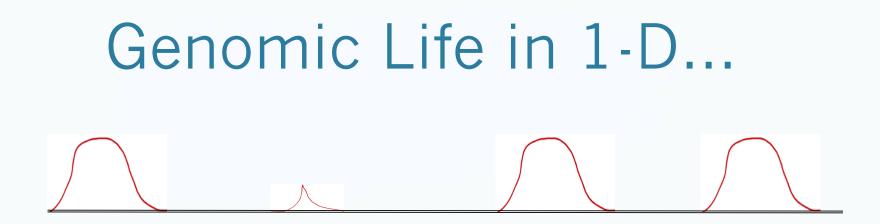
Long Range Interaction Analysis in the Age of ENCODE

Raymond Auerbach Gerstein and Snyder Labs June 22, 2011

Outline

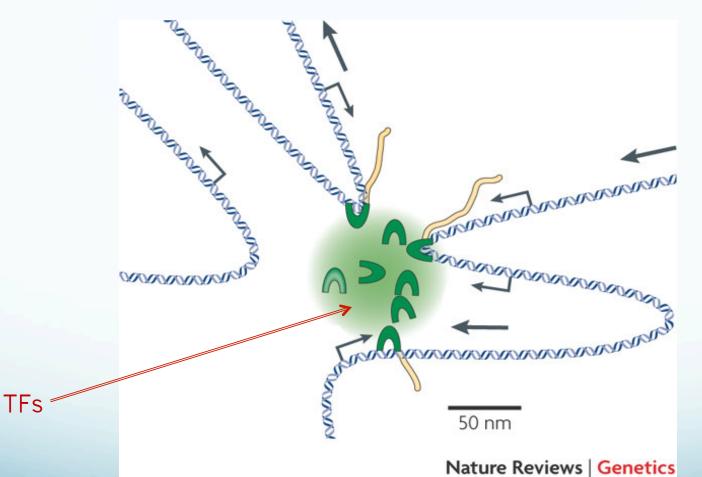
- Brief overview of work since last group meeting
- Review of current trends in long-range interactions
 - Chromatin Conformation Capture Family
 - Chromatin Interaction Analysis by Paired-End diTag Sequencing (ChIA-PET)
- Selected Results from a pilot ChIA-PET RNAPII experiment

• Discussion of possible ChIP-Seq tool set


Selected Papers

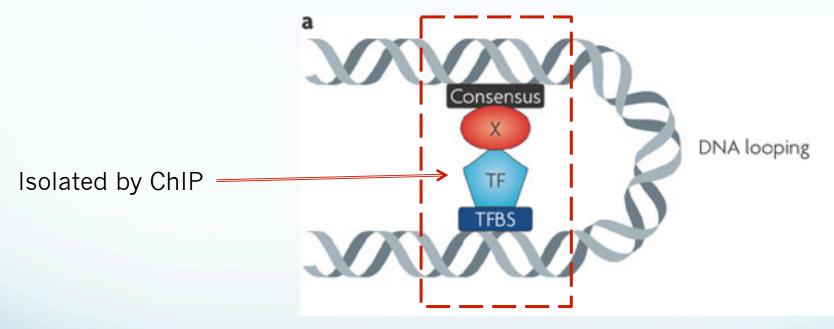
- modENCODE
 - Analysis of the C. elegans genome (Gerstein et al)
 - Characterization of Pol II binding and gene expression
- A Genome-Wide View of Chromatin Remodeling
 - Euskirchen and Auerbach et al., PLoS Genetics
 - Atypical trancription factors, data quality and integration, new techniques and approaches
- Characterization of Long-Range Interactions in Multiple Cell Lines Using ChIA-PET
 - Li, Ruan, and Auerbach, et al.
 - In revision

Before We Begin...


- Disclaimers
 - I am not an experimentalist
 - LRI methods are still under active development
 - This is a pilot project

LRI: The Basics

And Now in 3-D (with Looping)

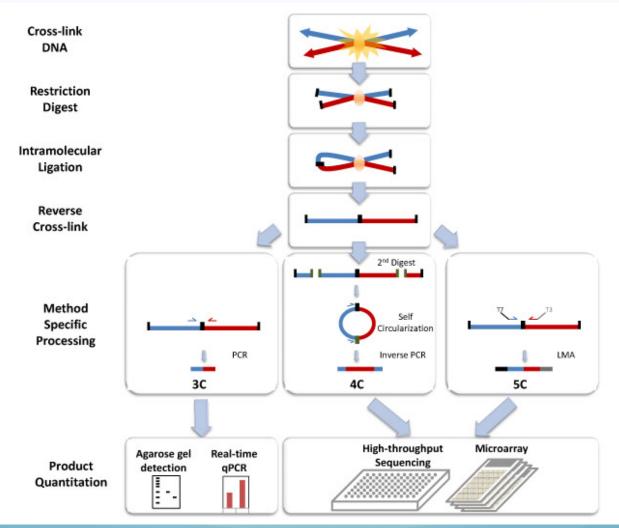


Heidi Sutherland & Wendy A. Bickmore. Transcription factories: gene expression in unions? Nature Reviews Genetics 10, 457-466 (July 2009).

The Case for Transcription Factories

- Thought to be over ~8,000 RNAPII and ~2,000 RNAPIII factories in the nucleoplasm
 - Erythroid cells. Fewer in tissues.
- More genes need to be transcribed at a faster rate than physically possible
 - Bind and slide, random binding, etc.
 - Instead, bring the DNA to the TFs
- Confirmed by FISH
- Nucleolus and RNAPI

Targeted Recruitment



PJ Farnham, Nature Reviews Genetics, 2009

Current Methods in LRI Analysis

- Chromatin Conformation Capture
 - UMass
 - Advantage: Can be targeted to a specific locus or extended to all chromosomal contacts genome-wide
 - Disadvantage: Can't isolate by site-specific properties. A lot of primer design. Noise issues.
- ChIA-PET
 - Genome Institute of Singapore
 - Advantage: One can get a complete set of all interactions involving a particular TF.
 - Disadvantage: Interaction catalog is not generalized, no obvious way to filter noise across chromosomes.

Chromatin Conformation Capture Family

11

Wikipedia

5c Data on UCSC

- UMass
 - 5c interactions between ENCODE Pilot Regions
 - GM12878, H1-hESC, HeLa-S3, and K562
 - Replicates Not Combined

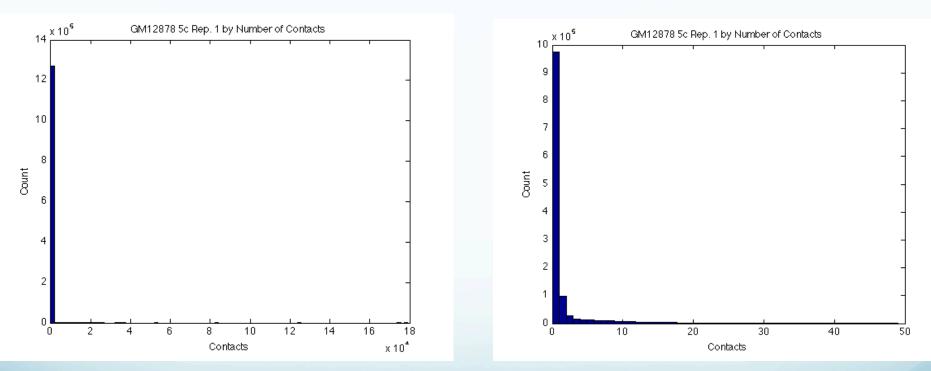
- UW
 - A bunch of lines
 - Mainly focuses on Myc
 - Replicates Not Combined

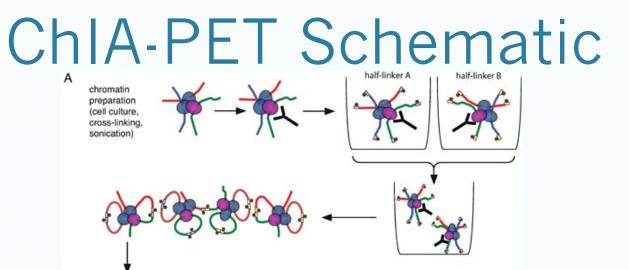
What You Will See on UCSC

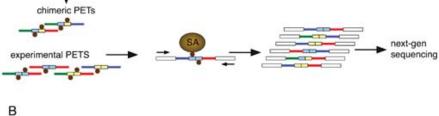
	and Description:	contains		
	and Group:	is (Any 🗘	
	and Data Format:	is (Any	
				ENCODE terms
+ and	Experiment (Assay) type	; i	among 5C	
+ and	Antibody or target protein	🔹 i	among Any Antibody or target protein	

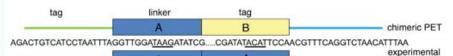
search clear cancel

	Principal Investigator on	Lab producing	View - Peaks or	Cell, tissue or DNA	Date restrictions	Replicate		Date submitted to				File	
44 files	grant ¹¹	data ^{↓2}	Signals ¹³	sample ^{↓4}	end ^{↓5}	number	ENCODE Data Freeze	UCSC	ID	Genomic region(s)	Size		Additional Detail
Download 🗀	Dekker	UMass-Dekker	Matrix	GM12878	2011-10-25	1	ENCODE Jan 2011 Freeze	2011-01-25	3488				dataType=5C;
Download 🗎	Dekker	UMass-Dekker	Matrix	GM12878	2011-10-25	2	ENCODE Jan 2011 Freeze	2011-01-25	3488				dataType=5C;
Download 🗎	Dekker	UMass-Dekker	Matrix	H1-hESC	2011-10-25	1	ENCODE Jan 2011 Freeze	2011-01-25	3488		809 KB	download	dataType=5C;
Download 🗎	Dekker	UMass-Dekker	Matrix	H1-hESC	2011-10-25	2	ENCODE Jan 2011 Freeze	2011-01-25	3488		513 KB	download	dataType=5C;
Download 🗀	Dekker	UMass-Dekker	Matrix	HeLa-S3	2011-10-25	1	ENCODE Jan 2011 Freeze	2011-01-25	3488		841 KB	download	dataType=5C;
Download 🗎	Dekker	UMass-Dekker	Matrix	HeLa-S3	2011-10-25	2	ENCODE Jan 2011 Freeze	2011-01-25	3488		788 KB	download	dataType=5C;
(Download)	Dekker	UMass-Dekker	Matrix	K562	2011-10-25	1	ENCODE Jan 2011 Freeze	2011-01-25	3488		1.0 MB	download	dataType=5C;
Download 🗀	Dekker	UMass-Dekker	Matrix	K562	2011-10-25	2	ENCODE Jan 2011 Freeze	2011-01-25	3488		1.0 MB	download	dataType=5C;
Download 🗀	Stam	UW	Matrix	BJ	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	108 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	BJ	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	116 KB	download	dataType=5C;
(Download)	Stam	UW	Matrix	Caco-2	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	64 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	Caco-2	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	60 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	GM06990	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	104 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	GM06990	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	109 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	GM12878	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	59 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	GM12878	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	60 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	HepG2	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	158 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	HepG2	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	116 KB	download	dataType=5C;
Download 🗀	Stam	UW	Matrix	K562	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	51 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	K562	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	59 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	LNCaP	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	64 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	LNCaP	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	60 KB	download	dataType=5C;
Download 🗀	Stam	UW	Matrix	MCF-7	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	65 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	MCF-7	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	61 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	SK-N-SH_RA	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	157 KB	download	dataType=5C;
Download 🗎	Stam	UW	Matrix	SK-N-SH_RA	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	126 KB	download	dataType=5C;
Download 🗀	Stam	UW	RawData	BJ	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	1.5 GB	fastq	dataType=5C;
Download 🗀	Stam	UW	RawData	BJ	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Gene-Regions	1.6 GB	fastq	dataType=5C;
Download 🗀	Stam	UW	RawData	Caco-2	2011-12-08	1	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Myc-Region	3.2 GB	fastq	dataType= %C;
(Download)	Stam	UW	RawData	Caco-2	2011-12-08	2	post ENCODE Jan 2011 Freeze	2011-03-09	3813	UW-5C-Mvc-Region	1.8 GB	fasto	dataTvue 5C:

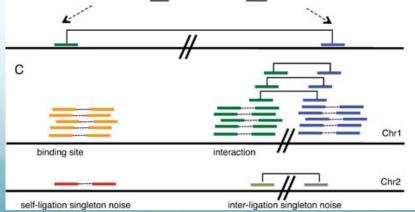

What is the Matrix?


#my5C - http://my5C.umassmed.edu	7							
#15:39:40, Tue Jan 18, 2011								
#mv5C temp file - 500 c516a3583d1358c541f06009658b6192								
#ALLXALL MATRIX								
#primerpool - 966 ENM								
#result - 1774 ENM1-GM12878								
# ESUL - 1774_ENN1-SN12878								
#*	5C_299_ENm002_REV_1 hg19 chr5:131256415-131258341	EC 200 EN	EC 200 ENIS	EC 200 ENIS E	C 200 ENI- E	000 ENI-	C 200 ENIS	C 200 ENIS
5C 200 EN:::002 EOR 216-101-6-5-121258241 121250505					79 rul 299 2001 50			
5C_299_ENm002_FOR_2 hg19 chr5:131258341-131260605	727			17	27	68 33	173 85	99
5C_299_ENm002_FOR_5 hg19 chr5:131265852-131268218								28
5C_299_ENm002_FOR_7 hg19 chr5:131282811-131283081	76			12	22	16	30	17
5C_299_ENm002_FOR_8 hg19 chr5:131283081-131284754	22			58	75	73	59	16
5C_299_ENm002_FOR_9 hg19 chr5:131284754-131293292	20			21	157	83	195	110
5C_299_ENm002_FOR_10 hg19 chr5:131293292-131294942	81			99	57	19	35	12
5C_299_ENm002_FOR_11 hg19 chr5:131294942-131295972	57			46	56	13	26	0
5C_299_ENm002_FOR_12 hg19 chr5:131295972-131299135	52			221	122	48	27	57
5C_299_ENm002_FOR_13 hg19 chr5:131299135-131299252	71			16	43	35	61	19
5C_299_ENm002_FOR_15 hg19 chr5:131299620-131299809	6			3	14	16	25	1
5C_299_ENm002_FOR_16 hg19 chr5:131299809-131300294	65			53	33	28	45	41
5C_299_ENm002_FOR_17 hg19 chr5:131300294-131301697	76			98	57	41	60	40
5C_299_ENm002_FOR_18 hg19 chr5:131301697-131308282	55			36	81	51	146	36
5C_299_ENm002_FOR_20 hg19 chr5:131311855-131316841	7	149	27	3	11	0	2	0
5C_299_ENm002_FOR_21 hg19 chr5:131316841-131317443	73	307	100	72	62	28	34	9
5C_299_ENm002_FOR_22 hg19 chr5:131317443-131321565	26	1363	1482	669	250	105	171	42
5C 299 ENm002 FOR 24 hg19 chr5:131328527-131329090	62	238	2760	346	434	93	63	26
5C_299_ENm002_FOR_28 hg19 chr5:131336835-131337080	31	181	177	860	2251	77	76	40
5C_299_ENm002_FOR_29 hg19 chr5:131337080-131337292	6	91	16	265	1255	74	45	30
5C_299_ENm002_FOR_30 hg19 chr5:131337292-131338045	12	166	130	435	1635	124	74	10
5C 299 ENm002 FOR 31 hg19 chr5:131338045-131341758	78			280	434	129	94	49
5C_299_ENm002_FOR_32 hg19 chr5:131341758-131346229	28			100	248	1138	265	119
5C_299_ENm002_FOR_34 hg19 chr5:131348838-131356954	51			275	205	557	229	115
5C_299_ENm002_FOR_35 hg19 chr5:131356954-131363862	75			35	166	314	487	160
5C_299_ENm002_FOR_36 hg19 chr5:131363862-131363994	12			92	80	76	185	47
5C 299 ENm002 FOR 37 hg19 chr5:131363994-131368340	13			79	37	122	129	64
5C 299 ENm002 FOR 41 hg19 chr5:131384017-131385202	39			71	54	75	367	120
5C_299_ENm002_FOR_42 hg19 chr5:131385202-13139190	23			238	127	165	960	203
	55			15	81	105	464	392
5C_299_ENm002_FOR_44 hg19 chr5:131405195-131408856	39			13	41	22	302	1528
5C_299_ENm002_FOR_46 hg19 chr5:131414324-131416113					63			
5C_299_ENm002_FOR_47 hg19 chr5:131416113-131417265	3			3		6	156	313
5C_299_ENm002_FOR_48 hg19 chr5:131417265-131417742	16				37	41	187	524
5C_299_ENm002_FOR_49 hg19 chr5:131417742-131420182	3			6	47	55	408	319
5C_299_ENm002_FOR_51 hg19 chr5:131420579-131428367	1			24	27	14	256	236
5C_299_ENm002_FOR_52 hg19 chr5:131428367-131428520	3			6	22	12	262	135
5C_299_ENm002_FOR_53 hg19 chr5:131428520-131433879	58			72	95	33	435	300
5C_299_ENm002_FOR_56 hg19 chr5:131442826-131449474	37			35	30	54	468	201
5C_299_ENm002_FOR_57 hg19 chr5:131449474-131450295	2			11	41	66	196	192
5C_299_ENm002_FOR_61 hg19 chr5:131475645-131476657	7			4	14	14	130	42
5C_299_ENm002_FOR_62 hg19 chr5:131476657-131477534	11			2	15	12	109	87
5C_299_ENm002_FOR_63 hg19 chr5:131477534-131485214	52			15	41	40	487	246
5C_299_ENm002_FOR_64 hg19 chr5:131485214-131485878	21			12	23	41	255	89
5C_299_ENm002_FOR_68 hg19 chr5:131492484-131492991	3	0	0	0	0	0	0	0
5C_299_ENm002_FOR_69 hg19 chr5:131492991-131494404	6	23	15	16	22	10	88	87
5C_299_ENm002_FOR_71 hg19 chr5:131495840-131515519	10	65	2	21	50	43	363	80
5C_299_ENm002_FOR_72 hg19 chr5:131515519-131516145	25	54	17	64	39	41	330	157
5C_299_ENm002_FOR_74 hg19 chr5:131526403-131528269	4	111	31	32	75	18	338	164
EC 200 ENIm002 EOR. 7516-101-6-5-121529260 121520120	17	107	10	10	10	16	102	106

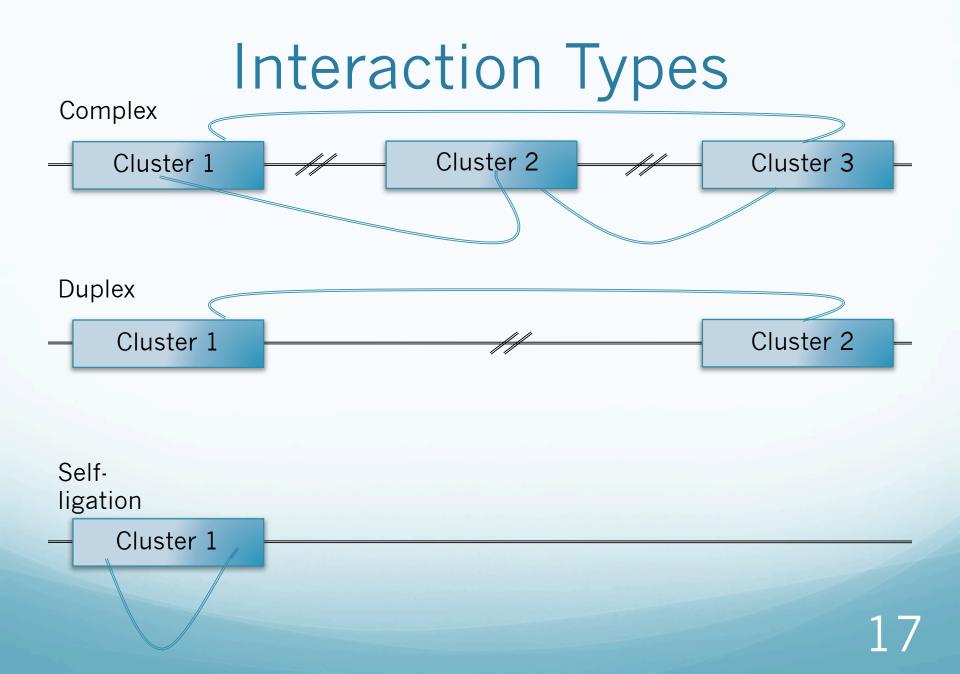

14


Range of Values (K562)

Zoomed



A A PETs GTGGGGTGATGCTCGTGCGCGCTTGGATAAGATATCG.....CGATAT<u>CTTA</u>TCCAACATAAAAATATTTAAATGGAAA


в

ACACATATATACCATGGAAGTTGGAATGTATATCGC....CGATATACATTCCAACATTGAGAAACACCAACAAAT

в

Fullwood et al,, Nature, 2009

ChIA-PET for ENCODE (so far)

- Pol II for five cancer lines and one normal line
 - HeLa (ovarian cancer)
 - MCF-7 (breast cancer)
 - HCT116 (colorectal cancer)
 - NB4 (acute promyelocytic leukemia)
 - K562 (acute myelogenous leukemia)
 - GM12878 (very recent development)
- Fullwood et al. (ER-alpha in MCF7)

• Ali Mortazavi's mouse experiments

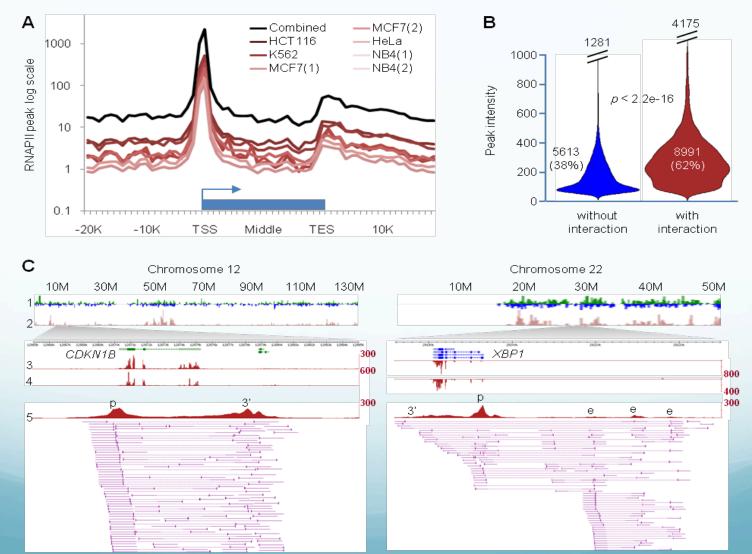
ChIA-PET Pilot Project (Pol II)

Project Goals

- Emphasis of GIS
 - Characterize long-range interactions and define general transcriptional mechanisms

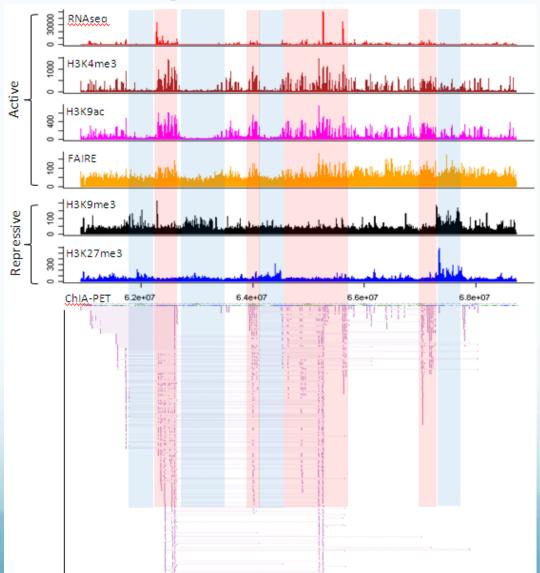
- My emphasis
 - Use ENCODE data to characterize the interacting regions and draw conclusions about various complexes that we can't discern from ChIP-Seq alone.

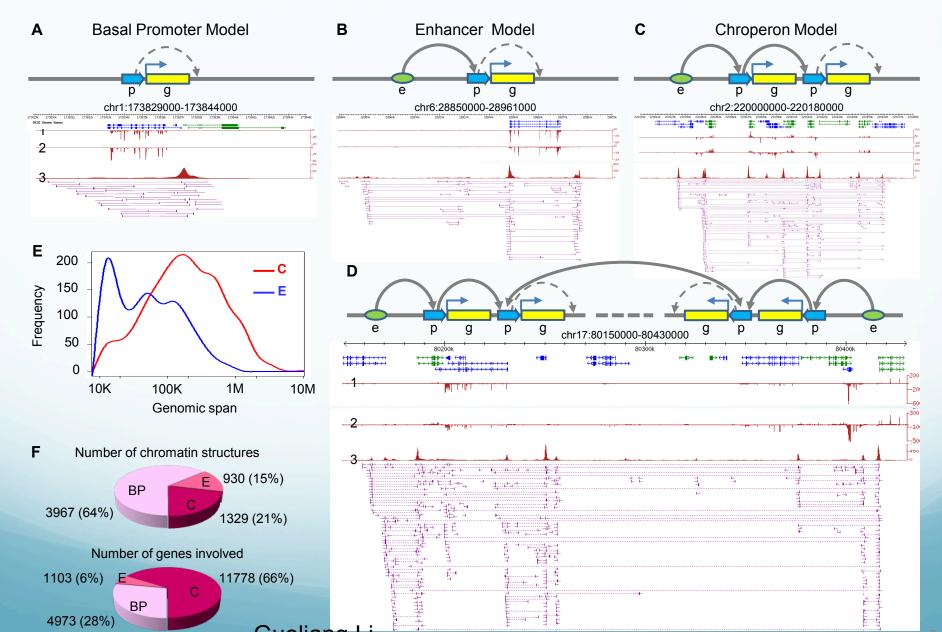
Raw Sequencing Stats


Table S1. RNAPII ChIA-PET library statistics summary

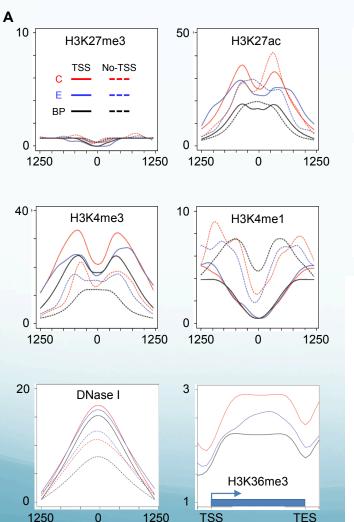
	Cell line	Total PET		Self-ligation PET		Inter-ligation PET				
Library			Unique PET			Intra-chromosome		Inter-chromosome		
	PET Peak *		PET	Cluster +	PET	Cluster §				
CHH524	HCT116	226,903,653	8,749,703	3,126,311	17,394	363,493	1,719	5,209,961	17,545	
CHK004	K562	153,421,905	23,188,484	3,983,892	13,112	1,198,730	1,990	17,869,121	15,696	
CHM040	MCF7	129,114,582	38,356,322	5,920,613	10,370	2,329,229	5890	29,814,465	6,736	
CHM053	MCF7	114,833,139	22,967,674	4,817,946	11,234	1,380,036	4,146	16,470,458	3,965	
IHH025	HeLa	193,471,470	19,079,666	1,718,224	15,333	1,015,674	13,833	16,267,788	187,119	
IHN009	NB4	138,257,582	14,023,893	876,773	12,707	722,957	3,711	12,388,855	50,521	
IHN010	NB4	127,974,844	15,198,626	1,166,267	13,828	786,771	4,773	13,200,381	61,578	
RNAPII	MCF7	243,947,721	61,319,903	10,734,769	11,159	3,709,079	14,523	46,284,757	17,173	
RNAPII	NB4	266,232,426	29,173,744	2,031,512	13,890	1,507,342	13,595	25,554,804	189,678	
H-RNAPII	All	969,144,036	118,523,881	16,756,994	14,604	6,415,122	67,746	94,715,066	825,245	

Note: *Overlap PET count 5+, FDR <0.05; †Overlap PET count 2+, FDR<0.05, genomic distance > 8Kb; §Overlap PET count 2+, FDR <0.05 Using ChIA-PET to Explore Transcription and Nuclear Organization

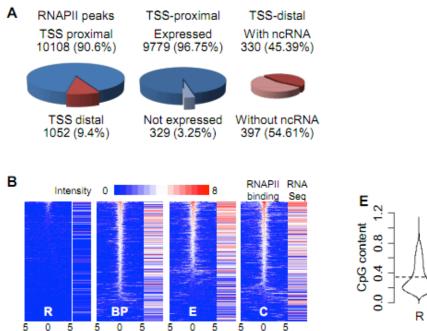

General Profile and Signal Characteristics

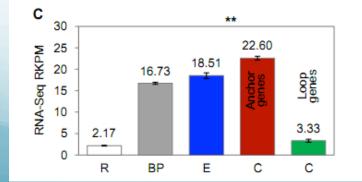

1 40 40005000 40005000

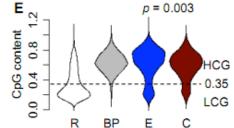
-1-00.00400000 00005000


Example of Domain Segmentation

Chromatin models for transcription regulation

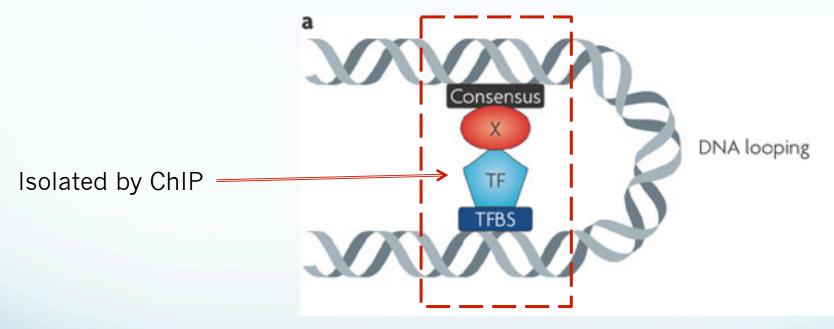



Epigenomic Features of Chromatin Interaction Models Epigenomic features of chromatin interaction models

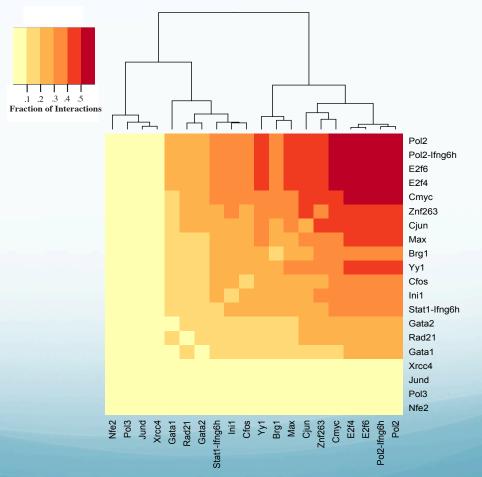


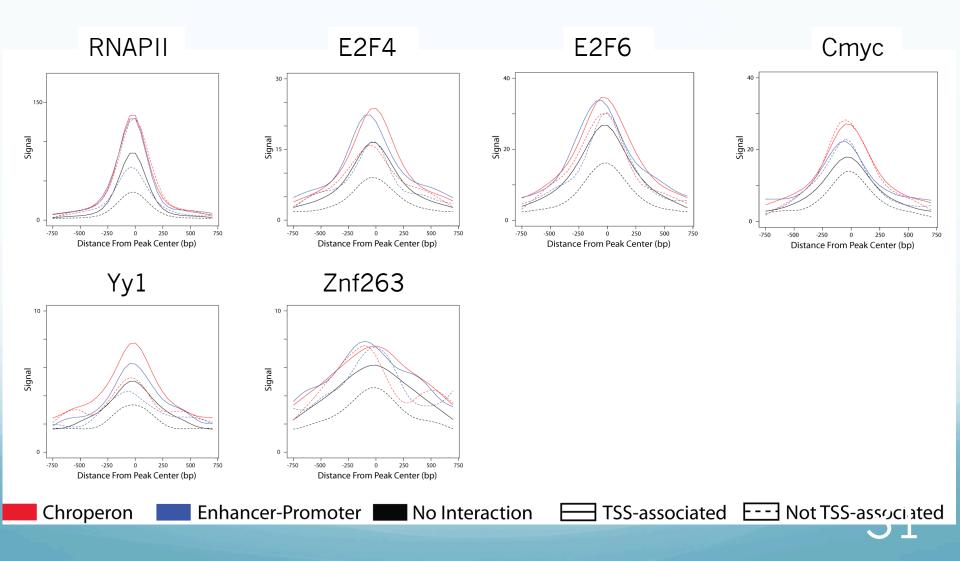
RNA-Seq	chr2	:70270000-70430000	<u>₩***₽****\$₩**</u> ₩₩******	40
RNAPII CHIA-PET				90
Ratio	3.14	1.48 -0.87	2.55	20
H3K4me3	<u>.</u>		A	30
H3K4me1		and the second sec		
H3K9ac	<u> </u>	A A		70 30
H3K14ac		A super Al superior de superior		
FAIRE		and a survey and the second state of the secon	مريد بين فأقد من من فده معالم	20
H3K9me3		and the second second second second second	ana na màr na march an annaich	1

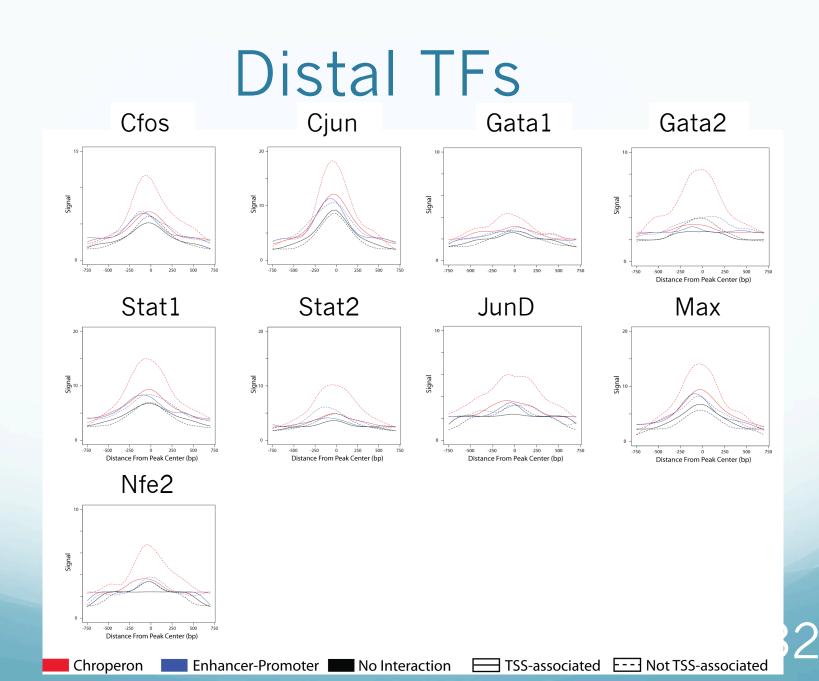
RNAPII and Gene Expression



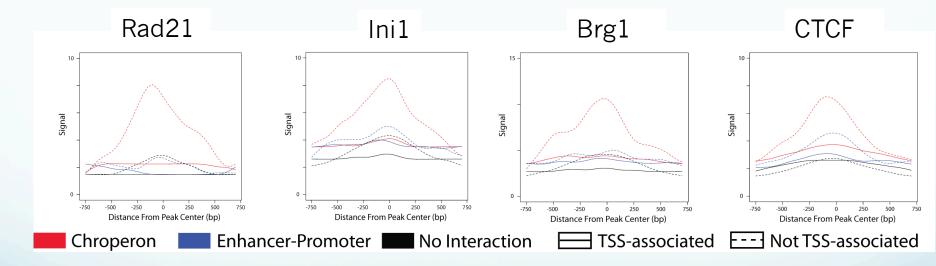
ChIA-PET and TF Complexes


Targeted Recruitment


PJ Farnham, Nature Reviews Genetics, 2009


ChIA-PET Anchors and TF Complexes in Chroperons (K562)

Pairwise Interactions of TFs at Operon Model Anchor Sites



Promoter-associated TFs

Interesting Factors

Conclusions

- Chroperon Structure
 - Expression patterns and histone modification profiles

- A better sense of which complexes arise due to looping
 - Also which components are proximal vs. distal

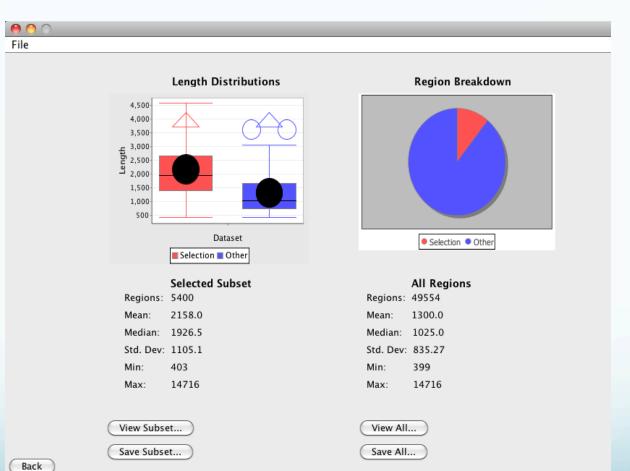
Switching Gears

No, it isn't (quite) Mt. Everest...

Project Goals

- Design a set of tools to assist the average user with analyzing ChIP-Seq data
 - Tool to identify putative TF complexes
 - BEDTools does a similar task, but less user friendly for a biologist
 - Other tools being discussed with Arif and Joel
 - Tool or method to relate shapes of peaks
 - Tool to combine multiple signal tracks into a single track

Tool to Identify TF Complexes


- Designed for ease of use
 - Java Web Start, portable, GUI
 - Link: http://homes.gersteinlab.org/people/rka24/ BIMT/launch.html
 - Manual: http://homes.gersteinlab.org/people/rka24/ BIMT/BIMT_Manual.doc

Input

0	
File	
	Files to Process: BAF155.bed BAF170.bed Brg1.bed Inil.bed Select All Select None
	Exclusive Matching? Pad to Use for Merging (bp): 0
	Add Files Clear

Graphical Results

Text Results

\varTheta 🔿 🔿 File

chr1	559405	560165	Ini1	1
chr1	703968	704521	Ini1	U
chr1	829768	830813	Ini1	
chr1	845307	847265	BAF155,BAF170	
chr1	848446	851197	BAF155	
chr1	863309	864201	BAF155,BAF170,Ini1	
chr1	865089	869497	BAF155,BAF170,Ini1	
chr1	883831	884739	BAF155,BAF170,Ini1	
chr1	885555	886140	Ini1	
chr1	886396	887100	Ini1	
chr1	891102	893633	BAF155,BAF170,Brg1,Ini1	
chr1	901065	902067	BAF155	
chr1	923287	927523	BAF155,BAF170,Ini1	
chr1	931463	932564	BAF155,BAF170,Ini1	
chr1	938089	939638	BAF155,BAF170	
chr1	944304	945108	Ini1	
chr1	945157	945914	Ini1	
chr1	946001	947519	BAF155,Ini1	
chr1	949520	950455	BAF155,BAF170	
chr1	983937	985471	BAF155	
chr1	987900	990182	BAF155,BAF170,Brg1	
chr1	993902	995309	BAF155,Ini1	
chr1	998427	1000519	BAF155	
chr1	1004464	1005966	BAF155,BAF170,Ini1	
chr1	1040880	1042267	BAF155,BAF170,Ini1	
chr1	1047416	1047957	Ini1	
chr1	1082609	1083588	BAF155,Ini1	
chr1	1083609	1084083	Ini1	
chr1	1133375	1133946	Ini1	
chr1	1154902	1155581	Ini1	A

Back

Save...

Future Plans

• Finish revisions for ChIA-PET manuscript and analyses

 Creation of a computational tool or tool set relating to ChIP-Seq data

Interview

• Give another group meeting

Acknowledgements

- Snyder Lab
 - Ghia Euskirchen
 - Steve Landt
 - Debashish Raha
 - Mike Snyder
 - Unnamed Technicians

- Gerstein Lab
 - Joel Rozowsky
 - Arif Harmanci
 - Rob Bjornson
 - Lukas Habegger
 - Andrea Sboner
 - Mark Gerstein

• GIS

- Guoliang Li
- Kuljeet Singh
- Xiaoan Ruan
- Yijun Ruan

• ENCODE Consortium Groups