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SUMMARY

Systematic characterization of cancer genomes has
revealed a staggering number of diverse aberrations
that differ among individuals, such that the functional
importance and physiological impact of most tumor
genetic alterations remain poorly defined. We devel-
oped a computational framework that integrates
chromosomal copy number and gene expression
data for detecting aberrations that promote cancer
progression. We demonstrate the utility of this
framework using a melanoma data set. Our analysis
correctly identified known drivers of melanoma and
predicted multiple tumor dependencies. Two depen-
dencies, TBC1D16 and RAB27A, confirmed empiri-
cally, suggest that abnormal regulation of protein
trafficking contributes to proliferation in melanoma.
Together, these results demonstrate the ability of
integrative Bayesian approaches to identify candi-
date drivers with biological, and possibly thera-
peutic, importance in cancer.

INTRODUCTION

Large-scale initiatives to map chromosomal aberrations, muta-
tions, and gene expression have revealed a highly complex
assortment of genetic and transcriptional changes within indi-
vidual tumors. For example, copy number aberrations (CNAs)
occur frequently in cancer due to genomic instability. Genomic
data have been collected for thousands of tumors at high reso-
lution using array comparative genomic hybridization (aCGH)
(Pinkel et al., 1998), high-density single-nucleotide polymor-
phism (SNP) microarrays (Beroukhim et al., 2010; Lin et al.,
2008), and massively parallel sequencing (Pleasance et al.,
2010). Although multiple new genes have been implicated in
cancer through sequencing and CNA analysis (Garraway et al.,
2005), these studies have also revealed enormous diversity in
genomic aberrations in tumors among individuals. Each tumor
is unique and typically harbors a large number of genetic lesions,

of which only a few drive proliferation and metastasis. Thus,
identifying driver mutations (genetic changes that promote
cancer progression) and distinguishing them from passengers
(those with no selective advantage) has emerged as a major
challenge in the genomic characterization of cancer.
The most widely used approaches are based on the frequency

that an aberration occurs: if a mutation provides a fitness advan-
tage in a given tumor type, its persistencewill be favored, and it is
likely to be found in multiple tumors. For example, GISTIC iden-
tifies regions of the genome that are aberrant more often than
would be expected by chance and has been used to analyze
a number of cancers (Beroukhim et al., 2007, 2009; Lin et al.,
2008). However, there are limitations to analytical approaches
based on CNA data alone: CNA regions are typically large and
contain many genes, most of which are passengers that are
indistinguishable in copy number from the drivers. CNA data
have statistical power to detect only the most frequently recur-
ring drivers above the large number of unrelated chromosomal
aberrations that are typical in cancer. Finally, these approaches
rarely elucidate the functional importance or physiological
impact of the genetic alteration on the tumor. These limitations
highlight the need for new approaches that can integrate addi-
tional data to identify drivers of cancer. Gene expression is
readily available for many tumors, but how best to combine it
with information on CNA is not obvious.
We postulate that driver mutations coincide with a ‘‘genomic

footprint’’ in the form of a gene expression signature. We devel-
oped an algorithm that integrates chromosomal copy number
and gene expression data to find these signatures and identify
likely driver genes located in regions that are amplified or deleted
in tumors. Each potential driver gene is altered in some, but not
all, tumors and, when altered, is considered likely to play
a contributing role in tumorigenesis. Unique to our approach,
each driver is associated with a gene module, which is assumed
to be altered by the driver. We sometimes gain insight into the
likely role of a candidate driver based on the annotation of the
genes in the associated module. We demonstrate the utility of
our method using a data set (Lin et al., 2008) that includes paired
measurements of gene expression and copy number from 62
melanoma samples. Our analysis correctly identified known
drivers of melanoma and connected them to many of their
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targets and biological functions. In addition, it predicted novel
melanoma tumor dependencies, two of which, TBC1D16 and
RAB27A, were confirmed experimentally. Both of these genes
are involved in the regulation of vesicular trafficking, which high-
lights this process as important for proliferation in melanoma.

RESULTS

The Genomic Signature of a Driver
We define a ‘‘driver mutation’’ to be a genetic alteration that
provides the tumor cell with a growth advantage during carcino-
genesis or tumor progression (Stratton et al., 2009). We
reasoned that driver mutations might leave a genomic ‘‘foot-
print’’ that can assist in distinguishing between driver and
passenger mutations based on the following assumptions: (1)
a driver mutation should occur in multiple tumors more often
than would be expected by chance (Figure 1A); (2) a driver
mutation may be associated (correlated) with the expression of
a group of genes that form a ‘‘module’’ (Figure 1B); (3) copy
number aberrations often influence the expression of genes in
the module via changes in expression of the driver (Figure 1C).

Driver mutations are frequently associated with the abnormal
regulation of processes such as proliferation, differentiation,
motility, and invasion. Given that many cancer phenotypes are
reflected in coordinated differences in the expression of multiple
genes (a module) (Golub et al., 1999; Segal et al., 2004), a driver

mutation might be associated with a characteristic gene expres-
sion signature or other phenotypic output representing a group
of genes whose expression is modulated by the driver. In addi-
tion, CNAs do not typically alter the coding sequence of the
driver and so are expected to influence cellular phenotype via
changes in the driver’s expression. In consequence, changes
in expression of the driver are important, so approaches that
measure association between the expression of a candidate
driver (as opposed to its copy number) and that of the genes in
the corresponding module are likely to promote the identification
of drivers.
Gene expression is particularly useful for identifying candidate

drivers within large amplified or deleted regions of a chromo-
some: whereas genes located in a region of genomic copy
gain/loss are indistinguishable in copy number, expression
permits the ranking of genes based on howwell they correspond
with the phenotype (Figure 1D). CNA data aids in determining the
direction of influence, which cannot be derived based on corre-
lation in gene expression alone (Figure 3A). This permits an unbi-
ased approach for identifying candidate drivers from any func-
tional family, beyond transcription factors or signaling proteins.

A Bayesian Network-Based Algorithm
to Identify Driver Genes
We developed a computational algorithm, copy number and
expression in cancer (CONEXIC), that integrates matched copy
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Figure 1. Modeling Assumptions
For all heat maps, each row represents a gene and each column represents a tumor sample.

(A) The same chromosome in different tumors; orange represents amplified regions. The box shows regions amplified in multiple tumors.

(B) An idealized signature in which the target genes are upregulated (red) when the DNA encoding the driver is amplified (orange).

(C) A driver may be overexpressed due to amplification of the DNA encoding it or due to the action of other factors. The target genes correlate with driver gene

expression (middle row), rather than driver copy number (top row).

(D) Data representing amplified region on chromosome 17. Heat maps of expression for 10 of 24 genes that passed initial expression filtering (Extended Exper-

imental Procedures).

Samples are ordered according to amplification status of the region (orange, amplified; blue, deleted). These genes are identical in their amplification status, and

though gene expression is correlated with amplification status to some degree, the expression of each gene is unique. It is these differences that facilitate the

identification of the driver. See also Extended Experimental Procedures, Figure S1, and Table S1.
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Figure 3. Associating Modulators to Genes
(A) Three scenarios could explain a correlation between a candidate driver (gene A) and its target (gene B): A could influence B, B could influence A, or both could

be regulated by a common third mechanism (Pearl, 2000). The availability of both gene expression and chromosomal copy number data allows us to establish the

likely direction of influence. If the expression of gene A is correlated with its DNA copy number and the copy number is altered in a large number of tumors, it is

likely that the copy number alteration results in a change in expression of A in these tumors. So the model in which A influences the expression of B and other

correlated genes is the most likely. In this way, examination of both copy number and gene expression in a single integrated computational framework facilitates

identification of candidate drivers.

(B) Modulator influence on a module can go beyond direct transcriptional cascades involving transcription factors or signaling proteins and their targets. Genetic

alteration of any gene (e.g., a metabolic enzyme) can alter cell physiology, which is sensed by the cell and subsequently leads to a transcriptional response

through a cascade of indirect influences and mechanisms. Whereas modules are typically enriched for genes influenced by the modulator, they also contain

genes that are coexpressed with the modulator (‘‘joint modulator’’). Both types are helpful for annotating the module and determining the functional role of

the modulator.

(C) The TNF module. The modulators include TRAF3 andMITF, wherein high TRAF3 and lowMITF are required for upregulation of the genes in the module. The

annotation for each gene is represented in a color-codedmatrix. Blue and orange squares represent literature-based annotation (see Table S3); green and brown

are from GO. LitVAN associated the genes in this module with TNF and the inflammatory response.

See also Figure S2 and Table S3.
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targets and biological functions. In addition, it predicted novel
melanoma tumor dependencies, two of which, TBC1D16 and
RAB27A, were confirmed experimentally. Both of these genes
are involved in the regulation of vesicular trafficking, which high-
lights this process as important for proliferation in melanoma.
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provides the tumor cell with a growth advantage during carcino-
genesis or tumor progression (Stratton et al., 2009). We
reasoned that driver mutations might leave a genomic ‘‘foot-
print’’ that can assist in distinguishing between driver and
passenger mutations based on the following assumptions: (1)
a driver mutation should occur in multiple tumors more often
than would be expected by chance (Figure 1A); (2) a driver
mutation may be associated (correlated) with the expression of
a group of genes that form a ‘‘module’’ (Figure 1B); (3) copy
number aberrations often influence the expression of genes in
the module via changes in expression of the driver (Figure 1C).

Driver mutations are frequently associated with the abnormal
regulation of processes such as proliferation, differentiation,
motility, and invasion. Given that many cancer phenotypes are
reflected in coordinated differences in the expression of multiple
genes (a module) (Golub et al., 1999; Segal et al., 2004), a driver
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melanoma tumor dependencies, two of which, TBC1D16 and
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lights this process as important for proliferation in melanoma.
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driver and so are expected to influence cellular phenotype via
changes in the driver’s expression. In consequence, changes
in expression of the driver are important, so approaches that
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the corresponding module are likely to promote the identification
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Gene expression is particularly useful for identifying candidate
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some: whereas genes located in a region of genomic copy
gain/loss are indistinguishable in copy number, expression
permits the ranking of genes based on howwell they correspond
with the phenotype (Figure 1D). CNA data aids in determining the
direction of influence, which cannot be derived based on corre-
lation in gene expression alone (Figure 3A). This permits an unbi-
ased approach for identifying candidate drivers from any func-
tional family, beyond transcription factors or signaling proteins.
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Figure 3. Associating Modulators to Genes
(A) Three scenarios could explain a correlation between a candidate driver (gene A) and its target (gene B): A could influence B, B could influence A, or both could

be regulated by a common third mechanism (Pearl, 2000). The availability of both gene expression and chromosomal copy number data allows us to establish the

likely direction of influence. If the expression of gene A is correlated with its DNA copy number and the copy number is altered in a large number of tumors, it is

likely that the copy number alteration results in a change in expression of A in these tumors. So the model in which A influences the expression of B and other

correlated genes is the most likely. In this way, examination of both copy number and gene expression in a single integrated computational framework facilitates

identification of candidate drivers.

(B) Modulator influence on a module can go beyond direct transcriptional cascades involving transcription factors or signaling proteins and their targets. Genetic

alteration of any gene (e.g., a metabolic enzyme) can alter cell physiology, which is sensed by the cell and subsequently leads to a transcriptional response

through a cascade of indirect influences and mechanisms. Whereas modules are typically enriched for genes influenced by the modulator, they also contain

genes that are coexpressed with the modulator (‘‘joint modulator’’). Both types are helpful for annotating the module and determining the functional role of

the modulator.

(C) The TNF module. The modulators include TRAF3 andMITF, wherein high TRAF3 and lowMITF are required for upregulation of the genes in the module. The

annotation for each gene is represented in a color-codedmatrix. Blue and orange squares represent literature-based annotation (see Table S3); green and brown

are from GO. LitVAN associated the genes in this module with TNF and the inflammatory response.

See also Figure S2 and Table S3.
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Learning the regulation program

Given a set of modules, a regulation program 
is learned for each module:
1. all candidate drivers are considered (428)
2. Multiple splits are allowed (penalty for 

multiple splits)
3. a tree is generated recursively:

3.1. the best driver-split is selected 
according to the score

3.2. outlier-removal test and and linear 
influence test as robustness 
criteria

4. all genes are reassigned to the modules, 
and moved to the new one if the score 
improves
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Figure S3. The Network Structure Is Verified in Other Data Sets, Related to Figure 2
(A) Amodule describes the expression of a set of genes, based on the conditional probability distribution (‘‘regulation program’’), represented as a regression tree

(Segal et al., 2003). The expression profiles of all genes in themodule are depicted, where the rows are genes, and the columns are tumors. Queries proceed from

the root downwards, if the modulators expression is above the threshold, the queries proceed to the right and otherwise to the left of the split (dotted orange line).

On the right side are groups of samples that follow the same branches down the tree, tumors that express modulators X and Y at a high level. Each leaf of the tree

represents a Normal distribution.

(B) Evaluation of a network structure: CONEXIC learns all modules and their regulation programs based on data from Lin et al. (Lin et al., 2008b). The modulators,
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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Leaf is a vector of gene expression values contained in the leaf and a,l and b are parameters. A split is scored by comparing the
score of the split data to the score without the split, along with a penalty for the split.

NormalGammaðLeft$LeafÞ+NormalGammaðRight$LeafÞ>=NormalGammaðEntire$dataÞ+Penalty

Our penalty function is comprised of two parts. Following Module Networks (Segal et al., 2003), we use a complexity prior that
penalized the number of leaves in each regulation program, using the exponential distribution over total number of leaves. Denoting
the regulation program as T and L as number of leaves, logPðTÞ= $ bL. Following genetic Module Networks (Geronemo (Lee et al.,
2006)), in addition to a penalty specific to each regulation program, we have a network wide penalty function that penalizes the total
number of modulators. The prior takes the form of a power-law distribution on the number of modulators. This prior encourages the
algorithm to select a sparse number of modulators, which is particularly important in this application, whose main purpose is to iden-
tify a small set of potential drivers. Full details are available in (Lee et al., 2006).
The scoring function has 5 parameters, a and l for the Normal Gamma distribution and b, x and y for the complexity prior. These

were selected using 10-fold cross validation and the parameters used were a = 2, l = 1, b = 20, x = 15 and y = 0.

Parameter Selection and Robustness
Selection of Candidate Drivers
Selection of candidate drivers requires determining a q-value threshold for GISTIC, the higher the threshold, the more candidate
regions and genes will be selected, 0.25 is typically used as a threshold for determining the final list of significant regions (Beroukhim
et al., 2009; Beroukhim et al., 2007; Lin et al., 2008b; Walter et al., 2009). Within CONEXIC, GISTIC is used to only generate a pool of
candidate genes for further selection, sowe used themore permissive threshold of 0.3. It is likely that there are additional drivers even
beyond a threshold of 0.3, but too many candidate modulators burden CONEXIC both computationally and statistically. Therefore,
we selected a threshold of 0.3 and correctly identified CCNB2 and RAB27A as drivers in region below the 0.25 threshold, demon-
strating increased sensitivity.
Single Modulator Step
The Single Modulator requires a confidence threshold for non-parametric bootstrap. We selected 90, meaning that we only selected
modulators chosen in more than 90% of the bootstrap runs. Before removing modules containing fewer than 20 genes the median
single modulator run included 295 modulators. After removing small modules, a median of 202 modulators still remained. Following
bootstrap with a threshold of 90% only 78 remained.
Why did we choose 90? In a histogram representing the number of modulators at each confidence threshold (Figure S8A) we

observe that below 90 the distribution of modulators at each confidence level flattens and becomes uniform. It is important to
note that this threshold does not define a filter, but rather only a starting point for Network Learning, which reconsiders all 428 candi-
date drivers. Indeed, 10 modulators that are not selected at this stage are included in the final model, including TBC1D16 and
ZPF106.
CONEXIC achieves similar results across a broad range of thresholds and the final results bear significant similarity, even in

a comparison between using 80 versus 95 as a threshold. Using 80 as a threshold results in 60modulators and using 95 as a threshold
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19number (amplifications and deletions) and gene expression
data from tumor samples to identify driver mutations and
the processes that they influence. CONEXIC is inspired by
Module Networks (Segal et al., 2003) but has been augmented
by a number of critical modifications that make it suitable for
identifying drivers (see Extended Experimental Procedures avail-
able online). CONEXIC uses a score-guided search to identify
the combination of modulators that best explains the behavior
of a gene expression module across tumor samples and
searches for those with the highest score within the amplified
or deleted regions (Extended Experimental Procedures and
Figure S1).
The resulting output is a ranked list of high-scoring modulators

that both correlate with differences in gene expression modules
across samples and are located in amplified or deleted regions in
a significant number of these samples. The fact that the modula-
tors are amplified or deleted indicates that they are likely to
control the expression of the genes in the corresponding
modules (see Figure 3). Because the modulators are amplified
or deleted in a significant number of tumors, it is reasonable to
assume that expression of the modulator (altered by copy
number) contributes a fitness advantage to the tumor. Therefore,
the modulators likely include genes whose alteration provides
a fitness advantage to the tumor.

Identifying Candidate Driver Genes in Melanoma
We applied the CONEXIC algorithm to paired gene expression
and CNA data from 62 cultured (long- and short-term) mela-

Figure 2. The Highest-Scoring Modulators Identi-
fied by CONEXIC
Gene names are color coded based on the role of the gene

in cancer. Ten genes have been previously identified as

oncogenes or tumor suppressors (blue); of these, two in

melanoma (brown). Column 3 represents chromosomal

location, orange represents amplification, and blue repre-

sents deletion. These genes were identified within regions

containing multiple genes, and the number of genes in

each aberrant region is listed in column 4. Column 5 lists

the p value for modulator validation in independent data

(for a full list, see Table S2 and Figure S3C). p values are

shown for the Johansson data set unless the modulator

was missing from this data set, and then p value from

the Hoek data set is shown. See also Extended Experi-

mental Procedures, Table S2, and Figure S3.

nomas (Lin et al., 2008). A list of candidate
drivers was generated using copy number data
available for 101 melanoma samples by
applying a modified version (Sanchez-Garcia
et al., 2010) of GISTIC (Beroukhim et al., 2007)
(see Table S1). Next, we integrated copy
number and gene expression data (available
for 62 tumors) to identify the most likely drivers
(Extended Experimental Procedures). Statistical
power is gained by integrating all data and by
combining statistical tests on thousands of
genes to support the selected modulators.
This resulted in the identification of 64 modula-

tors that explain the behavior of 7869 genes. We consider the
top 30 scoringmodulators, presented in Figure 2, as likely drivers
(see Table S2 for the complete list).

Many Modulators Are Involved in Pathways Related
to Melanoma
The top 30 modulators (likely drivers) include 10 known
oncogenes and tumor suppressors (Figure 2). In many cases,
CONEXIC chose the cancer-related gene out of a large aberrant
region containing many genes. For example, DIXDC1, a gene
known to be involved in the induction of colon cancer (Wang
et al., 2009b), was selected among 17 genes in an aberrant
region (Figure S2). CCNB2, a cell-cycle regulator, was selected
from a large amplified region containing 33 genes. The modula-
tors span diverse functional classes, including signal trans-
ducers (TRAF3), transcription factors (KLF6), translation factors
(EIF5), and genes involved in vesicular trafficking (RAB27A).
Performing a comprehensive literature search for all genes

is tedious and time consuming, so we developed an automated
procedure, literature vector analysis (LitVAn), which searches
for overrepresented terms in papers associated with genes
in a gene set. LitVAn uses a manually curated database (NCBI
Gene) to connect genes with terms from the complete text of
more than 70,000 published scientific articles (Extended Exper-
imental Procedures). LitVAN found a number of overrepresented
terms (Figure S3E) among the top 30 modulators, including
‘‘PI3K’’ and ‘‘MAPK,’’ which are known to be activated in mela-
noma; ‘‘cyclin,’’ representing proliferation, which is common in
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or deleted in a significant number of tumors, it is reasonable to
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nomas (Lin et al., 2008). A list of candidate
drivers was generated using copy number data
available for 101 melanoma samples by
applying a modified version (Sanchez-Garcia
et al., 2010) of GISTIC (Beroukhim et al., 2007)
(see Table S1). Next, we integrated copy
number and gene expression data (available
for 62 tumors) to identify the most likely drivers
(Extended Experimental Procedures). Statistical
power is gained by integrating all data and by
combining statistical tests on thousands of
genes to support the selected modulators.
This resulted in the identification of 64 modula-

tors that explain the behavior of 7869 genes. We consider the
top 30 scoringmodulators, presented in Figure 2, as likely drivers
(see Table S2 for the complete list).

Many Modulators Are Involved in Pathways Related
to Melanoma
The top 30 modulators (likely drivers) include 10 known
oncogenes and tumor suppressors (Figure 2). In many cases,
CONEXIC chose the cancer-related gene out of a large aberrant
region containing many genes. For example, DIXDC1, a gene
known to be involved in the induction of colon cancer (Wang
et al., 2009b), was selected among 17 genes in an aberrant
region (Figure S2). CCNB2, a cell-cycle regulator, was selected
from a large amplified region containing 33 genes. The modula-
tors span diverse functional classes, including signal trans-
ducers (TRAF3), transcription factors (KLF6), translation factors
(EIF5), and genes involved in vesicular trafficking (RAB27A).
Performing a comprehensive literature search for all genes

is tedious and time consuming, so we developed an automated
procedure, literature vector analysis (LitVAn), which searches
for overrepresented terms in papers associated with genes
in a gene set. LitVAn uses a manually curated database (NCBI
Gene) to connect genes with terms from the complete text of
more than 70,000 published scientific articles (Extended Exper-
imental Procedures). LitVAN found a number of overrepresented
terms (Figure S3E) among the top 30 modulators, including
‘‘PI3K’’ and ‘‘MAPK,’’ which are known to be activated in mela-
noma; ‘‘cyclin,’’ representing proliferation, which is common in
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that both correlate with differences in gene expression modules
across samples and are located in amplified or deleted regions in
a significant number of these samples. The fact that the modula-
tors are amplified or deleted indicates that they are likely to
control the expression of the genes in the corresponding
modules (see Figure 3). Because the modulators are amplified
or deleted in a significant number of tumors, it is reasonable to
assume that expression of the modulator (altered by copy
number) contributes a fitness advantage to the tumor. Therefore,
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a fitness advantage to the tumor.
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nomas (Lin et al., 2008). A list of candidate
drivers was generated using copy number data
available for 101 melanoma samples by
applying a modified version (Sanchez-Garcia
et al., 2010) of GISTIC (Beroukhim et al., 2007)
(see Table S1). Next, we integrated copy
number and gene expression data (available
for 62 tumors) to identify the most likely drivers
(Extended Experimental Procedures). Statistical
power is gained by integrating all data and by
combining statistical tests on thousands of
genes to support the selected modulators.
This resulted in the identification of 64 modula-

tors that explain the behavior of 7869 genes. We consider the
top 30 scoringmodulators, presented in Figure 2, as likely drivers
(see Table S2 for the complete list).

Many Modulators Are Involved in Pathways Related
to Melanoma
The top 30 modulators (likely drivers) include 10 known
oncogenes and tumor suppressors (Figure 2). In many cases,
CONEXIC chose the cancer-related gene out of a large aberrant
region containing many genes. For example, DIXDC1, a gene
known to be involved in the induction of colon cancer (Wang
et al., 2009b), was selected among 17 genes in an aberrant
region (Figure S2). CCNB2, a cell-cycle regulator, was selected
from a large amplified region containing 33 genes. The modula-
tors span diverse functional classes, including signal trans-
ducers (TRAF3), transcription factors (KLF6), translation factors
(EIF5), and genes involved in vesicular trafficking (RAB27A).
Performing a comprehensive literature search for all genes

is tedious and time consuming, so we developed an automated
procedure, literature vector analysis (LitVAn), which searches
for overrepresented terms in papers associated with genes
in a gene set. LitVAn uses a manually curated database (NCBI
Gene) to connect genes with terms from the complete text of
more than 70,000 published scientific articles (Extended Exper-
imental Procedures). LitVAN found a number of overrepresented
terms (Figure S3E) among the top 30 modulators, including
‘‘PI3K’’ and ‘‘MAPK,’’ which are known to be activated in mela-
noma; ‘‘cyclin,’’ representing proliferation, which is common in
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.

The module exhibits a dose-response relationship between
TBC1D16 expression and the expression of genes in the module
such that higher expression of TBC1D16 is correlatedwith higher
expression of genes in the module (correlation coefficient 0.76).
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Figure 4. MITF Expression Correlates with Expres-
sion of the Genes in the Associated Module
(A) Each row represents the gene expression of 1 of 78

MITF targets identified by Hoek (Hoek et al., 2008b); the

tumor samples are split into two groups based on the

copy number of MITF (Welch t test p value = 0.04).

(B) The rows represent the same genes, in the same order

as in (A), but here, the tumor samples are split into a group

of samples that expressMITF at high (n = 46) or low levels

(n = 16) (Welch t test p value = 0.0001).

(C) Two modules associated with MITF, showing a

selected subset of genes. LitVAN annotation for the genes

in each module is shown below the heat map. The com-

plete modules with all genes are available in Figure S4.

We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and survival/proliferation (Table S4A). This suggests that
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We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.
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We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.
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To test whether TBC1D16 is required for prolif-
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a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.

The module exhibits a dose-response relationship between
TBC1D16 expression and the expression of genes in the module
such that higher expression of TBC1D16 is correlatedwith higher
expression of genes in the module (correlation coefficient 0.76).
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sion of the Genes in the Associated Module
(A) Each row represents the gene expression of 1 of 78

MITF targets identified by Hoek (Hoek et al., 2008b); the

tumor samples are split into two groups based on the

copy number of MITF (Welch t test p value = 0.04).

(B) The rows represent the same genes, in the same order

as in (A), but here, the tumor samples are split into a group

of samples that expressMITF at high (n = 46) or low levels

(n = 16) (Welch t test p value = 0.0001).

(C) Two modules associated with MITF, showing a

selected subset of genes. LitVAN annotation for the genes

in each module is shown below the heat map. The com-

plete modules with all genes are available in Figure S4.

We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.

The module exhibits a dose-response relationship between
TBC1D16 expression and the expression of genes in the module
such that higher expression of TBC1D16 is correlatedwith higher
expression of genes in the module (correlation coefficient 0.76).
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We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.

The module exhibits a dose-response relationship between
TBC1D16 expression and the expression of genes in the module
such that higher expression of TBC1D16 is correlatedwith higher
expression of genes in the module (correlation coefficient 0.76).
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(A) Each row represents the gene expression of 1 of 78

MITF targets identified by Hoek (Hoek et al., 2008b); the

tumor samples are split into two groups based on the

copy number of MITF (Welch t test p value = 0.04).

(B) The rows represent the same genes, in the same order

as in (A), but here, the tumor samples are split into a group

of samples that expressMITF at high (n = 46) or low levels

(n = 16) (Welch t test p value = 0.0001).

(C) Two modules associated with MITF, showing a

selected subset of genes. LitVAN annotation for the genes

in each module is shown below the heat map. The com-

plete modules with all genes are available in Figure S4.

We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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and discovered that diverse biological processes are repre-
sented by genes in the module and that more than half are anno-
tated for processes such asmelanogenesis, vesicular trafficking,
and survival/proliferation (Table S4A). This suggests that
TBC1D16 plays a role in cell survival and proliferation.

TBC1D16 is an uncharacterized gene located in an amplified
region that contains 23 other genes, including CBX4, which is
known to play a role in cancer (Satijn et al., 1997). Expression
of TBC1D16 is not highly correlated with TBC1D16 copy
number compared to other genes in the region (ranked 7th out
of 24) or to all candidate drivers (252th out of 428). Nevertheless,
TBC1D16 is the top-scoring gene in the region and the second
highest-scoring modulator, so it was selected for experimental
verification.

The module exhibits a dose-response relationship between
TBC1D16 expression and the expression of genes in the module
such that higher expression of TBC1D16 is correlatedwith higher
expression of genes in the module (correlation coefficient 0.76).
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We carried out western blotting and RT-PCR on
some of the short-term cultures (STCs) used to
generate the Lin data set and asked whether
the TBC1D16 transcript correlates with protein
levels. The results confirmed that the expression
of TBC1D16 corresponds well with the amount
of the 45 kD isoform of TBC1D16 (data not
shown). These results suggest that knockdown
of TBC1D16 expression in tumors that have
high levels of TBC1D16 will lead to a reduction
in proliferation.

TBC1D16 Is Required for Proliferation
To test whether TBC1D16 is required for prolif-
eration of melanoma cultures, we carried out
a knockdown experiment. We selected two
STCs with high levels of TBC1D16, WM1960
(16-fold higher expression than WM1346, DNA
not amplified) and WM1976 (34-fold higher
expression, amplified DNA) and control STCs,
WM262 and WM1346 that express TBC1D16
at a lower level. We used two shRNAs to knock
down TBC1D16 expression in each of the four
STCs and measured growth over 8 days
(Extended Experimental Procedures). RT-PCR

was used to confirm that the reduction in the amount of the
TBC1D16 transcript was similar for all of the STCs (Figure S5).
Knockdown of TBC1D16 expression reduced cell growth in
WM1960 and WM1976 to 16% and 40%, respectively, relative
to controls infected with GFP shRNA in the same STCs (Figures
5B–5D). This result is specific for cultures with high levels of
TBC1D16, as the controls, WM262 andWM1346, grow at similar
rates to cultures infected with shGFP (75%–90%). As predicted,
growth inhibition at day 8 is proportional to the amount of the
TBC1D16 transcript and is independent of TBC1D16 copy
number (Figures 5C and 5D). Taken together, these results
support CONEXIC’s prediction that TBC1D16 is required for
proliferation in melanomas that overexpress the gene.

RAB27A Identified and Experimentally Confirmed
as a Tumor Dependency
The TBC1D16 module contains a second modulator, RAB27A,
also known to be involved in vesicular trafficking (Figure 5A).
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.

Cell 143, 1005–1017, December 10, 2010 ª2010 Elsevier Inc. 1011

RAB27A functions with RAB7A to control melanosome transport
and secretion. RAB7A localizes to early melanosomes, whereas
RAB27A is found in mature melanosomes (Jordens et al., 2006).
CONEXIC selected both RAB27A and RAB7A as modulators.
RAB27A is in an amplified region that did not pass the standard

GISTIC q value threshold for significance, and expression of
the gene is not highly correlated with RAB27A copy number
compared to other candidate drivers (323th out of 428). Never-
theless, CONEXIC identified it as the top-scoring modulator out
of the 33 genes in this region and ranked it 8th out of 64 modu-
lators, and it was therefore selected for empirical assessment.
To test the prediction that RAB27A is important for prolifera-

tion in tumors with high levels of RAB27A, we tested the effect
of shRNA knockdown of the RAB27A transcript on proliferation.
We chose two STCs in which the gene is highly expressed
WM1385 (28-fold higher expression compared with A375, DNA

amplified) and WM1960 (38-fold higher expression, DNA not
amplified) and two controls that express RAB27A at a lower level
(A375 and WM1930). Western blots show that expression of
RAB27A correlates with expression of the cognate gene in these
cultures (data not shown).
Knockdown of RAB27A expression using shRNA was similar

for all cultures (Figure S6) but only reduced cell growth signifi-
cantly in the STCs that overexpress RAB27A (18% or 35% in
WM1385 or WM1960 relative to the same cultures infected
with GFP shRNA).RAB27A shRNA had less impact (growth rates
of 65%–80%) in the control STCs that have low RAB27A (Figures
6A and 6B). Growth inhibition at 6 days is correlated with the
amount of the RAB27A transcript and is independent of
RAB27A copy number (Figures 6B and 6C). Taken together,
these results support CONEXIC’s prediction that RAB27A is
a tumor dependency in melanomas that overexpress RAB27A.
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Figure 5. TBC1D16 Is Necessary for Melanoma Growth
(A) A module associated with TBC1D16 and RAB27A. The genes in the module are involved in melanogenesis, survival/proliferation, lysosome, and protein traf-

ficking (see Table S4A for details).

(B) Representative growth curves for each of the four STCs infectedwith TBC1D16 shRNA. Each curve represents three technical replicates. RT-PCRwas used to

confirm that the reduction in the amount of the TBC1D16 transcript was similar for all of the STCs (Figure S5).

(C) Change in growth over time, relative to the number of cells plated, averaged over all replicates (Extended Experimental Procedures). Mean over three bio-

logical replicates 3 three technical replicates for each STC. See Figure S5 and Table S4B for additional replicates and hairpins.

(D) Growth inhibition at 8 days is directly proportional to the amount of the TBC1D16 transcript and is independent of the TBC1D16 copy number.
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RAB27A Affects the Expression of Genes
in Associated Modules
To test whetherRAB27A affects the expression of genes in asso-
ciated modules, as predicted by CONEXIC, we carried out
microarray profiling after knockdown of RAB27A in the test
STCs (WM1385 and WM1960). We compared the expression
profile after RAB27A knockdown to a control profile generated
by infecting the same STC with GFP shRNA. We used gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) to test
whether each of the three modules associated with RAB27A
are enriched with genes that are differentially expressed (DEG)
after knockdown (see Extended Experimental Procedures). We
found that all three RAB27A-associated modules are signifi-
cantly enriched for genes affected by RAB27A (p values < 10!5

for all three modules; see Figure 7C) and that these modules
responded in the direction predicted by CONEXIC.

These results support our computational prediction that the
expression of RAB27A affects the expression of the genes in
the associated modules. We note that RAB27A functions as a
vesicular trafficking protein, suggesting that it influences gene
expression through an unknown and likely indirect mechanism.
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Figure 6. RAB27A Is Necessary for Melanoma
Growth
(A) Representative growth curves for each of the four STCs

infected with RAB27A shRNA. Each curve represents

three technical replicates. RT-PCR was used to confirm

that the reduction in the amount of the RAB27A transcript

was similar in all of the STCs (Figure S6).

(B) Change in growth over time, relative to the number of

cells plated, averaged over all replicates. Knockdown of

RAB27A expression in cells that express this gene at

high levels reduces proliferation. Data averaged over three

biological replicates 3 three technical replicates for each

STC. See Figure S6 and Table S5 for all data.

(C) Growth inhibition at 6 days is dependent on the amount

of the RAB27A transcript and is independent of RAB27A

copy number.

We used LitVAN to identify the biological
processes and pathways represented among
the DEGs. Cell cycle-related terms are signifi-
cant among the downregulated genes, which
might be expected given the reduced growth
afterRAB27A knockdown. In addition, we found
that genes annotated for the ERK pathway
are upregulated (including MYC, FOSL1, and
DUSP6). We usedGSEA tomeasure enrichment
of an experimentally derived set of genes that
respond to MEK inhibition in melanoma (Pratilas
et al., 2009). The resulting p value < 4.7 3 10!5

suggests that ERK signaling is altered after
RAB27A knockdown in these STCs.

TBC1D16 Influences the Expression
of Genes in Associated Modules
We carried out microarray profiling after knock-
down of TBC1D16 to evaluate whether expres-

sion of TBC1D16 affects the expression of genes in the four
modules associated with it. We used two shRNAs to knock
down TBC1D16 in the test STCs (WM1960 and WM1976) and
compared the gene expression to controls infected with GFP
shRNA (in the same STCs). GSEA analysis established that all
four modules are significantly enriched for genes affected by
differences in TBC1D16 expression (p values < 10!5, 0.0002,
0.008, and 0.009, respectively; see Figure 7). Two modules
responded to TBC1D16 knockdown in the direction predicted
by CONEXIC. In addition, GSEA analysis ranked genes in
the TBC1D16 module (Module 25) highest out of 177 (based
on the GSEA p value), demonstrating that the genes in this
module are the most highly differentially expressed genes in
the data set.
The function of TBC1D16 is unknown, but it is predicted to be

involved in vesicular trafficking. In our knockdown analysis,
LitVAN annotated the upregulated genes with terms related to
vesicular trafficking. These include RAB3C, RAB7A, CHMP1B,
RAB18, SNX16, COPB1, and CAV1 (see Table S6A). However,
it is not clear how TBC1D16 affects gene expression or how
changes in expression affect vesicular trafficking.
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RAB27A Affects the Expression of Genes
in Associated Modules
To test whetherRAB27A affects the expression of genes in asso-
ciated modules, as predicted by CONEXIC, we carried out
microarray profiling after knockdown of RAB27A in the test
STCs (WM1385 and WM1960). We compared the expression
profile after RAB27A knockdown to a control profile generated
by infecting the same STC with GFP shRNA. We used gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) to test
whether each of the three modules associated with RAB27A
are enriched with genes that are differentially expressed (DEG)
after knockdown (see Extended Experimental Procedures). We
found that all three RAB27A-associated modules are signifi-
cantly enriched for genes affected by RAB27A (p values < 10!5

for all three modules; see Figure 7C) and that these modules
responded in the direction predicted by CONEXIC.

These results support our computational prediction that the
expression of RAB27A affects the expression of the genes in
the associated modules. We note that RAB27A functions as a
vesicular trafficking protein, suggesting that it influences gene
expression through an unknown and likely indirect mechanism.
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Figure 6. RAB27A Is Necessary for Melanoma
Growth
(A) Representative growth curves for each of the four STCs

infected with RAB27A shRNA. Each curve represents

three technical replicates. RT-PCR was used to confirm

that the reduction in the amount of the RAB27A transcript

was similar in all of the STCs (Figure S6).

(B) Change in growth over time, relative to the number of

cells plated, averaged over all replicates. Knockdown of

RAB27A expression in cells that express this gene at

high levels reduces proliferation. Data averaged over three

biological replicates 3 three technical replicates for each

STC. See Figure S6 and Table S5 for all data.

(C) Growth inhibition at 6 days is dependent on the amount

of the RAB27A transcript and is independent of RAB27A

copy number.

We used LitVAN to identify the biological
processes and pathways represented among
the DEGs. Cell cycle-related terms are signifi-
cant among the downregulated genes, which
might be expected given the reduced growth
afterRAB27A knockdown. In addition, we found
that genes annotated for the ERK pathway
are upregulated (including MYC, FOSL1, and
DUSP6). We usedGSEA tomeasure enrichment
of an experimentally derived set of genes that
respond to MEK inhibition in melanoma (Pratilas
et al., 2009). The resulting p value < 4.7 3 10!5

suggests that ERK signaling is altered after
RAB27A knockdown in these STCs.

TBC1D16 Influences the Expression
of Genes in Associated Modules
We carried out microarray profiling after knock-
down of TBC1D16 to evaluate whether expres-

sion of TBC1D16 affects the expression of genes in the four
modules associated with it. We used two shRNAs to knock
down TBC1D16 in the test STCs (WM1960 and WM1976) and
compared the gene expression to controls infected with GFP
shRNA (in the same STCs). GSEA analysis established that all
four modules are significantly enriched for genes affected by
differences in TBC1D16 expression (p values < 10!5, 0.0002,
0.008, and 0.009, respectively; see Figure 7). Two modules
responded to TBC1D16 knockdown in the direction predicted
by CONEXIC. In addition, GSEA analysis ranked genes in
the TBC1D16 module (Module 25) highest out of 177 (based
on the GSEA p value), demonstrating that the genes in this
module are the most highly differentially expressed genes in
the data set.
The function of TBC1D16 is unknown, but it is predicted to be

involved in vesicular trafficking. In our knockdown analysis,
LitVAN annotated the upregulated genes with terms related to
vesicular trafficking. These include RAB3C, RAB7A, CHMP1B,
RAB18, SNX16, COPB1, and CAV1 (see Table S6A). However,
it is not clear how TBC1D16 affects gene expression or how
changes in expression affect vesicular trafficking.
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RAB27A Affects the Expression of Genes
in Associated Modules
To test whetherRAB27A affects the expression of genes in asso-
ciated modules, as predicted by CONEXIC, we carried out
microarray profiling after knockdown of RAB27A in the test
STCs (WM1385 and WM1960). We compared the expression
profile after RAB27A knockdown to a control profile generated
by infecting the same STC with GFP shRNA. We used gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) to test
whether each of the three modules associated with RAB27A
are enriched with genes that are differentially expressed (DEG)
after knockdown (see Extended Experimental Procedures). We
found that all three RAB27A-associated modules are signifi-
cantly enriched for genes affected by RAB27A (p values < 10!5

for all three modules; see Figure 7C) and that these modules
responded in the direction predicted by CONEXIC.

These results support our computational prediction that the
expression of RAB27A affects the expression of the genes in
the associated modules. We note that RAB27A functions as a
vesicular trafficking protein, suggesting that it influences gene
expression through an unknown and likely indirect mechanism.
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Growth
(A) Representative growth curves for each of the four STCs

infected with RAB27A shRNA. Each curve represents

three technical replicates. RT-PCR was used to confirm

that the reduction in the amount of the RAB27A transcript

was similar in all of the STCs (Figure S6).

(B) Change in growth over time, relative to the number of

cells plated, averaged over all replicates. Knockdown of

RAB27A expression in cells that express this gene at

high levels reduces proliferation. Data averaged over three

biological replicates 3 three technical replicates for each

STC. See Figure S6 and Table S5 for all data.

(C) Growth inhibition at 6 days is dependent on the amount

of the RAB27A transcript and is independent of RAB27A

copy number.

We used LitVAN to identify the biological
processes and pathways represented among
the DEGs. Cell cycle-related terms are signifi-
cant among the downregulated genes, which
might be expected given the reduced growth
afterRAB27A knockdown. In addition, we found
that genes annotated for the ERK pathway
are upregulated (including MYC, FOSL1, and
DUSP6). We usedGSEA tomeasure enrichment
of an experimentally derived set of genes that
respond to MEK inhibition in melanoma (Pratilas
et al., 2009). The resulting p value < 4.7 3 10!5

suggests that ERK signaling is altered after
RAB27A knockdown in these STCs.

TBC1D16 Influences the Expression
of Genes in Associated Modules
We carried out microarray profiling after knock-
down of TBC1D16 to evaluate whether expres-

sion of TBC1D16 affects the expression of genes in the four
modules associated with it. We used two shRNAs to knock
down TBC1D16 in the test STCs (WM1960 and WM1976) and
compared the gene expression to controls infected with GFP
shRNA (in the same STCs). GSEA analysis established that all
four modules are significantly enriched for genes affected by
differences in TBC1D16 expression (p values < 10!5, 0.0002,
0.008, and 0.009, respectively; see Figure 7). Two modules
responded to TBC1D16 knockdown in the direction predicted
by CONEXIC. In addition, GSEA analysis ranked genes in
the TBC1D16 module (Module 25) highest out of 177 (based
on the GSEA p value), demonstrating that the genes in this
module are the most highly differentially expressed genes in
the data set.
The function of TBC1D16 is unknown, but it is predicted to be

involved in vesicular trafficking. In our knockdown analysis,
LitVAN annotated the upregulated genes with terms related to
vesicular trafficking. These include RAB3C, RAB7A, CHMP1B,
RAB18, SNX16, COPB1, and CAV1 (see Table S6A). However,
it is not clear how TBC1D16 affects gene expression or how
changes in expression affect vesicular trafficking.
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RAB27A Affects the Expression of Genes
in Associated Modules
To test whetherRAB27A affects the expression of genes in asso-
ciated modules, as predicted by CONEXIC, we carried out
microarray profiling after knockdown of RAB27A in the test
STCs (WM1385 and WM1960). We compared the expression
profile after RAB27A knockdown to a control profile generated
by infecting the same STC with GFP shRNA. We used gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) to test
whether each of the three modules associated with RAB27A
are enriched with genes that are differentially expressed (DEG)
after knockdown (see Extended Experimental Procedures). We
found that all three RAB27A-associated modules are signifi-
cantly enriched for genes affected by RAB27A (p values < 10!5

for all three modules; see Figure 7C) and that these modules
responded in the direction predicted by CONEXIC.

These results support our computational prediction that the
expression of RAB27A affects the expression of the genes in
the associated modules. We note that RAB27A functions as a
vesicular trafficking protein, suggesting that it influences gene
expression through an unknown and likely indirect mechanism.
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Figure 6. RAB27A Is Necessary for Melanoma
Growth
(A) Representative growth curves for each of the four STCs

infected with RAB27A shRNA. Each curve represents

three technical replicates. RT-PCR was used to confirm

that the reduction in the amount of the RAB27A transcript

was similar in all of the STCs (Figure S6).

(B) Change in growth over time, relative to the number of

cells plated, averaged over all replicates. Knockdown of

RAB27A expression in cells that express this gene at

high levels reduces proliferation. Data averaged over three

biological replicates 3 three technical replicates for each

STC. See Figure S6 and Table S5 for all data.

(C) Growth inhibition at 6 days is dependent on the amount

of the RAB27A transcript and is independent of RAB27A

copy number.

We used LitVAN to identify the biological
processes and pathways represented among
the DEGs. Cell cycle-related terms are signifi-
cant among the downregulated genes, which
might be expected given the reduced growth
afterRAB27A knockdown. In addition, we found
that genes annotated for the ERK pathway
are upregulated (including MYC, FOSL1, and
DUSP6). We usedGSEA tomeasure enrichment
of an experimentally derived set of genes that
respond to MEK inhibition in melanoma (Pratilas
et al., 2009). The resulting p value < 4.7 3 10!5

suggests that ERK signaling is altered after
RAB27A knockdown in these STCs.

TBC1D16 Influences the Expression
of Genes in Associated Modules
We carried out microarray profiling after knock-
down of TBC1D16 to evaluate whether expres-

sion of TBC1D16 affects the expression of genes in the four
modules associated with it. We used two shRNAs to knock
down TBC1D16 in the test STCs (WM1960 and WM1976) and
compared the gene expression to controls infected with GFP
shRNA (in the same STCs). GSEA analysis established that all
four modules are significantly enriched for genes affected by
differences in TBC1D16 expression (p values < 10!5, 0.0002,
0.008, and 0.009, respectively; see Figure 7). Two modules
responded to TBC1D16 knockdown in the direction predicted
by CONEXIC. In addition, GSEA analysis ranked genes in
the TBC1D16 module (Module 25) highest out of 177 (based
on the GSEA p value), demonstrating that the genes in this
module are the most highly differentially expressed genes in
the data set.
The function of TBC1D16 is unknown, but it is predicted to be

involved in vesicular trafficking. In our knockdown analysis,
LitVAN annotated the upregulated genes with terms related to
vesicular trafficking. These include RAB3C, RAB7A, CHMP1B,
RAB18, SNX16, COPB1, and CAV1 (see Table S6A). However,
it is not clear how TBC1D16 affects gene expression or how
changes in expression affect vesicular trafficking.
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DISCUSSION

We have demonstrated that combining tumor gene expression
and copy number data into a single framework increases our
ability to identify likely drivers in cancer and the processes
affected by them. Gene expression allows us to distinguish
between multiple genes in an amplified or deleted region
(many of which are indistinguishable based on copy number)
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Figure 7. Results of Knockdown Microarrays for
RAB27A and TBC1D16
(A) To the left is one of the modules associated with

RAB27A, and to the right are data generated following

knockdown (KD) of RAB27A for the same genes in the

STCs indicated (pink and blue). The expression of genes

in the module goes down relative to shGFP, as predicted.

KD expression heat map shows Z scores (see Extended

Experimental Procedures) showing that these are some

of the most differentially expressed genes (DEGs) in the

genome.

(B) To the left is one of the modules associated with

TBC1D16, and to the right are data generated following

KD of TBC1D16 in the STCs indicated. The expression

of genes in the module goes up relative to shGFP, as

predicted. The test STCs (blue) and control STCs (pink)

respond differently, demonstrating the importance of

context (TBC1D16 overexpression status) in determining

the response.

(C) GSEA p value and ranking (relative to 177 CONEXIC

modules) forRAB27A- and TBC1D16-associatedmodules

(see Figure S7 for data). GSEA was calculated using the

median of four profiles (two cell lines 3 two hairpins) on

the test STCs. Significant p values indicate that knock-

down of RAB27A and TBC1D16 each affects the subset

of genes predicted by CONEXIC (note that 10!5 is the

smallest p value possible given that 100,000 permutations

are used). The color of the module name represents the

predicted direction of response to knockdown (red and

green represent up- and downregulated, respectively).

The arrow represents the observed response to knock-

down. The direction of response was correctly predicted

for two of four TBC1D16 modules and for all RAB27A

modules.

See also Figure S7 and Table S6.

and to identify those that are likely to be drivers.
The combination of data types allows us to iden-
tify regions that would be overlooked using
methods based on DNA copy number alone.

Expression of a Driver, Not Its Copy
Number, Drives Phenotype
The novelty of our method and the key to its
success is our modeling paradigm: the expres-
sion of a driver should correspond with the
expression of genes in an associated module.
Examination of MITF and its targets supports
our assumptions. Expression of MITF best
correlates with the expression of its targets,
but MITF overexpression does not always
correspond with MITF amplification. A change

in DNA copy number is only one of many ways that gene expres-
sion can be altered. For example,MITF expression can be upre-
gulated via signaling from the Ras/Raf (oncogenic BRAF occurs
frequently inmelanoma) (Wellbrock et al., 2008) and Frizzled/Wnt
pathways (Chin et al., 2006).
Most methods for identifying drivers within aberrant regions

focus on genes whose expression is well correlated with the
copy number of the cognate DNA (Lin et al., 2008; Turner
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Figure 7. Results of Knockdown Microarrays for
RAB27A and TBC1D16
(A) To the left is one of the modules associated with

RAB27A, and to the right are data generated following

knockdown (KD) of RAB27A for the same genes in the

STCs indicated (pink and blue). The expression of genes

in the module goes down relative to shGFP, as predicted.

KD expression heat map shows Z scores (see Extended

Experimental Procedures) showing that these are some

of the most differentially expressed genes (DEGs) in the

genome.

(B) To the left is one of the modules associated with

TBC1D16, and to the right are data generated following

KD of TBC1D16 in the STCs indicated. The expression

of genes in the module goes up relative to shGFP, as

predicted. The test STCs (blue) and control STCs (pink)

respond differently, demonstrating the importance of

context (TBC1D16 overexpression status) in determining

the response.

(C) GSEA p value and ranking (relative to 177 CONEXIC

modules) forRAB27A- and TBC1D16-associatedmodules

(see Figure S7 for data). GSEA was calculated using the

median of four profiles (two cell lines 3 two hairpins) on

the test STCs. Significant p values indicate that knock-

down of RAB27A and TBC1D16 each affects the subset

of genes predicted by CONEXIC (note that 10!5 is the

smallest p value possible given that 100,000 permutations

are used). The color of the module name represents the

predicted direction of response to knockdown (red and

green represent up- and downregulated, respectively).

The arrow represents the observed response to knock-

down. The direction of response was correctly predicted

for two of four TBC1D16 modules and for all RAB27A

modules.

See also Figure S7 and Table S6.

and to identify those that are likely to be drivers.
The combination of data types allows us to iden-
tify regions that would be overlooked using
methods based on DNA copy number alone.

Expression of a Driver, Not Its Copy
Number, Drives Phenotype
The novelty of our method and the key to its
success is our modeling paradigm: the expres-
sion of a driver should correspond with the
expression of genes in an associated module.
Examination of MITF and its targets supports
our assumptions. Expression of MITF best
correlates with the expression of its targets,
but MITF overexpression does not always
correspond with MITF amplification. A change

in DNA copy number is only one of many ways that gene expres-
sion can be altered. For example,MITF expression can be upre-
gulated via signaling from the Ras/Raf (oncogenic BRAF occurs
frequently inmelanoma) (Wellbrock et al., 2008) and Frizzled/Wnt
pathways (Chin et al., 2006).
Most methods for identifying drivers within aberrant regions

focus on genes whose expression is well correlated with the
copy number of the cognate DNA (Lin et al., 2008; Turner
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Figure 7. Results of Knockdown Microarrays for
RAB27A and TBC1D16
(A) To the left is one of the modules associated with

RAB27A, and to the right are data generated following

knockdown (KD) of RAB27A for the same genes in the

STCs indicated (pink and blue). The expression of genes

in the module goes down relative to shGFP, as predicted.

KD expression heat map shows Z scores (see Extended

Experimental Procedures) showing that these are some

of the most differentially expressed genes (DEGs) in the

genome.

(B) To the left is one of the modules associated with

TBC1D16, and to the right are data generated following

KD of TBC1D16 in the STCs indicated. The expression

of genes in the module goes up relative to shGFP, as

predicted. The test STCs (blue) and control STCs (pink)

respond differently, demonstrating the importance of

context (TBC1D16 overexpression status) in determining

the response.

(C) GSEA p value and ranking (relative to 177 CONEXIC

modules) forRAB27A- and TBC1D16-associatedmodules

(see Figure S7 for data). GSEA was calculated using the

median of four profiles (two cell lines 3 two hairpins) on

the test STCs. Significant p values indicate that knock-

down of RAB27A and TBC1D16 each affects the subset

of genes predicted by CONEXIC (note that 10!5 is the

smallest p value possible given that 100,000 permutations

are used). The color of the module name represents the

predicted direction of response to knockdown (red and

green represent up- and downregulated, respectively).

The arrow represents the observed response to knock-

down. The direction of response was correctly predicted

for two of four TBC1D16 modules and for all RAB27A

modules.

See also Figure S7 and Table S6.

and to identify those that are likely to be drivers.
The combination of data types allows us to iden-
tify regions that would be overlooked using
methods based on DNA copy number alone.

Expression of a Driver, Not Its Copy
Number, Drives Phenotype
The novelty of our method and the key to its
success is our modeling paradigm: the expres-
sion of a driver should correspond with the
expression of genes in an associated module.
Examination of MITF and its targets supports
our assumptions. Expression of MITF best
correlates with the expression of its targets,
but MITF overexpression does not always
correspond with MITF amplification. A change

in DNA copy number is only one of many ways that gene expres-
sion can be altered. For example,MITF expression can be upre-
gulated via signaling from the Ras/Raf (oncogenic BRAF occurs
frequently inmelanoma) (Wellbrock et al., 2008) and Frizzled/Wnt
pathways (Chin et al., 2006).
Most methods for identifying drivers within aberrant regions

focus on genes whose expression is well correlated with the
copy number of the cognate DNA (Lin et al., 2008; Turner
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We have demonstrated that combining tumor gene expression
and copy number data into a single framework increases our
ability to identify likely drivers in cancer and the processes
affected by them. Gene expression allows us to distinguish
between multiple genes in an amplified or deleted region
(many of which are indistinguishable based on copy number)
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Figure 7. Results of Knockdown Microarrays for
RAB27A and TBC1D16
(A) To the left is one of the modules associated with

RAB27A, and to the right are data generated following

knockdown (KD) of RAB27A for the same genes in the

STCs indicated (pink and blue). The expression of genes

in the module goes down relative to shGFP, as predicted.

KD expression heat map shows Z scores (see Extended

Experimental Procedures) showing that these are some

of the most differentially expressed genes (DEGs) in the

genome.

(B) To the left is one of the modules associated with

TBC1D16, and to the right are data generated following

KD of TBC1D16 in the STCs indicated. The expression

of genes in the module goes up relative to shGFP, as

predicted. The test STCs (blue) and control STCs (pink)

respond differently, demonstrating the importance of

context (TBC1D16 overexpression status) in determining

the response.

(C) GSEA p value and ranking (relative to 177 CONEXIC

modules) forRAB27A- and TBC1D16-associatedmodules

(see Figure S7 for data). GSEA was calculated using the

median of four profiles (two cell lines 3 two hairpins) on

the test STCs. Significant p values indicate that knock-

down of RAB27A and TBC1D16 each affects the subset

of genes predicted by CONEXIC (note that 10!5 is the

smallest p value possible given that 100,000 permutations

are used). The color of the module name represents the

predicted direction of response to knockdown (red and

green represent up- and downregulated, respectively).

The arrow represents the observed response to knock-

down. The direction of response was correctly predicted

for two of four TBC1D16 modules and for all RAB27A

modules.

See also Figure S7 and Table S6.

and to identify those that are likely to be drivers.
The combination of data types allows us to iden-
tify regions that would be overlooked using
methods based on DNA copy number alone.

Expression of a Driver, Not Its Copy
Number, Drives Phenotype
The novelty of our method and the key to its
success is our modeling paradigm: the expres-
sion of a driver should correspond with the
expression of genes in an associated module.
Examination of MITF and its targets supports
our assumptions. Expression of MITF best
correlates with the expression of its targets,
but MITF overexpression does not always
correspond with MITF amplification. A change

in DNA copy number is only one of many ways that gene expres-
sion can be altered. For example,MITF expression can be upre-
gulated via signaling from the Ras/Raf (oncogenic BRAF occurs
frequently inmelanoma) (Wellbrock et al., 2008) and Frizzled/Wnt
pathways (Chin et al., 2006).
Most methods for identifying drivers within aberrant regions

focus on genes whose expression is well correlated with the
copy number of the cognate DNA (Lin et al., 2008; Turner
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