Nonparametric inference for functional and translational genomics

Ben Brown Statistics, UC Berkeley

Part 1

A general model of feature co-association

The Genome Structure Correction (GSC)

Part 2

Beyond heuristics

A generic statistical tool for the analysis of *-seq assays

A general model of feature co-association

The Genome Structure Correction (GSC)

Dr. Ben Brown, Statistics, UC Berkeley

The ENCODE Project

The ENCODE Project Consortium. 2004. Science 22: 306 (5696).

Feature Overlap

Do a pair of features overlap more, or less than "expected at random"?

 \rightarrow Transcription Fragments

ightarrow Conserved sequence

Naïve methods

- Uniform feature start site shuffling
 - Big assumption: feature inter-arrival distances are Poisson, i.e. no big clumping, clustering, or underlying structure

Naïve methods

- Shuffle one feature, keep the other fixed
 - Not a consistent estimator

Requirements

- General: any other consistent estimator is a special case (submodel)
- Self diagnostic: if assumptions aren't met, it shows up during analysis
- **Conservative:** any p-value is assured to be greater than or equal to the "true" p-value

Toward a model

"Segmented Stationarity"

"Segmented Stationarity"

Let X_i = base at position *i*, *i*=1,...,*n* such that for each k=1,...,r, $\{X_{k_j} : 1 \le j \le n_k\}$ is:

- 1) Stationary (homogeneity within blocks)
- 2) Mixing (bases at distant positions are nearly independent)
- 3) And, $r \ll n$

$$(X_1, \dots, X_n) = (X_{1_1}, \dots, X_{1_{n_1}}, \dots, X_{r_1}, \dots, X_{r_{n_r}}), \quad n = n_1 + \dots + n_r$$

The GSC := "Segmented Stationarity"

- 1) Stationary (homogeneity within blocks)
- 2) Mixing (bases at distant positions are nearly independent)
- 3) And, $r \ll n$

- ✓ General: any other consistent estimator is a special case (submodel)
- Self diagnostic: if assumptions aren't met, it shows up during analysis
- Conservative: any p-value is assured to be greater than or equal to the "true" p-value

Testing Independence

Calculate overlap in the blocks after swapping = $(X_2)(Y_1)+(X_1)(Y_2)$ Align Feature 1 of first block with Feature 2 of second block, and vice versa. Statistic is: $(X_2)(Y_1)+(X_1)(Y_2)$, properly normalized and set to mean 0. Under the null hypothesis of independence, this should be Gaussian.¹³

Inference under Segmented Stationarity

Many genomic statistics are function of one or more sums of the form:

$$S = \sum_{i=1}^{n} g(U_i)$$

e.g. $g(X_k)$ is 1 or 0 depending on the presence or absence of a feature or features

Under segmented stationarity, these distributions are asymptotically Gaussian and can be estimated from the data

How Gaussian?

All ENCODE Pilot biochemically active elements

VS

All ENCODE Pilot conserved regions

The effects of segmentation on real data (Kevin and Nitin are amazing)

Unsegmented

Dyadic Segmentation

Define,

$$M(j) = \frac{j}{n} \left(1 - \frac{j}{n}\right) \Delta_j^2$$

$$\Delta_j = Ave\{X_i : 1 \le i \le j\} - Ave\{X_i : j+1 \le i \le n\}$$

- Find j_{max} maximizing M(j) creating intervals I_{left} and I_{right}
- If length of both intervals falls below a stopping criterion, stop
- Else, repeat process for I_{left} and/or I_{right} , whichever are longer than stopping criterion, with redefined M(j)

Nancy's Dyadic Theorem

(Nancy is magnificent)

 $\hat{\sigma} = \sigma + \sum \gamma (\mu_i - \mu_j)^2$

The Team

- Nancy Zhang
- Haiyan Huang
- Nathan Boley
- Peter Bickel

and now:

- Jasmine Mu
- Kevin Yip
- Joel Rozowsky
- and Mark Gerstein

Beyond heuristics

A generic statistical tool for the analysis of *-seq assays

Dr. Ben Brown, Statistics, UC Berkeley

Complex statistics are computed on the mapped trace

toward a generic statistical framework

Candidate Mapping

- Exhaustive: find every candidate mapping above some probability threshold
- Correct: accurately estimate read quality scores

• Parameter Estimation

Formalize assay specific knowledge

• Mapping Variance

- Find all "likely" mappings
- Put confidence on estimated parameters
- Estimate variance for a wide class of statistics

• Variation

- Map to non-isogenic genomes
- Dynamically infer SNPs/variation

Statmap

Candidate Mapping

- Exhaustive: find every candidate mapping above some probability threshold
- Correct: accurately re-estimate base-calling error rates

• Parameter Estimation

Formalize assay specific knowledge

• Mapping Variance

- Find ~all "likely" mappings
- Put confidence on estimated parameters
- Estimate variance for a wide class of statistics

• Variation

- Map to non-isogenic genomes
- Dynamically infer SNPs/variation

Illustrative simulation

Illustrative simulation

parameter estimation

variance estimation

confidence bounds

What the bootstrap buys us

- Place confidence bounds on fragment coverage.
- More generally:

evaluate the variance of any statistic that is a function of the mapped read density by computing the statistic over all bootstrap samples

Sampling Variance

...and what it doesn't

• Estimates **conditional** on the marginal read density

when the estimated read density deviates from the truth the bootstrap estimates will be poor

• When there are multiple 'equally valid' interpretations of an assay (mappings)

Analytical Variance

Analytical variance

The bootstrap is condition on the marginal read density

Beyond the marginal read density

• Assay specific knowledge

empowers us to consider dependence between reads

Assay specific kernels

ChIP-seq in a non-isogenic background

Paternal 0.6 **SNPs** 0.2 -0.2 read density -0.6 0 1000 2000 3000 4000 5000 Maternal 0.6 0.2 -0.2 true fragment -0.6 density 1000 3000 4000 **5000** 0 2000

All reads came from the maternal chromosome

Confidence for any statistic: the local bootstrap + a search heuristic for likely mappings

Statmapping CAGE

At most 22,000 not 120,000

 Failing to account for variance and background in CAGE has had consequences:

Number of active promoters in *D. melanogaster* embryo has been over estimated, consistently, in the literature at least 5 fold

A (not so) new mindset: after spending \$10k+ on your assay, spend \$50 to reliably interpret it on the Statmap implementation on the Amazon EC2 cluster

The team

- Nathan Boley
- Peter Bickel
- Special thanks to Ewan Birney and Anshul Kundaje for many enlightening conversations

Questions?

Key concepts

q: a specific location in the genome

 $\begin{aligned} &\Pr[g]: \text{ the frequency with which oligos originating at } g \text{ are sequenced} \\ &\Pr[r|g]: \text{ prob of observing read } r \text{ given that } g \text{ was sequenced} \\ &\Pr[g|r] = \frac{\Pr[r|g]\Pr[g]}{\sum_{g'}\Pr[r|g']\Pr[g']} : \text{assumes all reads came from the genome} \end{aligned}$

EM,

M step:
$$\Pr_{OLD}[g|r] = \frac{\Pr_{OLD}[g] \sum_{j=1}^{J} \pi_j^{OLD} f_j(g|r)}{\sum_{g'} \sum_k \pi_k^{OLD} f_k(g'|r)}$$
 a
E step: $\Pr_{NEW}[g] = \sum_r \Pr_{OLD}[g|r] \Pr[r]$

assay specific kernel

A likelihood function for any mapping:

$$lhd[\bar{r},g] = \prod_{r} \sum_{g} \Pr[r|g] \Pr[g]$$