www.ScienceTranslationalMedicine.org 12 January 2011 Vol 3 Issue 65 65ra4

Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing

Callum J. Bell,¹* Darrell L. Dinwiddie,^{1,2}* Neil A. Miller,^{1,2} Shannon L. Hateley,¹ Elena E. Ganusova,¹ Joann Mudge,¹ Ray J. Langley,¹ Lu Zhang,³ Clarence C. Lee,⁴ Faye D. Schilkey,¹ Vrunda Sheth,⁴ Jimmy E. Woodward,¹ Heather E. Peckham,⁴ Gary P. Schroth,³ Ryan W. Kim,¹ Stephen F. Kingsmore^{1,2†}

¹National Center for Genome Resources, Santa Fe, NM 87505, USA. ²Children's Mercy Hospital, Kansas City, MO 64108, USA. ³Illumina Inc., Hayward, CA 94545, USA. ⁴Life Technologies, Beverley, MA 01915, USA. *These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: sfk@ncgr.org

> Presented by: Baikang Pei Journal Club, Gerstein Lab, 2011-01-25

Tay-Sachs Disease (TSD)

TSD: an autosomal recessive neurodegnerative disorder

Onset of symptoms in infancy and death by 2 to 5 years of age

Premature death of nerve cells of the brain due to gangliosides accumulation

TSD is incurable, but treatments are available

Affected couples may decide not to have children or to conceive a child using IVF treatment

Preconception Screening

Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis.

They account for ~20% of infant mortality and ~10% of pediatric hospitalizations.

To date, preconception carrier testing has been recommended in the USA only for five diseases.

Some major obstacles

Rear disease, high cost, absence of accurate, sensitive and scalable technologies

Target Capture and NGS

Target capture and NGS are considered as a potential paradigm for carrier testing for their cost-effectiveness and broad coverage of mutations.

Target capture: to targeted and amplified particular sequences in DNA samples that were known to be associated with the recessive disease genes

Challenges

More stringent sensitivity and specificity are required for routine use in clinical practice than usual genome research

Design

Disease Inclusion

448 diseases were chosen that would almost certainly change family planning by prospective parents or affect antenatal, perinatal, or neonatal care

Genome Coverage

close to 2M nucleotides corresponding to 7717 segments of 437 disease genes. Targeted were exons, introns, splice junctions, regulatory regions and UTR

Samples: 104 unrelated individuals, 76 were known to be carrier or affected

Target capture: Agilent SureSelect hybrid capture, RainDance microdroplet PCR

NGS: Illumina GAIIx, SOLiD, Illumina HiSeq

Workflow

Statistics

Table 1. Sequencing, alignment, and coverage statistics for target enrichment and sequencing platforms.

Sample set	Enrichment S method	Sequencing method	Multi- plexing	Read length (nt)	Quality score*	Total reads ± %CV* [†]	% uniquely aligning reads*	Total nucleotides*	Aligning depth*	% nt on target ± %CV*	Fold enrichment*	% 0× coverage*	% ≥20× [∗] coverage*	Coverage * ± %CV*	Pearson's coefficient [‡]
1 (<i>n</i> = 12)	SureSelect	GAllx	12	50	30	9,952,972.5 ± 21	94	497,648,625	225	13.7 ± 3	214	4.83	61	27 ± 21	0.28
2 (<i>n</i> = 12)	SureSelect	GAllx	12	50	30	10,127,721 ± 16	95	506,386,025	234	23.0 ± 2	358	3.66	80	50 ± 16	0.19
1 + 2 (n = 24)	RainDance	GAllx	12	50	36	9,412,698 ± 30	97	470,634,900	196	29.6 ± 5	462	5.46	86	52.5 ± 33	0.23
1 + 2 (n = 12)	RainDance	GAllx	12	50	31	12,807,392 ± 17	96	640,369,600	277	22.2 ± 7	346	4.62	88	56 ± 12	0.27
3 (<i>n</i> = 6)	SureSelect	GAllx	6	50	30	19,711,735 ± 34	95	985,586,750	463	17.4 ± 3	273	1.80	86	76 ± 30	0.14
3 (<i>n</i> = 6)	SureSelect	SOLID 3	6	50	24	16,506,076 ± 5	82	825,303,800	310	19.5 ± 7	304	6.08	79	58 ± 7	0.24
4 (<i>n</i> = 72)	SureSelect 2	HiSeq	8	149 [§]	42 [§]	9,273,596 ± 24	98	1,390,464,487	495	31.7 ± 4	494	2.33	92	152 ± 26	0.02
5 (<i>n</i> = 8)	SureSelect	HiSeq	8	149 [§]	41 [§]	9,861,765 ± 35	97	1,493,946,141	517	28.4 ± 4	442	2.25	93	139 ± 40	0.06

*Median value. [†]Coeffic

[†]Coefficient of variation (%).

[‡]Pearson's median skewness coefficient [3(mean – median)/SD].

5D]. [§]After assembly of forward and reverse 130-bp paired reads.

Enrichment Techniques

SNPs are called if present in > 10 uniquely aligning reads (left figure) or > 4 uniquely aligning reads (right figure), with average quality score > 20.

SNP Genotype and Accuracy

Distribution of read count-based allele frequency

Detect Gross Deletion

Use HiSeq NGS method

Reduce penalty on polynucleotide variants [-1 - log(indel-length)]

Detect gross deletion by perfect alignment to mutant junction reference sequences or by local decrease in normalized coverage. **Deletion in CLN3**

Four known heterozygotes (red) and one undescribed carrier (green) are identified

Reads were normalized to total sequence generated in a batch

Decision Tree

Some Incorrect Annotations

	330	340	350	360	370	380	390	400	410	420	430	440	450	460
	CCAGACAAGTTTGT	TGTAGGATATO	CCCTTGACTA	TAATGAATA	CTTCAGTCA	TTTAATG								
				A	CTTCAGGGAT	TTGGAT	GTAATTGCT	TETTTTETC	ACTCATTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	TGTTTTCTC	CTT
				ATA	CTTCATGGA	TTGAAT	GTAATTGCT	TCTTTTCTC,	ACTCATITI	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA		
		TOTOGOATATO	CCCTTGACT	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTOCT	ACTITIC	ACTOATITT	TCAAAACACOCAT	AAAAA	AUGAAAGAGAA		LITCAGE
	CCAGACAAGTTTGT	TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGAI	TTGAAT	GTAATTGCT			CARACTOCA				
	CCAGACAAGTTTGT	TOTAGGATATO	CCCTTGACTA	TAATGAATAI	CTTCAGGGA	TTGAAT	GTAATTOCT							
	CCAGACAAGTTTGT	TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGAT	TTGAAT	- GTAATTGCT							
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTGCT	TCTTTTTCTC	ACTCATIT	TCAAAACACGCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	- GTAATTOCT	TCTTTTTCTC	ACTCATTT	TCAAAACACOCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	C T T C AGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TT TGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGAT	TTGAAT	- GTAATTGCT	TETTTTETC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAA			
		TGTAGGATATG	CCCTTGACTA	TAATGAATAG	CTTCAGGGAT	TTGAAT	- GTAATTGCT	TETTTTTETC	ACTCATITT	TCAAAACACGCAT	AAA			
				· · · · · · · · · · A	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC/	ACTCATITI	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA		CTT
					CTTCAGGGA	TTAAAT	- GTAATTOCT		ACTOATTT	TCARACCOCCAT	AAAAATTT	AGGAAAGAGAA		
					CTTCAGGGA	TTGAAT	GTAGTTOCT	TOTITIC	ACTOATITT	TCARAACACOCAT	AAAAATTT	AGGAAAGAGAA		
		TGTAGGATATG	CCCTTGACT	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTACT	TOTITIC	ACTCATIT	TCAATACACGCAT	0.0.0			
		TOTAGGATATO	CCCTTGACTA	TAATGAATA	CTTCAGGGAT	TTGAAT	. GTAATTOCT	TOTTTTTCTC	ACTCATIT	TCAAAACACGAAT	AAA			
				AI	CTTCAGGGA	TTGAAT	- GTAATTOCT	TCTTTTTCTC	ACTCATTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	TUTTTTET	CTT
				A	CTTCAGGGA	TTGAAT	GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAAAA	AGGAAAGAGAA	гт <mark>оттттс</mark> тс	<mark>стт</mark>
				AI	CTTCAGGGA1	TT <mark>GAAT</mark> ···	- GTAATTGET	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	T CAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	ГТ <mark>ӨТТТТ</mark> СТСІ	<mark>стт</mark>
				· · · · · · · · A	C <mark>TT</mark> CAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	T CAAAACACGCA T	AAAAA	AGGAAAGAGAA	TT <mark>GTTTTC</mark> TCI	<mark>с т т</mark>
				A	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	TTGTTTT <mark>CTC</mark>	C T T
				A	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACTCATTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	, T <mark>GTTTTC</mark> TC	CTT
				Al	CTTCAGGGAT	TTGAAT	GTAATTGCT	TETTTTETC	ACTCATITT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA		CTT
				A	CTTCAGGGA	TIGAAT ····	GTAATTOCT		ACTCATTTT	TCAAAACACGCAT	AAAAA	AGGAAAGAGAA		CIT
	••••••	IG AGGATATO	ACCCTTGACTA	AAIGAAIAI	CTTCAGGGA	TTGAAT	- GTAATTGCT	TOTITIO	ACTCATIT	TCARAACACOCAT	AAAAATTT		TATTTCTC	
			TAACTA	TAATGAATA	CTTCAGGGA	TTOAAT	ATAATTACT	TOTTTTCC	ACTOANTTT	TCAAAACACOCAT	AAAAATTT	AGGAAAGAGAGA		•
			TGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTOCT	TETTTTETC	ACTCANTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGA.		
		TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTOCT	TCTTTTTCTC	ACTCATITT	TCAAAACACGCAT	AA			
	CCAGACAAGTTTGT	TOTAGGATATO	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	- GTAATTOCT	TCTTTTTCTC	ACTC					
	· · · · · · · · · · · · · · · · · · .	TOTAGGATATO	OCCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	- GTAATTOCT	TETTTTETC	ACT <mark>CA</mark> TITI	TCAAAACACOCAT	AA			
				· · · · · · · · A	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	AGTTTTCTC	<mark>С Т Т</mark>
				· · · · · · · · · A(C T T C AGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACT <mark>CA</mark> TTTT	TCAAAACACGCAT	AAAAA TTT	AGGAAAGAGATI	TTGTTTT <mark>CT</mark> C	C T T
				· · · · · · · · · A	CTTCAGGGAT	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACTCATITT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	TGTTTTCTC	G T T
				A	CTTCAGGGAI	TTGAAT	GTAATTGCT	TETTTTETE	ACTCATITT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGAA	GTTTTTC	CT
					CTTCAGGGA	TTOAAT	- GTAATTGCT	TOTITIC	ACTEATIT	TCARACACOCAT	AAAAATTT	AGGGAAGAGAA		
					CTTCAGGGA	TIGAAT	GTAATTGL	TOTTTTCTC	ACTCATIT	TCARACALGUAT	AAAAATTT	AGGAAAGAGAAA		
	CCAGACAAGTTTAT	TATAGGATATA	CNCTTGACT	TAATGAATAG	CTTCAGGGA	TTGGGT	ATAATTACT		ACTO ATT T	CARACTORCA				
			···· TGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTOCT	TETTTTCTC	ACTCATIT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGA -		
			TGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	GTAATTGCT	TETTTTETE	ACTCATTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGA -		
VEN 1011 121			TGACTA	TAATGAATA	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTTTTCTC	ACTCATTT	TCAAAACACGCAT	AAAAATTT	AGGAAAGAGA		
C 22	Q			- AATGAATA	CTTCAGGGA	TTGAAT	- GTAATTGCT	TCTTT						
C_25	CCAGACAAGTTTGT	TGTAGGATATG	CCCTTGACTA	TAATGAATA	CTTCAGGGA	TTGAATGTA	AGTAATTGCT	TCTTTTTCTC	ACTCATIT	TCAAAACACGCAT	AAAAA	AGGAAAGAGAA	TGTTTTCTC	CTTCCAG
					PERSONAL PROPERTY OF THE		All Michael Rich Like and							
								100	and the second	201 <u>201</u>				
											1			
	*													11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample: an affected male with X-linked recessive Lesch-Nyhan syndrome Before: characterized as deletion of HPRT1 exon 8 by cDNA sequencing Actual: splicing mutation of IVS intron 8.

Some Incorrect Annotatios

Sample: an affected male with X-linked recessive Pelizaeus-Merzbacher disease

Before: substitution mutation in PLP1 exon 5 c.67C>T, P215S

Actual: PLP1 gene duplication

Some Incorrect Annotatios

Read: 18811751 SNPSTER4 0001:4:120:1673:504#ACTTGA/1 Length: 50 Identities = 48/50(96) Strand = Plus/Plus Alignment = Unique Query: 1 attaaatgtgtgcatacceteeaataatttggetgggaattetgageaag 50 Sbjct: 178596876 attaaatgtgtgcataccctccaataatttggctggcaattccgagcaag 178596925 Read: 11118413 SNPSTER4 0001:7:23:829:624#ACTTGA/1 Length: 50 Identities = 48/50(96) Strand = Plus/Minus Alignment = Unique Query: 50 taaatgtgtgcataccctccaataatttggctgggaattctgagcaagcc Sbjct: 178596878 taaatgtgtgcataccctccaataatttggctggcaattccgagcaagcc 178596927 Read: 11070753 SNPSTER4 0001:7:19:991:1922#ACTTGA/1 Length: 50 Identities = 48/50(96) Strand = Plus/Plus Alignment = Unique Query: 1 taaatgtgtgcataccctccaataatttggctgggaattctgagcaagcc 50 Sbjct: 178596878 taaatgtgtgcataccctccaataatttggctggcaattccgagcaagcc 178596927 Read: 3850380 SNPSTER5:1:3:530:785#TGACCA/1 Length: 50 Identities = 48/50(96) Strand = Plus/Plus Alignment = Unique Query: 1 aaatgtgtgcataccctcca<mark>a</mark>taatttggctgggaattctgagcaa<mark>gc</mark>ca 50 Sbjct: 178596879 aaatgtgtgcataccctccaataatttggctggcaattccgagcaagcca 178596928 Read: 22935831 SNPSTER1 0594:2:17:9570:11638#TGACCA/1 Length: 50 Identities = 48/50(96) Strand = Plus/Minus Alignment = Unique Query: 50 aaatgtgtgcataccetecaataatttggetgggaattetgageaageea Sbjet: 178596879 aaatgtgtgcataccctccaataatttggctggcaattccgagcaagcca 178596928

Sample: an affected female with aspartylgucosaminuria

Before: characterized as compound heterozygotes

Actual: homozygous for two adjacent substitutions

Some Incorrect Annotatios

Sample: affected with Cockayne syndrome B

Before: deletion of ERCC6 exon 9

Actual: no gross deletion was observed

Carrier Burden

336 variants were retained as likely disease mutations in 104 samples;

A variant was retained reported in HGMD and literature, had been shown to result in LOF, was the only variant in affected individuals and absent in control, and was predicted to result in premature stop codon or loss substantial protein portion

Average: 2.8 / genome

Ward hierarchical clustering of 227 DM in 104 samples

Resulting pattern is random, suggesting that targeted population testing is likely to be ineffective

Conclusions

- Described a screening test (target capture + NGS) for carriers of 448 severe childhood recessive diseases
- Found a list of incorrect literatureannotated disease mutations
- Estimated the average carrier burden (2.8) of disease mutations causing severe childhood recessive diseases.

Future Challenges

- Refinement of list of diseases
- Automation, software implementation
- Validation in realistic testing situations featuring investigator blinding
- Ethic concerns