodeBroadHistoneK562CtcfStdAlnRepO,3.
wgEncodeBroadHistoneK562Pol2bStdAlInRep0

e No.ofTars Host-Assoc. Non-Host-Assoc.

1 2 3 1 2 3
MiRNA 23 25 25 29 33 8
miscRNA /7 9 2 22 20 8
SNRNA 13 14 7 33 31 15

snoRNA 16 16 45 9 22 25



ENCODE ChlP-Seq Data for ncRNAs

 There are around 500 ChIP-Seq experiments for
about 120 unique TFs

* To identify ncRNA targets of TFs, | used 1.5 KB
upstream region of the starting position as

promoters of miRNAs, misc_ RNAs, snRNAs, and
SNORNAS

* Because lincRNAs and processed transcripts are
much longer, which are comparable or even
longer than coding genes, | used 1.5KB upstream
and 500B downstream of the starting position as
promoters of [incRNAs and processed_transcript.



Out-degree of TFs Over miRNAs

Cumulative distribution of out-degree of TFs
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In-degree of MiRNAs

Cumulative distribution of in-degree of miRNAS
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Prababhility

In-degree of snRNAs and snoRNAs
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Out-degree TF Hubs Regulating 16048
NncRNAs and 17874 Coding Genes

RAD21 1762 MAX 12503
MAX 1756 ELF1 11617
MYC 1720 YY1 11459
CEBPB 1302 E2F6 11011
YY1 1298 HEY1 10330
ELF1 1265 MYC 9581
JUND 1152 EGR1 9500
HEY1 1113 SIN3A 9409
STAT3 1082 E2F1 9252
FOXA1 1069 HDAC2 9252
E2F6 1068 POU2F2 8564
HDAC2 1062 PAX5 8440
SPI1 985 NFKB1 8090
EGR1 970 CHD2 7796
SMC3 970 TCF12 7527
USF1 969 RAD21 7516
MAFK 933 ZEB1 7514
TCF4 891 TCF4 7412
POU2F2 882 SP1 7200

PAX5 867 USF1 6812



Non-Coding RNA Associated TFs

XRCC4

BRE2 e BRF2 subunit of
ZNF274 RNA polymerase Il
SMARCA4 .
8DP1 * POUSF1 embryonic
BRF1 development
ESRUISH * BRF1 subunit of
BATE RNA polymerase |l
GATA2  BDP1 subunit of
f\‘/IJANFF RNA polymerase IlI
NR3C1 * BATF Basic leucine
FOXA2 zZipper

oo transcription

FOSLL factor, ATF-like

TAL1 * ESR1 estrogen
STATS receptor 1

POLR3A



Coding Gene Associated TFs

THAP1
IRF3
SIX5
IRF1
ATF3
E2F4
PPARGC1A
ELK4
SP2
HMGN3
ETS1
NRF1
BRCA1
SIN3A
CCNT2

MXI1
ZEB1
E2F1
CHD2
SMARCB1
GABPA
NR2C2
ZBTB7A
E2F6
GTF2F1
RFX5
NFYA
NFE2
EGR1
TCF12



Properties of In-degree Hubs

* snoRNAs are highly enriched in-degree hubs

* Misc_RNAs and snRNAs tend to be under-
represented in in-degree hubs



NncRNA Regulatory Network Motifs
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Annotating Functional Modules of
NcRNAs By Clustering Expression

!

|

!

|
1
!

1

ﬁ

|11 |II|‘| |

|

| )

\w

1

IW

H “ |( . |1

\

|

|

T
! “

\’

|

l \
|

1]

|

—
—
——

—-_—

————
——a——
——
T
e —
—

j

|

|

ﬁ

‘!\

|




Predicting Interactions between
Regulators for each Module

* Bayesian Networks
* Boosted Naive Bayes Classifiers
 SVM

05 0 05
correlation



Performance of RBF-Kernel SVM

* Average One-vs-All ROC score based on kernel
RBF-Kernel SVM is even above 0.80

* No tuning, no hacking, just simple testing, no
cross validation yet



Why Not Bayesian Networks or SVM

* Hard to interpret the dependencies between
features

* Here features are TF targetings



Semi-Supervised Semi-Restricted
Boltzmann Machines (S*3RBM)

hidden units

e o=

visible units label




Learning Restricted Boltzmann Machines

binary state of  binary state of
visible unit | hidden unit j

/

E(v,h) = - Evhw Eva EvlLiy
;e
Energy with configuration v weight between units
on the visible units and h on - -

i and .
the hidden units J visible

dlog p(v) 0 o
_E(v,}) = <vh;>" —<v;h;>

p(v,h) X e ’ W

_JE(v, h)

awl.j

= v.h,

LJ



Learning Restricted Boltzmann Machines

O /@ Q Q Start with a training vector on the

<v, h <v, h visible units.
Update all the hidden units in parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1

: Update the hidden units again.
data reconstruction

0 1
Aw;; = &€ ( <vl-hj> — <vl-hj> )



Learning Lateral Connections

 Mean-field Gibbs Sampling for inference

* stochastic MCMC for calculating model
expectations to update weights



Predicting Expression from Chao’s
Histone Modification Data

Discretize Expression and histone sighals
Learn S*3 RBM

5-fold cross validation accuracy 87%
One-vs-All ROC score: above 90%

Still in progress: interpreting dependencies
between histone markers



Why SA3 RBM is Better than BN

* We can learn dependencies between features
explicitly

* We can learn a dependency network for each
functional module

 We can directly infer which features
determine the other features with or without
supervision signals



Random-Walk Models on Predicting
(In)Direct, Stable, and Functional

Bindings
e Utilizing all types of sources of high-
throughput data and considering all the
binding track data simultaneously
— PPI

— Binding Affinity based on PWMs

e construct a mixture model explaining which
binding peak belongs to which TF



Other Projects

Conditional Random Field for predicting
phenotypes from SVs

Random-walk based models for predicting gene
functions by integrating network data and
phenotype data
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