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e Make machine learn like a human, and build
a machine brain that can adjust itself




Typical Statistics--

A spectrum of machine learning tasks

Low-dimensional data (e.g.
less than 100 dimensions)

Lots of noise in the data

There is not much structure in
the data, and what structure
there is, can be represented by
a fairly simple model.

The main problem is
distinguishing true structure

from noise.

----Artificial Intelligence

High-dimensional data (e.qg.
more than 100 dimensions)

The noise is not sufficient to
obscure the structure in the
data if we process it right.

There is a huge amount of
structure in the data, but the
structure is too complicated to
be represented by a simple
model.

The main problem is figuring
out a way to represent the
complicated structure so that it
can be learned.



Machine Learning Topics

Supervised Learning:
- Classification: Multinomial Logistic Regression, (Kernel) SVM, Neural

Networks, Decision Trees, Random Forest, kNN, Naive Bayes
Classifier

- Regression: (Non-)Linear Regression, (kernel) SVR, Neural Networks

- Prediction: Given time series of stock information, predict the price of
Google stock in

- packages in Weka or Matlab or R
Unsupervised Learning:

- Generative model: Markov Random Field (Restricted) Boltzmann
Machines, Deep Belief Networks, HMMs, Bayesian Networks

- Density Estimation: Mixture of Gaussians, KDE, Graphical Models
- Clustering: MofG, k-means, (Bi-)Spectral Clustering
- Dimensionality Reduction: PCA, ICA, MDS, ISOMAP, Neural Networks
- Rule Learning
- QOutlier Detection: one-class SVM
Reinforcement Learning:
— Robot planning, Robot control
— Game playing
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e Given sequences of inputs, a action set, and a
reward/punishment scheme, learn a sequence
of actions that maximize expected reward

e Demo

 Not many applications in Bioinformatics



Supervised Learning: First-Generation
Neural Networks

e Perceptrons (~1960) used a Bomb Toy

layer of hand-coded features
and tried to recognize objects
by learning how to weight
these features.

— There was a neat
learning algorithm for
adjusting the weights.

— But perceptrons are

output units e.g.
class labels

non-adaptive
hand-coded
features

fundamentally limited input units
in what they can learn e.g. pixels
to do.

Sketch of a typical perceptron
from the 1960’s



Second-generation neural networks (~1985)

Compare outputs with

Back-propagate correct answer to get
error signal to get error signal
derivatives for

learning

hidden
layers
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Supervised Learning: SVM

Minimize 3||w|[? + C X7 &
subject to y;(wix;, +b)>1-¢, & >0
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Input space " Feature space

n 1 n
max. W(a) = ) a; — 5 > ozz-ozjyz-y

i=1 i=1,j=1
n
subject to C > ; > 0, Y ay; =0
i=1

K (x,%j) = ¢(x;)" (%)
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 Polynomial kernel with degree d
K(x,y) = (xl'y + 1)4
e Radial basis function kernel with width o

K(x,y) = exp(—||x — y|[*/(202))

— Closely related to radial basis function neural networks
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e Sigmoid with parameter k and 0
K(x,y) = tanh(xkxly + 0)

— It does not satisfy the Mercer condition on all k and 0

12



Unsupervised Learning: Graphical Models
(can represent any Probabilistic Model)
Learning & Inference

EXAMPLE
X,
Ex“ﬁ*’ _ The key is to facter and then apply the distributive law.
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e Examples:
HMMs, Chow-
Liu Trees

e Efficient Belief
Propagation
algorithms
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BELIEF ProPAGATION (SUM-PRODUCT) ALGORITHM

e Choose a root node arbitrarily.

o If j is an evidence node, ¥)™(x;] = d(x;, T;), else ¢ E( = 1.

e Pass messages from leaves up to root and then back down using:

mji(a ?;_Z (.1 r)i( H my;(e )

Zj ;»“C'J )

e Compute node marginals using the pmduct of incoming messages:

f“' ;|XE,I o< '-’— n' H mﬁ?“n‘

kec(i)
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Hidden Markov Models

e You can thlnk.(:-f a.n HMM as:. ;dlt: :-h.j"dj\_" :-:'dfj _ ()
A Markov chain with stochastic measurements. "~ a . ) /ey
] (-} _ - Y .f Li Y
- oo e —=(- ) = - - S,
! i o ' a7
- Y B e
or ® > ml - 2 . » |3 - o mT Y
A mixture model with states coupled across time. o
P i =insert d = delete m = match (state transition diagram)

Kevin Murphy’s BayesNet

e The future is independent of the past given the present.

However, conditioning on all the observations couples hidden states. Package and Matlab Package or
N code it yourself (easy to
e Speech recognition. .
_ implement, lots of open source
e Language modeling. :
code online)

o [nformation retrieval,
o Motion video analysis/tracking.
e Protein sequence and genetic sequence alignment and analysis.

e Financial time series prediction.
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Kernel Methods for Classifying

Proteins to SCOP Super-families
e Represent each protein sequence by a PSWM

Sequence Profile
Iterative Alignment

sequence 1 fle 1
rofile
\ o P
--/
unlabeled
7 data
sequence i -~ e
\ profile 1
\\.
4
( \

profile j




Learned Random-Walk Kernel

normalized
profile
Kernel

1-step 2-step
Random Random
Walk Walk

CEE CEE

Labels of training

Aadts
UdlLld

Learned
Random
Walk
CE
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Discovered Protein Sequence Motifs
(PDB id 1c1l)

protein sequence with PDB id 1c1l
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Experimental Results on Protein
Remote Homology Identification

Glutathione S-transferases, N-terminal domain

Methods ROCs, on the hardest protein family
eMOTTIF (see reference [52] and [36]) 0.000
SVM-pairwise [PSI-BLAST] (see reference [42] and [36])  0.000
spectrum-kernel [PSI-BLAST] (see reference [38]) 0.000
neighborhood (see reference [70]) 0.000
the second best profile kernel (the second best result) 0.045
the best profile kernel (the best result) 0.122
improved RWK using the second best profile kernel 0.454
empirical-map kernel using the second best profile kernel  0.455
immproved RWK using the best profile kernel 0.509
empirical-map kernel using the best profile kernel 0.903
HMMER 0.000
SAM 0.000
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Graphical Models for MiRNA Regulation Inference

Sequence complementarity
Evolutionary conservation
Data in this study Thermodynamics

Input data Step 0  make putative predictions with
TargetScan , miRanda or PicTar , etc.

Result of the
algorithm putative miRNA

protein
IR abundance
b A
= =N 1% Bayesian model to predict -7
& miRNA targets /
4
A Step1 filter the putative targets and give
d N confidently predicted targets
confident miRNA
MiRNA targets mRNA
expression expression

=

2" Bayesian model to predict
TSes 27 miRNA regulatory mechanisms

) \ Step2  predicting miRNA regulatory mechanisms

mRNA Translational
degradation repression

Four types of experimental data are taken as input: (1) a set of putative
miRNA targets, (2) protein abundance, (3) miRNA expression profiles, and

(4) mRNA expression profiles. 20



Models — WinBUGS or Matlab or C++

p ~ beta(1,1),
Ti ~ uni form(0,50),

_ ]-_I[:k—l—?‘}?_r(l )k pi ~ gammala, a),

plbyy =1l6; = 1) =

bi' = 1 i D D
A=l "-L"j ~ exponential (3), p(bi; 1935 )=

3 ~ uni form(0,1000), b ~ exponential (W),

p(klr.y) = NB(k|A,r) . W o uni form(0, +o0),

A T(r+ k) 1
ORI+ NE LA
r approaches infinity,

)
)
)

a ~ uni form(0, +00),
)
)
ry ~ exponential(a)
)

a ~ uniform(0, 1000), ey ~ uni form(—50,4+50),
I~ beta(l,1).

N B(k|X,r) approaches a Possion distribution with mean parameter .

p(Wie = k|Bi,re) = i-\-"B(kmﬂ‘-r;}. P(Riu=k =q¢ ! M1 —q)* k=0 or 1.
. H
. it ]
I ( zf} — fn Tf- pi_ Z I.-L- j._l Eﬂg?f(qztjl !Tt'-lg'( 1— qzt ;(I)jszﬂfﬁ + [
b;; 18 a binary latent variable

i
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Classification and Dimensionality Reduction by
Deep Neural Networks

Two-D embedding for data visualization

KNN is popular in almost all fields of data analysis:
simple and effective

When kNN fails:

— A lot of class-irrelevant features present

— Bad distance metric adopted

Distance Metric Learning required for good performance

— Non-Linear feature transformation using a kernel trick
has also been tried, but it is not scalable to large
datasets

— Neural Networks has also been used to learn non-
linear mappings to improve kNN classification, but the
neural networks used are often shallow.

22
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Models with shallow architectures fail to represent complex structure
hidden in input data:

— For e.g., perceptron, kernel SVM, neural network with one
hidden layer

Models with deep architectures mimic human brains to perform
multi-stage information processing to extract meaningful structure
from high-dimensional sensory input

— Humans can easily recognize shapes and objects and easily
extract gist information from complex scenes because human
brains has a deep architecture

— Deep non-linear mapping has many layers, each layer models
the combination of patterns in the layer below

— Researchers often use Neural Networks to construct deep non-
linear mapping

23



 Deep neural networks pre-trained with
RBMs are capable of generating
powerful non-linear embeddings

— Deep neural networks are good at
extracting meaningful structure from
high-dimensional input features

24



Extend Supervised Linear Embedding
Methods with Deep Neural Networks

Maximize Margin for KNN classification

(LMNN) 0 I—I
Maximally Collapsing Metric Learning 2000 © @ Gl
(MCML) learns a linear mapping to collapse 2|0 © O]
all the points in the same class to one point TIw
s O O |
Neighborhood Component Analysis (NCA) s © O |
learns a linear mapping by maximizing the Iw?
expected number of points correctly w| O O |
classified s O O |
We can use a deep neural network pre- i

trained with RBMs to learn a deep
supervised non-linear embedding by
optimizing the cost of LMNN, MCML, and
NCA for both high-dimensional data
visualization and classification

500
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In 1990s, many researchers abandoned neural networks and turned to use SVMs
Maximizing margin enables robust classifiers to be learned

Linear SVM and Kernel SVM

Linear metric learning toward the goal of large-margin separation in the kNN
classification framework (Weinberger, NIPS 2005)

Limited due to shallow architecture and linear mapping used

BEFORE AFTER

- “margin ™=~ |1m:1l 1191ghbm hnud hﬁ'lrgl_ﬁ “

e ———

e fj

[ () Simitarly labeled
B Differently labeled
-~ _ [target neighbor | [ Differently labeled
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DNet-kNN: Large Margin Learning with
Deep Architectures

We want to learn a powerful model with deep architecture and at the same time we want it to be robust in
the sense of large margin classification

Our approach:

Learn a deep neural network (a deep encoder or auto-encoder)

Maintain large-margin classification boundaries in the learned feature (code) space

We chose kNN as the classification method to be used in the code space
Objective function:

Y;; = 1 to represent that i and j are in the same class

ni; =40,1} to
BEFORE AFTER tij € 10,1}
_~“imargin~ -~ _[local neighborhood] - o | indicate whether input Z; is a target neighbor of input Z;.
o ———— T - . \.‘
.J'lr ,r/ - l",l . . . a - a
[ b 7vi; = 1 if and only if 7 is an impostor neighbor
] I'. Iy e =
I'L \ rf .II
\\\ \“'-\_9 j" Of J
() similarly labeled iy = h(L+ dg(i, 1) — dg (1, 5)),
B Differently labeled
Bl Differently labeled

ming (5= E niYij ity

il
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Gradient Calculations of the loss function of

Dnet-kNN

BEFTORE AFTER

-
-

—parein T ~~ |lut'1l newhbm]mu(l }m'l_t;:;l_n .
=
o 5

|y . \ O ¢ _ N
I I:OO O: : i:)}_,f‘i'] = —2 Eﬂ Thiﬁ.f:ij&éi'j (.YLE’I - }"U’I)

. - s ‘ - (k) (1)
."*_..__.-*"f _2 Z__j‘h Tk rAIHA?J{}L | y UJ)
QSimilﬂrlylabeled +ZZH k17 MHHA{} k) f?fl}

. Differently labeled
[l Differently labeled

true nearest

v
I

-
5
'o
;x

For each data point i, create triples (i, 1,))
IIUIHIIUUID dIIUJ ID one Uf i'S I.Up m IIIIIJAS

than the class of i, m>>k
Searching on these triples to look for active violated margin constraints

Ulll UVUIy UI.IIU viadoo
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Learn Dnet-kNN: A Deep Non-Linear Feature
Mapping for Large-Margin kNN Classification

[ |

i
20000 O ©

1w
WO ©

Figure 2. Deep Encoder

Algorithm 1 The training procedure of DNet-kNN (the de-
scription in [] is optional).

r2

b S

10:

Input: training data {x'¥ ¥ i = 1,... . n}. k. m.
(1]
pretrain the network in Fig. 2 with RBMs using Eq. 8
to get initial network weights W**t,
| Further train a deep autoencoder for 7' iterations to get
R?F“Im*éf_rmw. and set Winit — Rﬁbﬁnéf_rmwr]
calculate each data point i’s £ true nearest neighbors in
its class, i = 1,...,n.
calculate each i’s m x (¢ — 1) imposter nearest neigh-
bors,i =1....,n.
create triples (i, [, 7).
set W = Wi,
while (< not convergence >)

update W using conjugate gradient based on Eq.
11-12
Output: W,

29



Supervised Peaky and Multimodal Class
Collapsing

* Make similar data )
points in the same =7
class stay close .
together
e Allow dissimilar data R | | |
[] ﬁ []

points in the same

class to be put far =
apart in the embedding

space

2D embedding
» Different classes of
data should be put f / I\ \

even further apart
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« Using a t-distribution for modeling conditional probabilities in
the embedded space, dt-MCML collapses classes while dt-
NCA maximizes the expected number of points correctly
classified

» Collapsing classes works well for very low-dimensional
embedding such as two-d embedding, but is unnecessary and
might cause overfitting when the dimensionality of the
embedded space is large

« dt-NCA is more suitable for higher-dimensional embedding
than dt-MCML



negative log product of ¢i;s

dt-MCML

Unlike in MCML, we use symmetric q distribution to simplify gradient
computation:

i jijFEi tJ
pij o< 1 iff y =y, pi; = 0 1iff yt) £y Zij pij =1
. l1ta
(1 —I—d‘a-f&}_ 5 , o
e g 40 =0 dfy = || F(x") = F(x)J?

Dorrg(L+di /o)~ =

This objective function is equivalent to the

Prevent data points in the same class spreadout

32



dt-NCA

lat—NoaA = — E | ’5-5J'*3J'|f~

ij:iF]
0; j equals 1 if y' = ) and 0 otherwise

14

(1+df /o)~

)i = ;)i = 0.

o 3

. 5 . _1fa
> ok L—#-.-:U +d? fa) T

ML

V]
e =

o dit-NCA uses asymmetric q distribution while dt-M
uses symmetric q distribution

« dt-NCA maximizes the sum of the probabilities g_ij while
dt-MCML maximizes the product of the probabilities q_ij



the advantages of using a t-distribution

* In t-SNE, there are no supervision signals, and t-
distribution helps to avoid “crowding problem”

e |n dt-MCML and dt-NCA:

- allow one class of data to be embedded to different modes

- result in tighter clusters in the embedding =

- allow larger separations between classes /
= —

- make gradient-based optimization easier: the grédient of
the tail of a t-distribution is much deeper than that of a
Gaussian
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Symmetric / Asymmetric dt-MCML and dt-NCA

Symmetric @
dt-MCML {
Asymmetric @ ®

Asymmetric @ ®
dt-NCA { ° A

Symmetric 3) A o % Ao
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Embedding Results on USPS Digits

Table 1. Mean and standard deviation of test error (in %)
on 2-dimensional and 30-dimensional embedding for vari-
ous techniques on the 6 splits of USPS data set.

Dimensionality d 2D 30D
MCML 35.63 044 | 553x0.39
dG-MCML 3.37 £ 0.18 1.67+£0.21

dt-MCML (a« =d 1) | 2.46 £0.35 1.73 £ 047
dt-MCML (learned «v) | 2.804+0.36 | 1.614+0.36
dG-NCA 10.224+0.76 | 1.91 +0.22
dt-NCA (o =d — 1) 511+0.28 | 1.15 +£0.21
dt-NCA (learned «) 6.6904+ 092 | 1.17£0.07

DNet-kNN 5.40 (0.90) 1.14 (0.20)



Embedding Results on USPS Digits (MCML)
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Embedding Results on USPS Digits (Dnet-kNN)
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Embedding Results on USPS Digits (dG-MCML)
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Embedding Results on USPS Digits (dt-MCML)
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Embedding Results on USPS Digits (dG-NCA)
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Embedding Results on USPS Digits (dt-NCA)
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Embedding Results on USPS Handwritten
Digits

Two-dimensional embedding of Two-dimensional embedding of
3000 USPS-fixed test data USiI’lg the Deep 3000 USPS-fixed test data using the Deep Au-
. toencoder (DA).
Neural Network kNN classifier (DNet-kNN).

Two-dimensional embedding of
3000 USPS-fixed test data using PCA.
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2D and 30D Embedding Results on MNIST Handwritten Digits

Table 2. Test error (in %) on 2-dimensional and 30-

dimensional embedding for wvarious techniques on the
MNIST data set.

Dimensionality d 2D 30D
dG-MCML 2.13 1.49
dt-MCML (o =d — 1) 2.03 1.63
dt-MCML (learned o) 2.14 1.49
dG-NCA 7.95 1.11
dt-NCA (a=d — 1) 3.48 0.92
dt-NCA (learned «) 3.79 0.93
DNet-kNN (dim = 30, batch size=1.0e4) 0.94
DNet-kNN-E (dim = 30, batch size=1.0e4) 0.95
Deep Autoencoder (dim = 30, batch size=1.0e4) 2.13
Non-linear NCA based on a Deep Autoencoder ([16] | 1.03
Deep Beliet Net [11] 1.25
SVM: degree 9 [4] 1.4
kNN (pixel space) 3.05
LMNN 2.62
LMNN-E 1.58
DNet-kNN (dim = 2. batch size=1.0e4) 2.65
DNet-kNN-E (dim = 2, batch size=1.0e4) 2.65
Deep Autoencoder (dim = 2, batch size=1.0e4) 24.7




Embedding Results on MNIST Digits (dG-MCML)
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Embedding Results on MNIST Digits (dt-MCML)
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Embedding Results on MNIST Digits (dG-NCA)
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Embedding Results on MNIST Digits (dt-NCA)

100 . - Y

50 'R

+
B
e
£ l.-l'-‘- |
B
3 A
= ]
x
5 0
B 0D =] oh EN e fad p = 3 [

ar =+ i Fa -
o W {]+J-C:-c o)
o ¥OTER 4, O
A 8 n{}; ~ oIME 4 .
Ff ¥ .
[m] ; +:
1 { ++ k4
b Tod o O . 4 ﬁl@m N
—EN - m . O O |
30 s © ”%%& % ¢ oA qa ﬂfﬂ‘
A & 4
X & <
D ':,‘I .." L4
i ’
100} 7 4 < .
.{’:"

—-150 -100 -50 0 20 100 150 200

48



Embedding Results on MNIST Digits (Other Methods)

Two-dimensional embedding of Two-dimensional embedding of
10,000 MNIST test data using the Deep Neural 10,000 MNIST test data using the Deep Au-
Network kNN classifier (DNet-kNN). toencoder (DA).

Two-dimensional embedding of 49
10,000 MNIST test data using PCA.
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Machine Learning is not just a black box
Designing Graphical Models is art

Non-linear dimensionality and kernel methods are cool
and useful

Most methods are available in packages
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