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Genomic variation refers to the difference of DNA sequence between two or more indi-

viduals. In the past, it was believed that most human sequence variation was attributable

to single nucleotide polymorphisms (SNPs), which was estimated to occur every 300–1,000

bases on average when comparing two different chromosomes. Nowadays, with the advance

of sequencing technology, we are able to reveal a large number of different variation called

structural variation (SV). This kind of variation includes genomic rearrangement such as

deletion, insertion and inversion, which are usually defined as >1 kbp in size. These SVs

have considerable impact on genomic variation by causing more nucleotide differences be-

tween individuals than SNPs and by creating gene duplication or deletion. Even though

many recent findings have implicated the importance of SVs such as disease association,

the understanding of their formation processes and the ability to identify them are still very

limited, which have particularly hampered further studies on a large scale. To this end,

this thesis aims to carry out a detailed and large-scale computational analysis on genomic

variation. It demonstrates a loss-of-function variation analysis across different eukaryotic

genomes by using a database of pseudogene families and an ontology, which reveals the

formational bias of pseudogene and its relation with other genomic segments such as seg-

mental duplications (SDs). It goes on to investigate the formation mechanisms of SVs by

correlating SDs and copy number variants (CNVs) with genomic repeats such as the Alu

elements. Then, it extends the characterization of SVs by using an SV breakpoint library

and reveals their formational biases. Finally, it introduces a novel computational approach

for reliably and efficiently identifying SVs in a newly-sequenced personal genome.
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Chapter 1

Introduction

Genome sequencing, which determines the order of nucleotides that make up the genomes

of living organisms, has been a key tool in modern biological research. Due to the enormous

cost and time to sequence a whole genome in the past [1], early attempt to discover genomic

variants that set the phenotypic difference between individuals was only focused on the

differences of single nucleotides, known as single nucleotide polymorphisms (SNPs). Recent

advances in sequencing technology now enable scientists to decode the genome more rapidly

and efficiently [2], and have paved the way for identifying large-block genomic variants,

called structural variants or SVs.

SVs are usually defined as genomic variation ranging from kilobase to megabase, in-

cluding insertions, deletions and inversions [3] (Figure 1.1). These variants cause more

nucleotide differences between individuals than SNPs. Some SVs, in fact, involve thou-

sands of base pairs and can remove whole genes or create additional ones that can have

major effects on an organism [4]. For example, SVs are sometimes associated with diseases

such as HIV [5] and also with developmental disorders such as Down syndrome [6]. They

are a result of sequence rearrangement in the genome caused by various mechanisms, such

as non-allelic homologous recombination (NAHR; involving homology-mediated recombina-

tion between paralogous sequence blocks), non-homologous end-joining (NHEJ; associated

with the repair of DNA double-strand breaks) and transposable element insertion (TEI;
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Figure 1.1: Major SV events defined as deletion (upper), insertion (middle) and inversion
(lower) relative to the reference genome.

involving mostly long and short interspersed elements). When SVs exhibit difference in

copy number between two or more individuals, they are referred as copy number varia-

tion (CNV). Due to the biological significance and importance of SV implicated in recent

findings, it has become one of the focuses in genetics lately.

To detect CNVs or SVs, comparative genomic hybridization (CGH) and paired-end

sequencing are the major techniques being used to date [7]. It has been previously demon-

strated that using high-resolution CGH based on tiling array can precisely map copy num-

ber in mammalian cells [8]. Various computational methods have also been developed to

identify the variants from the array signals. For example, a non-parametric method using a

mean-shift-based (MSB) approach has been proposed to detect the changed copy numbers

in array-CGH data by determining local modes of the signal [9]. To compensate for the

approximate CNV coordinates from CGH experiments, a computational approach called

BreakPtr has been proposed to fine-map CNVs. It suggested a predictive resolution (∼

300 bp) that could enable more precise correlations between CNVs and across individuals

2



Figure 1.2: SV detection method: paired-end sequencing and mapping.

than previously possible [10].

Different from CGH, which can only detect copy number variants, paired-end sequenc-

ing (Figure 1.2) is able to discover copy number balanced events (e.g., inversions). In

recent years, a high-throughput and massive sequencing method, called paired-end map-

ping (PEM), was developed to identify structural variants (down to almost 3kb in size)

between genomes using the 454 paired-end sequencing technology [11]. To facilitate the SV

detection from massive paired-end sequences, a cross-platform computational framework,

PEMer, was then developed for identifying structural variants with sequence reads from

different sequencing platforms. The analysis pipeline aims to map SVs at high-resolution

by paired-end sequences and has showed improvement on sensitivity and specificity over

previous approaches [12].

Since SVs identified by methods such as paired-end mapping may not precisely repre-

sent the breakpoints of the events, a split-read analysis approach [13] is commonly used

to deduce the exact breakpoint locations of the SVs with reads from second-generation

sequencing or from PCR sequences spanning the paired ends. This approach basically

3



Figure 1.3: SV breakpoint junction analysis: examples for classifying SVs as Non-Allelic
Homologous Recombination (NAHR) and Transposable Element Insertion (TEI).

aligns a read or sequence to a reference genome and identifies those having one end of the

read mapped to one location on a chromosome and the other to a concordant location that

represents either a deletion or an insertion event (Figure 1.1). While we have SV calls with

breakpoints, we could carry out nucleotide-level analysis on SVs such as deducing their

formation mechanisms (Figure 1.3).

This thesis is focused on computational analysis on genomic variation, particularly in

humans, including SV, CNV and pseudogene. It involves using high throughput sequencing

technologies and computational algorithms to systematically and efficiently identify and

characterize SVs. It aims to enhance the understanding of the mechanism and impact of

genomic variation and to facilitate such analyses.

1.0.1 Loss-of-function variation

In chapter two [14], we present a database of pseudogene families, Pseudofam, based on

the protein families from the Pfam database. It provides resources for analyzing the fam-

ily structure of pseudogenes including query tools, statistical summaries and sequence
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alignments. Pseudogenes are loss-of-function gene relics resulted from duplication or retro-

tranposition events. Like their functional counterparts, they experience variation among

different individuals as well as different species. The current version of Pseudofam contains

more than 125,000 pseudogenes identified from 10 eukaryotic genomes and aligned within

nearly 3000 families (approximately one-third of the total families in PfamA). Pseudofam

uses a large-scale parallelized homology search algorithm (implemented as an extension of

the PseudoPipe pipeline) to identify pseudogenes. Each identified pseudogene is assigned to

its parent protein family and subsequently aligned to each other by transferring the parent

domain alignments from the Pfam family. Pseudogenes are also given additional annotation

based on an ontology, reflecting their mode of creation and subsequent history. In particu-

lar, our annotation highlights the association of pseudogene families with genomic features,

such as segmental duplications. In addition, pseudogene families are associated with key

statistics, which identify outlier families with an unusual degree of pseudogenization. The

statistics also show how the number of genes and pseudogenes in families correlates across

different species. Overall, they highlight the fact that housekeeping families tend to be

enriched with a large number of pseudogenes.

1.0.2 Segmental duplication and copy number variation

In chapter three [15], we investigate the formation of SDs (operationally defined as >1 kb

stretches of duplicated DNA with high sequence identity) and CNVs by examining their

large-scale patterns of co-occurrence with different repeats. Alu elements, a major class

of genomic repeats, had previously been identified as prime drivers of SD formation. We

also observe this association; however, we find that it sharply decreases for younger SDs.

Continuing this trend, we find only weak associations of CNVs with Alus. Similarly, we find

an association of SDs with processed pseudogenes, which is decreasing for younger SDs and

absent entirely for CNVs. Next, we find that SDs are significantly co-localized with each

other, resulting in a highly skewed ‘power-law’ distribution and chromosomal hotspots.

We also observe a significant association of CNVs with SDs, but find that an SD-mediated

5



mechanism only accounts for some CNVs (< 28%). Overall, our results imply that a shift

in predominant formation mechanism occurred in recent history: ∼40 million years ago,

during the ‘Alu burst’ in retrotransposition activity, non-allelic homologous recombination,

first mediated by Alus and then by newly formed CNVs themselves, was the main driver

of genome rearrangements; however, its relative importance has decreased markedly since

then, with proportionally more events now stemming from other repeats and from non-

homologous end-joining. In addition to a coarse-grained analysis, we performed targeted

sequencing of 67 CNVs and then analyzed a combined set of 270 CNVs (540 breakpoints)

to verify our conclusions.

1.0.3 Structural variation with breakpoints

In chapter four [16], we introduce a new computational approach for identifying SVs and

further investigate their formational biases. SVs are a major source of human genomic vari-

ation; however, characterizing them at nucleotide resolution remains challenging. Here we

assemble a library of breakpoints at nucleotide resolution from collating and standardizing

∼2,000 published SVs. For each breakpoint, we infer its ancestral state (through com-

parison to primate genomes) and its mechanism of formation (e.g., nonallelic homologous

recombination, NAHR). We characterize breakpoint sequences with respect to genomic

landmarks, chromosomal location, sequence motifs and physical properties, finding that

the occurrence of insertions and deletions is more balanced than previously reported and

that NAHR-formed breakpoints are associated with relatively rigid, stable DNA helices.

Finally, we demonstrate an approach, BreakSeq, for scanning the reads from short-read

sequenced genomes against our breakpoint library to accurately identify previously over-

looked SVs, which we then validate by PCR. As new data become available, we expect

our BreakSeq approach will become more sensitive and facilitate rapid SV genotyping of

personal genomes.

In chapter five, we conclude the thesis with possible future directions, followed by the

appendix [17] which introduces a methodolody for predicting protein domain binding sites.

6



Chapter 2

Analyzing loss-of-function

variations in eukaryotic genomes

using a family approach

2.1 Introduction

The complexity of the eukaryotic genome is characterized by its large amount of non-

protein-coding DNA. This type of DNA typically lies in intergenic regions and was regarded

as ‘junk’ DNA in the past. However, due to the recent advancement of genomic technology,

it has been found that intergenic DNA indeed plays an important role in regulatory function

and also provides a basis for studying the dynamics and evolution of a genome [18].

Among all the intergenic elements, from transcription factor binding sites to microsatel-

lites, pseudogenes, which are in effect genetic fossils, are the elements most likely to record

historical aspects of living genes. Pseudogenes not only capture genes in the past, but

also provide precious clues about genome dynamics, such as gene duplication events (for

duplicated pseudogenes) and retrotransposition events (for processed pseudogenes). Since

proteins in the same family are believed to share a common ancestor giving rise to the

shared domain, association of pseudogenes with their parent protein families could reveal

7



the correlation between the generation of pseudogenes and the functions of their parents.

This correlation otherwise might not be observable from the study of individual pseudo-

genes.

A number of experimental and computational approaches have been developed to iden-

tify and annotate pseudogenes in eukaryotic genomes [19, 20, 21]. Also, there are a few

prior studies that have attempted to analyze pseudogenes using protein families [22, 23].

However, no study thus far has systematically formalized the pseudogene relationships and

presented an integrated analysis of several eukaryotes using a family approach. To this end,

we aim to develop a large-scale database of pseudogene families of eukaryotes, Pseudofam,

that could enable researchers to analyze pseudogenes and relate them to existing genomic

information in an integrated fashion.

2.2 A database of pseudogene families

Pseudofam is implemented as an online database, which is available at http://pseudofam.

pseudogene.org. The web site itself is a thin-client application implemented using Java

on the server side and requires only a web browser on the client side. It provides tools

for researchers to browse and query the pseudogene families. Moreover, it provides certain

useful statistics (described in detail below), such as the enrichment of parent proteins

for each family and the correlation of different family parameters between species. The

database is also capable of interfacing with other related systems, such as the Ensembl

server and the Pfam database. Furthermore, researchers can download the family data

sets, including the alignment of the sequences, in flat file formats.

2.3 Assigning pseudogenes to families

Figure 2.1 depicts an overview of the generation of Pseudofam data from the identification

of pseudogenes to the formation of the families. DNA sequences of 10 eukaryotic genomes:

human, chimpanzee, dog, mouse, rat, fruit fly, mosquito, chicken, zebra fish and worm,

8



Figure 2.1: The generation of Pseudofam. (1) Identify pseudogenes by existing proteins
of the genome. (2) Map all the parent proteins to their protein families. (3) Assign the
identified pseudogenes to their parent protein families. (4) Align the pseudogenes in each
family to build the pseudogene families. (5) Calculate the key statistics for the families
and organize the data into the Pseudofam database.

together with their over 291 000 protein sequences were retrieved from Ensembl (http:

//www.ensembl.org; release 48—December 2007) [24, 25]. Each genome and its associated

protein sequences are run through BLAST [26, 27] to identify all genomic regions that share

sequence similarity with the given protein sequences. The proteins are divided into groups

of queries, which are processed concurrently to reduce overall runtime, while the genomes

are used as the BLAST database. The results are then processed using PseudoPipe [21] to

identify potential pseudogenes. This analysis pipeline uses tFasty [28] to refine the BLAST

alignments and determine frame shifts and other disablements. It takes about 3 days of

computational time to complete the identification of pseudogenes in the human genome

with our current configuration.

Our current release of Pseudofam contains 3,821 protein families covering all the protein

sequences used as input for identifying the 125,272 pseudogenes. The parent proteins

of the identified pseudogenes belong to 2,986 pseudogene families. Thus, there are 835

protein families not found to have any pseudogenes. Families for the protein sequences are

9



constructed by mapping the Ensembl peptide IDs to the Pfam ID via mappings available at

the BioMart server (http://www.biomart.org/; Ensembl Release 48) [29]. Pseudogenes

are assigned to the protein families based on the assignments of their parent proteins and

then aligned to identify any pseudogene domains by the mechanics described below.

Figure 2.2 shows a schematic representation of our approach in aligning pseudogene do-

mains by transferring their parent domain alignments from the Pfam multiple alignments.

Within each family, a pseudogene is first aligned to its parent protein and then to its corre-

sponding protein domain retrieved from the Pfam database (http://pfam.sanger.ac.uk;

version 22) [30, 31]. After the individual alignments, all the pseudogene domains from dis-

tinct species are then aligned together with their parent protein domains. This approach

of alignment enables us to accurately align pseudogenes with low levels of similarity and

consequently to identify pseudogene domains that might exhibit low similarity to their par-

ent protein domains. The resulting pseudogene domain alignment data provide researchers

a means to estimate the mutation rate of genomic elements that evolve under no or less

selection pressure [32]. This alignment data is available for download.

2.4 Describing pseudogene families using ontologies

With the family data available at Pseudofam, we can extend our family approach to other

potentially related analyses. Since pseudogenes are nonprotein coding and have no direct

functions, their relationships with other parts of the genome are often neglected and poorly

understood. However, more and more findings have demonstrated pseudogenes, as a gene

relic, not only facilitate evolutionary study, but also exhibit substantial interactions in the

genome. They have been shown to play different roles in the genome remodeling process,

including retrotransposition, duplication and mutation. Recent studies, for example, have

shown that some of the pseudogenes may have mediated the formation of segmental du-

plications (SDs) [15], regulating their parent genes through RNA interference [33], or even

been reactivated [34, 35]. As a result, we have developed an ontology (a formal specifica-
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Figure 2.2: The alignment of pseudogene family. Each pseudogene in a family is first aligned
to its parent protein. Then, the pseudogene alignment is aligned with the parent protein
domain by transferring the corresponding alignment from the Pfam multiple alignments.
At last, all the aligned pseudogene domains, including their aligned parent protein domains,
will be adjusted together to generate the final alignment.
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tion of conceptualization [36]) to illustrate pseudogene family relationships. To facilitate

further analysis, we have also formatted our ontology into the Open Biomedical Ontology

(OBO) format and annotated our data accordingly.

2.4.1 An upper ontology

The ontology in Figure 2.3 shows an upper ontology depicting the pseudogene family and

its relationships. It spans across several domains and involves different domain-specific

ontologies, such as the Gene Ontology (GO), Protein Ontology (PO/PrO), Sequence On-

tology (SO) and Pseudogene Ontology (Figure 2.4). It basically consists of three parts.

The first (in blue) is the core part and family concept that Pseudofam is built upon. The

second (in dark gray) is a part that describes certain primary aspects of pseudogenes that

are fairly well established, such as their genomic processes of creation (e.g. retrotranspo-

sition and duplication). The third (in light gray) is a part that describes the secondary

aspects of a pseudogene family (e.g. its association with SDs), as well as terms that are

currently in a draft state. These draft terms include unitary (describing pseudogenes mu-

tated directly from a parent gene), orphaned (for pseudogenes whose parent genes were

lost after speciation) and transcribed (for apparently active pseudogenes). While the up-

per ontology is essentially finished, the full Pseudogene Ontology is still being developed

in collaboration with a number of other individuals.

2.4.2 Family relationships

Based on the fundamental relationship between protein family and pseudogene, our ontol-

ogy also depicts the structural and functional relationships tying to a pseudogene family.

These relationships could aid in further understanding of various genomic processes. For

example, the co-localization of pseudogenes in a shared synteny could indicate their for-

mation before speciation [35, 37], and the presence of pseudogenes in SDs could provide

clues about SD formation since both pseudogenes and SDs represent duplicated regions

of the genome [38]. Thus, Pseudofam currently provides the human pseudogene dataset

12



Figure 2.3: The pseudogene family ontology. An upper ontology that describes the various
relationships between a pseudogene family and other genomic elements. The solid lines
represent direct relationships and the dashed lines represent inferred or indirect relation-
ships. The core part is represented in blue, while the well-established relationships are in
dark gray and the secondary aspects of a pseudogene family are in light gray.
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Figure 2.4: A pseudogene ontology in draft. Solid lines represent an ‘is-a’ relationship and
dashed lines represent a ‘has-a’ relationship. Blue presents solid concepts and light grey
represents concepts in draft.
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annotated with SD information obtained from the Human Segmental Duplication database

at http://eichlerlab.gs.washington.edu/database.html. While the SD relationship

derives directly from the pseudogenes themselves, the family relationship of a pseudogene is

inferred by the protein family relationship of its parent protein and hence is more indirect.

Here, we formalize this inferred relationship in a first-order logic on which Pseudofam is

built:

∀p(Pseudogene(p)∧

∃r(Protein(r) ∧ hasParentProtein(p, r) ∧ ∃f (ProteinFamily(f) ∧ contains(f, r)

→ hasPseudogeneFamily(p, f))))

In words, for all pseudogene p, if there exists a protein r, which is a parent protein

of p, and there also exists a protein family f , which contains r, then p has a pseudogene

family f . Even though a pseudogene is nonprotein coding, this protein family approach of

classification gives us a way to associate domain and function with it. Proteins in the same

family are believed to share a common structural domain and function that evolved from a

common ancestor. As a result, a family approach allows us to analyze pseudogenes by their

functional groups and have a better understanding of their roles in genome rearrangement

by relating them to other genomic features.

2.5 Statistical analysis on pseudogene families

To further facilitate analysis with our family data, Pseudofam provides key statistics,

such as the degree of pseudogenization and pseudogene-to-gene ratio, for each family both

online and in the datasets for download. It also provides a tool to correlate different family

parameters between species. To identify outlier families that have an unusual degree of

pseudogenization, Pseudofam calculates the enrichment of parent proteins in each family

and uses the hypergeometric distribution to calculate P-value, viz:
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Pr(K = k) = f(k;N,m, n) =

m
k


N −m
n− k


N
n


This formula calculates the probability Pr(K) of having the observed number of par-

ent proteins k for a given family with n proteins under the hypergeometric distribution.

Required for the computation is the total number of proteins N used for identifying the

pseudogenes and the corresponding number of parent proteins m. The P-value for a posi-

tive enrichment is the Pr(K ≥ k) and for a negative enrichment is the Pr(K ≤ k). This

parent protein approach is preferred over using a random sampling method to calculate the

enrichment of pseudogenes because it is more computationally efficient and less susceptible

to the changes of the pseudogenes identification algorithm or parameters that may cause

the number of pseudogenes identified to fluctuate. The following sections show a brief

analysis based on the key statistics provided by Pseudofam.

2.5.1 Degree of pseudogenization

Table 2.1 shows the numbers of protein and pseudogene families in different species and

their degree of pseudogenization. It indicates that among the species in our study mammals

have a higher percentage (an average of 50%) of families containing pseudogenes than

nonmammals (an average of 22%). For instance, human has 3,486 protein families of

which 1,790 (51%) are found to have pseudogenes. On the other hand, Drosophila has 2,620

protein families but only 201 (8%) are found to have pseudogenes. Looking at the families

individually shows that certain families have a high degree of pseudogenization, while some

have no pseudogenes at all. For example, the reverse transcriptase (RNA-dependent DNA

polymerase) family has 18 out of 22 (82%) proteins found to have associated pseudogenes.

In contrast, the bestrophin protein family, which has 71 proteins, has not been found to

have any pseudogenes.
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Protein Family Pseudogene Family Pseudogenized

Homo sapiens (HS) 3,486 1,790 51.35%
Pan troglodytes (PT) 3,443 1,906 55.36%
Canis familiaris (CF) 3,151 1,529 48.52%
Mus musculus (MM) 3,461 1,654 47.79%
Rattus norvegicus (RN) 3,138 1,489 47.45%
Anopheles gambiae (AG) 2,715 570 20.99%
Gallus gallus (GG) 2,911 860 29.54%
Drosophila melanogaster (DM) 2,620 201 7.67%
Danio rerio (DR) 3,145 1,125 35.77%
Caenorhabditis elegans (CE) 2,633 360 13.67%

Total 3,821 2,986 78.15%

Table 2.1: Numbers of protein and pseudogene families in different species out of 9,318
PfamA families. The number of protein families represents the total number of families
that each has at least one protein in the species. The number of pseudogene families is
a subset of the previous number representing the total number of protein families with at
least one pseudogene.

2.5.2 Correlation of family sizes across species

Since the mammalian genomes have a substantial number of pseudogene families, they

enable us to carry out a more accurate statistical analysis of the correlation of genes and

pseudogenes. Table 2.2 shows the Spearman correlation of the family size between the

five mammalian genomes in our study. It shows that protein family size has an obviously

stronger correlation (0.81) among species than pseudogene family size (0.63). It also shows

that the correlation of pseudogene family size decreases when the evolutionary distance

increases between the species. For example, human has a correlation of 0.89 with chim-

panzee, but only around 0.58 with dog, mouse and rat. Similarly, mouse has a correlation

of 0.67 with rat, but only around 0.58 with human, chimpanzee and dog. It supports the

theory that pseudogenes in general are evolving under no or less selection pressure relative

to functional genes.

2.5.3 Extreme families

The enrichment results (Table 2.3) show that families with housekeeping proteins, such as

the GAPDH protein (a NAD-binding enzyme involved in glycolysis and glyconeogenesis),
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HS PT CF MM RN

HS 1.00 0.92 0.77 0.84 0.75
PT 0.89 1.00 0.79 0.84 0.77
CF 0.60 0.62 1.00 0.78 0.85
MM 0.58 0.60 0.57 1.00 0.80
RN 0.57 0.59 0.59 0.67 1.00

Table 2.2: Spearman’s rank correlation of protein family sizes (the upper right) and pseu-
dogene family sizes (the lower left) between different species.

and the ribosomal protein RPL7A (responsible in mRNA-directed protein synthesis in all

organisms) [31] have significantly more parent proteins than others. In order to investigate

whether proteins having housekeeping functions tend to have more pseudogenes than those

with nonhousekeeping functions, we downloaded a total of 575 human housekeeping genes

derived from gene expression profiling [39, 40]. We selected all the 197 pseudogene families

that contain both the housekeeping and nonhousekeeping genes, and tested the pseudogene-

to-gene ratio between these two types of genes using a Wilcoxon signed rank test. We found

that the pseudogene-to-gene ratio for housekeeping genes is significantly higher (P-value <

0.04) than for nonhousekeeping genes in such pseudogene families, especially in processed

pseudogenes (P-value < 0.01). It has also been reported previously by Gonclaves et al.

[41] that housekeeping genes generally have more processed pseudogenes. This could be

explained by the relatively constant expression level of housekeeping genes, which boosts

their chances of being retrotranscribed.

2.5.4 Correlation with segmental duplications

With the tools, statistics and ontology provided by Pseudofam, we can analyze pseudogenes

from a different perspective and integrate pseudogene families with other related datasets

to better understand the genome remodeling processes. For example, both pseudogenes

and SDs represent duplicated regions of the genome; hence, by analyzing the presence of

pseudogenes located in SDs, some precious clues about the generation processes of pseudo-

gene and SD formation can be obtained [42]. It was reported recently by Zheng [38] that
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Pfam Acc Pfam ID Proteins Parents Enrichment P-value

PF00001 7tm 1 8,548 1,446 1.39 1.21E-39
PF01157 Ribosomal L21e 113 72 5.25 6.50E-38
PF00044 Gp dh N 229 105 3.78 1.69E-36
PF03402 V1R 214 109 3.44 2.95E-35
PF02800 Gp dh C 228 103 3.72 3.88E-35
PF07686 V-set 5,355 943 1.45 4.87E-32
PF01248 Ribosomal L7Ae 237 101 3.51 7.15E-32
PF01352 KRAB 2,127 500 1.67 8.04E-32
PF03953 Tubulin C 248 95 3.15 7.64E-26
PF07735 FBA 2 159 50 5.98 8.75E-26
PF00091 Tubulin 271 98 2.98 2.18E-24
PF03939 Ribosomal L23eN 71 44 5.10 4.90E-23
PF00276 Ribosomal L23 102 52 4.20 1.65E-21
PF00333 Ribosomal S5 82 46 4.62 1.82E-21
PF00046 Homeobox 2,551 168 0.54 5.91E-21
PF00018 SH3 1 2,960 207 0.58 1.16E-20
PF00237 Ribosomal L22 59 36 5.02 8.63E-19
PF00076 RRM 1 3,196 556 1.43 2.30E-18
PF03719 Ribosomal S5 C 91 45 4.07 3.79E-18
PF01391 Collagen 1,289 66 0.42 5.44E-18

Table 2.3: The top 20 protein families (sorted by p-value in ascending order), which have
an unusual degree of pseudogenization (p-value < 0.05).

in humans, SDs are more enriched with pseudogenes than genes, with 36.8% pseudogenes

located in SDs and 17.8% genes located in SDs. Since genomic duplications have a desta-

bilizing effect [42], it makes sense that the SDs are more enriched with pseudogenes than

with genes, because structural variations in pseudogenes have less impact than in genes.

This trend also reflects in the correlations of pseudogenes and parent genes of pseudogene

families within SDs for the human genome (Figure 2.5), where there is a stronger positive

Spearman correlation (0.69) between the numbers of duplicated pseudogenes in pseudogene

families and those located in SDs, than that of parent genes (0.41).
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Figure 2.5: Parent genes (upper) and duplicated pseudogenes (lower) within each pseudo-
gene family vs. those located in SDs. r stands for Spearman’s rank correlation. p-values
for all the correlations are below 2.2 e-16.

20



Chapter 3

Analysis of copy number variants

and segmental duplications in the

human genome

3.1 Introduction

With the rapid advances in high-throughput technology, the study of human genome vari-

ation is emerging as a major research area. A large fraction of variation in terms of single

nucleotide polymorphisms (SNPs) (‘point variation’) has been mapped and genotyped (The

International HapMap Consortium 2005). However, it has recently been recognized that

a major fraction of mammalian genetic variation is manifested in an entirely different

phenomenon known as ‘copy number variation’. In contrast to SNPs, these variations cor-

respond to relatively large (>1 kb according to a widely accepted operational definition)

regions in the genome that are either deleted or amplified on certain chromosomes (‘block

variation’) [43, 44, 45, 46, 47, 11]. They are known as ‘copy number variants’ (CNVs)

and are estimated to cover ∼ 12% of the human genome, thereby accounting for a major

portion of human genetic variation [47, 48]. Some CNVs reach fixation in the population

and (if they correspond to duplications) are then visible in the genome as fixed Segmental
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Duplications (SDs) [42]. A sizeable fraction (estimated to be 5.2%) of the human genome

is covered in either fixed or polymorphic SDs [49, 42]. These are defined as duplicated ge-

nomic regions of >1 kb with 90% or greater sequence identity among the duplicates. They

are especially widespread in the primate lineage [50]. SDs enclosing entire genes contribute

to the expansion of protein families [51]. Some of these duplicated genes may fall out of use,

thereby giving rise to pseudogenes. Some duplications that are annotated as SDs may not

be fixed in the population, but rather correspond to common CNVs, in particular, common

ones that are present in the human reference genome. Current efforts to sequence indi-

vidual human genomes, such as the 1000 Genomes Project (1000genomes.org), will bring

greater certainty about which SDs are fixed and which are polymorphic, more precisely

viewed as CNVs.

Hitherto, not much was known about mechanisms of CNV formation, but it has been

suggested that non-allelic homologous recombination (NAHR) during meiosis can lead to

the formation of larger deletions and duplications (or to structural variants such as in-

versions). In general, recombination mechanisms such as NAHR are mediated by pre-

existing repeats. Alu elements have been previously implicated in the formation of SDs

[52, 53], which is consistent with NAHR-based formation. Likewise, SDs have been sug-

gested as mediating CNV formation [46, 54, 55]. However, not all duplications are thought

to arise because of NAHR-based mechanisms: In subtelomeres, a separate mechanism,

non-homologous end-joining (NHEJ), has been suggested for SD formation [56, 57]. Fur-

thermore, recent studies have uncovered a mechanism that combines both homologous and

non-homologous recombination [58, 59]. Finally, a novel mechanism that involves fork

stalling and template switching during replication has been proposed [60].

In this study, we examine formation signatures of both SDs and CNVs in an integrated

fashion. Specifically, we first survey genomic features in the human and their occurrence.

Among the features that we survey are SD and CNV boundaries as well as common repeat

elements, such as Alu and LINE retrotransposons and microsatellites. To assess colo-

calization of the different features, we follow a two-pronged approach: First, we bin all

22



the features into small sequence bins of 100 kb and examine the associations by computing

Spearman (rank) correlation coefficients between two features (e.g., Alu elements and CNV

breakpoints) as sketched out in Figure 3.1. This coarse-grained approach is necessary to

avoid problems with the comparatively low resolution of current large-scale CNV data (at

best 50 kb) [61]. We use the Spearman correlation as a more robust measure to detect

nonlinear relationships. A high (statistically significant) correlation implies strong colo-

calization. We interpret statistical enrichment of colocalized elements as an indicator that

these elements might be involved in the formation of SDs or CNVs, respectively. Second,

to provide further evidence that the colocalization trends found above are due to actual

differences in formation mechanisms, we examined actual breakpoints. Thus far, not many

sequences of CNV breakpoints are available. Hence, we performed targeted sequencing

of breakpoints, and we analyzed them in combination with a large number of previously

sequenced ones. To calculate enrichment of specific features around the breakpoints, we

compare the number of intersecting features to randomized global and local regions of the

genome. Our results show different signatures of formation for SDs and CNVs. While for

SDs (especially older ones), we find a striking enrichment of Alu elements and other repeats

in the breakpoint regions, suggesting Alu-mediated formation, we find little evidence for

such a mechanism in CNVs. Here, we present evidence for several alternative features that

may contribute to the formation of both SDs and CNVs.

3.2 Results

3.2.1 Segmental duplications follow a power-law pattern in the human

genome

We believe that SDs should be the result of CNVs reaching fixation. Also, it has been

suggested that CNV formation is partly mediated by SDs [46, 62, 54]. Taken together, this

would imply that SD formation would preferentially occur in regions with many previously

existing SDs. That is, an SD-rich region would generate more CNVs than other regions,
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Figure 3.1: Schematic representation of the overall analysis methodology. For the coarse-
grained analysis, genomic features are surveyed. First, the number of features in each
genomic bin is counted. Then the overall pairwise correlation is measured (using Spearman
rank correlation or Wilcoxon rank-sum tests).
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some of which, in turn, become fixed as SDs. This phenomenon represents one form of

a preferential attachment mechanism (‘the rich get richer’). This mechanism has been

well studied in the physics literature, and it is known that it generally leads to a power-

law distribution in terms of the regions [63]. Note, however, that while a preferential

attachment mechanism does generally lead to a power-law distribution, the inverse is not

necessarily the case. A power-law or scale-free distribution corresponds to a distribution

with a very long tail [64]. For our case, this would mean that there should be an extreme

imbalance in the distribution of SDs, that is, a few regions in the genome would be very

rich in SDs, while most would contain no or very few SDs. Intuitively, the phenomenon

of preferential attachment led to an enrichment of SDs in regions already rich in SDs and

resulting in a highly skewed distribution. Hence, if SD-mediated NAHR is a major factor

contributing to new SDs, we would expect the density of SDs to be distributed according

to a power law throughout the human genome. Indeed, when analyzing different regions

in the human genome for ends of SDs harbored, we observe a distinct power law (Figure

3.2). This power-law behavior is consistent with the existence of rearrangement ‘hot spots’

[65]. This result, taken together with the aforementioned theoretical notions, supports the

hypothesis that SD formation is mediated by pre-existing SDs. The power-law distribution

is independent of SD size, age, or the binning procedure (Methods).

3.2.2 Segmental duplications co-occur best with other segmental dupli-

cations of similar age

Furthermore, an SD-mediated NAHR mechanism would imply that recent SDs should

co-occur with older segmental duplications. Hence, if we bin SDs according to sequence

similarity between the duplicates (viewing sequence similarity between the duplicates as

approximate age since they diverge after duplication), we should see a significant co-

occurrence between different bins. Indeed, we observe a significant correlation between

SDs in different age groups (sequence identity) (Figure 3.3). Strikingly, we observe that

the best co-occurrence for the SDs of any given age bin is with the SDs in the ‘neighboring’
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Figure 3.2: Segmental duplications are distributed according to a power law in the human
genome. As can be seen, segmental duplications follow a power-law distribution, that is,
while most regions in the genome are relatively poor in SDs, there are a small number of
regions with much higher SD occurrence (p(x) ∼ x−0.31). This is indicative of a preferential
attachment (‘rich get richer’) mechanism.

bin (i.e., the bin slightly older), consistent with an SD-mediated NAHR. Note that this

result would also be consistent with different regions being susceptible to chromosomal re-

arrangements at different times. However, without a preferential attachment mechanism,

we are very unlikely to observe a power-law distribution as in Figure 3.2. Finally, we ob-

serve that this correlation is best for old SDs and gets successively worse as we move toward

more and more recent SDs. This may be indicative of a trend of changing SD formation

behavior, as we discuss below.

3.2.3 Alu-mediated NAHR is an additional mechanism to preferential

attachment

As another mechanism for SD formation, NAHR mediated by Alu retrotransposons has

been proposed [52]. Note that Alu repeats are the most common repeat element in the

human genome with about a million copies. We set out to examine this mechanism and find

that SDs show highly significant colocalization with Alu elements (Figure 3.4B), consistent
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Figure 3.3: Heatmap of associations of SDs in different sequence identity bins. SDs co-occur
best with pre-existing SDs of similar age, and this trend appears to be stronger for older
SDs. Associations are given as Spearman rank correlations of the number of occurrences
in genomic bins. All correlations are highly significant (P-value << 0.00001).

with earlier reports [53, 42]. This trend is decreasing rapidly for younger SDs (Figure 3.4B),

while the oldest (most divergent) SDs associate most strongly with Alus. In line with this

result, we find that most SDs have a sequence identity similar to Alu elements (90%) (Figure

3.5). The abundance of both retrotransposed elements and SDs then decreases with rising

sequence identity, in sync. SDs also appear to colocalize with LINE/L1 repeats, but this

association is much weaker and might be reflective of colocalization of Alus and L1 repeats

[66]. We also find evidence that Alu-mediated mechanisms and preferential attachment

mechanisms may be complementary. That is, SDs that colocalize strongly with Alus show

weaker correlation with pre-existing SDs (Figure 3.4A) than those that appear in Alu-poor

regions. This result holds true for SDs of any sequence identity bin. It suggests that a

certain group of SDs is likely to have been formed by an Alu-mediated mechanism, and

another disjoint group is a more likely candidate for a mechanism involving pre-existing

SDs.
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Figure 3.4: (A) Alu-mediated NAHR and preferential attachment are two complementary
mechanisms for SD formation. In Alu-rich regions (>10 Alu elements per 10 kb), the
association of SDs and pre-existing SDs is much lower than in Alu-poor regions (no Alu
elements per 100 kb). Associations are given as Spearman rank correlations of the number
of occurrences in genomic bins. All correlations are highly significant (P-value << 0.00001).
(B) Association of Alu elements and SDs is highest for the oldest (∼40 Mya) SDs and drops
significantly for recent SDs. At the same time, preference for subtelomeric regions and a
presumed NHEJ mechanism rises. Associations are given as Spearman rank correlations of
the number of occurrences in genomic bins. All correlations are highly significant (P-value
<< 0.00001).
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Figure 3.5: Sequence divergence of repeat elements in the human genome. As approximate
age, the sequence divergence shows a burst of Alu activity ∼40 Mya and a marked decrease
afterward. The distribution of (active) LINE elements is somewhat more even. The relative
number of SDs decreases in a fashion similar to the Alu elements.
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3.2.4 Processed pseudogenes show significant association with SDs

Processed pseudogenes were formed in a way similar to Alu retro transposons, that is,

they parasitize the same LINE retrotransposition machinery and are also thought to have

been mostly formed during the Alu burst ∼40 million years ago (Mya) [67]. The obvi-

ous difference is that there are a much greater variety of pseudogenes than Alu elements.

Therefore, it is less likely for any given processed pseudogene to find a nearby matching

partner to recombine with, which is a prerequisite for genome rearrangement via homolo-

gous recombination. Despite this, we find a strong enrichment of processed pseudogenes

with SDs (Figure 3.6). To evaluate whether these pseudogenes actually contributed to the

formation of SDs, we performed a detailed breakpoint analysis of SDs. For a number of

cases (144), we find matching processed pseudogenes at the matching SD junction regions

of duplicated regions. In an additional 78 cases, we find processed pseudogenes at both

SD junctions that have different parent genes, but are highly similar (> 95% sequence

identity) over stretches of at least 200 bp. Note that many pseudogenes have different

parents but still show high sequence identity. While these numbers are highly significant

(P-values ≤ 0.001), they are relatively small compared to the total number of processed

pseudogenes in the human genome (9747; www.pseudogene.org). One reason may be that

the recombination process requires the pairing of two separate and matching pseudogenes.

Since there are far fewer matching pseudogenes than Alu elements, this may have led to

the formation of much fewer SDs. These results suggest that pseudogenes did contribute

to SD formation, albeit only in a small number of cases.

3.2.5 Copy number variants co-occur with segmental duplications

It has been noted previously that CNVs co-occur with SDs, and SD-mediated NAHR has

been suggested as a possible mechanism of CNV formation [46, 68, 69, 54]. In line with

this, CNVs have been viewed as the drifting, polymorphic form of SDs. This view implies

that CNVs should follow a similar pattern of distribution as very young SDs (i.e., SDs of
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Figure 3.6: (A) Pseudogene association with SDs. Just like Alu elements, pseudogenes
colocalize very strongly with old SDs and less so with younger SDs. All correlations are
highly significant (P-value >> 0.00001). (B) Detailed SD junction analysis. A total of 144
SDs showed matching processed pseudogenes at both junctions, that is, both pseudogenes
have the same parent gene and show high homology. When picking random genomic regions
of the same size and number as SDs, no matching pseudogenes were ever found to overlap
both SD junctions. When using a randomized offset of ± 5 kb to account for potential
sequence biases, an average of 40 matching pseudogenes were found, but in 1000 trials,
never more than 43. (C) Schematic of matching processed pseudogenes at SD junctions.
The processed pseudogenes overlap matching SD junctions at both duplicated segments,
making them likely candidates for having mediated NAHR.
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very high sequence similarity), since they would have been created by similar mechanisms.

When analyzing SD and CNV distributions in the genome, we indeed find that there

is a significant overlap (Figure 3.7A). However, the correlation between SD and CNV

occurrence is smaller than may be expected. We find that maximally 28% of CNVs were

formed by an SD-mediated mechanism, that is, lie in a region with a nearby SD. This is an

upper bound estimate, since proximity does not imply causality. From another perspective,

one may (perhaps naively) expect that the similarity in distribution of CNVs and SDs of

> 99% sequence identity should be comparable to the similarity between the distributions

of SDs of > 99% sequence identity and SDs of 98%− 99% identity. However, we find that

the correlation for CNVs and young SDs (rank correlation of 0.14) is lower than the one

for ‘very old’ (90% − 92% sequence identity) and ‘very young’ (> 99% sequence identity)

SDs (rank correlation of 0.24). In other words, ∼ 60% of ‘very young’ SDs could be the

result of NAHR mediated by older SDs. Conversely, the same can be said of only 28% of

CNVs. This may be consistent with the fact that CNVs are polymorphic SDs.

3.2.6 Copy number variants do not show any significant association with

Alu elements

If CNVs and SDs are formed by similar processes, one might assume that CNVs would

also show association with Alu elements. However, we find that CNVs show no significant

association with Alu elements (Figure 3.7B). Previous studies found weak associations of

CNVs with Alu elements [55], but they are much weaker than the ones found for SDs (of

any sequence identity bracket). Indeed, when controlling for SD content, the association

becomes even weaker.

This result implies that an Alu-mediated mechanism is an unlikely candidate for CNV

formation. It is consistent with reports that Alu-mediated NAHR was most common during

or shortly after the burst of Alu activity ∼40 Mya and has since declined [70, 71]. Hence,

the formation of CNVs and some SDs is probably mediated by different phenomena. One

might argue that some of this difference is due to the different methods of experimental
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Figure 3.7: (A) Association of SDs and CNVs. Shown is the association of SDs (90%−99%
sequence identity) with (left bar) ‘young’ SDs (> 99% sequence identity) and (right bar)
CNVs. CNVs colocalize with SDs, but much more weakly than with very young SDs.
Associations are given as Spearman rank correlations of the number of occurrences in
genomic bins. All correlations are highly significant (P-value << 0.00001). (B) CNV
association with different human repeat elements. CNVs associate weakly with L1 elements
and microsatellites, but show no association with Alu elements. (C) CNV association with
human repeat elements after correcting for SD content. There is almost no significant
association; the observed depletion in Alu elements may be due to a preference of CNVs for
subtelomeric regions. Associations are given as Spearman rank correlations of the number
of occurrences in genomic bins. P-values of the correlations are given in the bubbles.
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Repeat Type Frequency Global enrichment P-value Local enrichment P-value

Alu 0.09 0.94 3.24E-01 1.13 1.74E-01
SD 0.41 2.57 2.14E-07 1.17 2.64E-01
L1 0.24 1.48 1.03E-07 1.12 7.16E-02
L2 0.01 0.47 1.72E-02 0.52 2.31E-02
Microsatellite 0.03 3.91 6.74E-11 3.11 2.99E-07
LTR 0.09 1.14 1.71E-01 0.89 1.97E-01
P.Pseudogene 0.01 2.08 9.55E-02 1.66 1.98E-01
GC 0.39 0.96 7.24E-03 0.97 3.00E-02

Table 3.1: Association of SV breakpoints with several classes of repetitive elements. The
relative enrichment (global) gives the enrichment relative to the global genomic background.
The local relative enrichment gives the enrichment relative to a 50kb window around the
breakpoint.

determination—SDs are read directly from the genome, and CNVs used in this study are

determined using microarrays. Therefore, we computed associations between Alus and

CNVs that were determined using very different methodologies, including different kinds

of microarrays and paired-end sequencing. We conclude that Alu elements, while active in

genome rearrangements in the past, do not currently play a major role in the formation of

CNVs. It should be pointed out that this result does not contradict the notion of CNVs

as drifting SDs—it simply suggests that the mechanism of CNV/SD formation may have

undergone significant change in the past 40 million years.

The absence of association with Alu elements and the weakness of colocalization with

SDs leads to the question of which genomic features are relevant for CNV formation. It

has been suggested that microsatellite repeats have a role in mediation of chromosome

rearrangements [72]. An association of SD junctions with microsatellites has previously

been pointed out [52]. Hence, we examined whether they would associate with known

CNVs. We indeed find that microsatellite repeats show a highly significant colocalization

with CNVs (Figure 3.7B,C and Table 3.1), even after correcting for SD abundance.
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3.2.7 Analysis of sequenced breakpoints

A difference between SDs and most of the current CNV data is that SD breakpoints are

known exactly, whereas for CNVs only their approximate locations are known (based on

CGH experiments). As mentioned above, most of the current data has a resolution of

at best 50 kb [61]. To make authoritative statements about formation signatures, one

has to analyze the exact sequences surrounding the breakpoints. Therefore, we performed

targeted sequencing of a number of representative CNV breakpoints and identified a total

of 134 breakpoints (Table 3.2). We combined this with previously sequenced breakpoints

[11] to analyze a total set of 540 breakpoints, representative of all CNV events. To verify

the trends we identified using the large-scale data, we analyzed the enrichment of different

repeat elements in the immediate vicinity of the breakpoints and the existence of matching

repeats flanking both sides of the breakpoints. To control for local sequence biases, we

calculated the enrichment both with respect to the entire genome (global enrichment)

and a 50-kb region around the breakpoint (local enrichment) (Table 3.1). We find only

an extremely weak association with Alu elements, confirming the above trend. In total,

we find 29% of the breakpoints to be associated with LINE repeats and another 2% to

be associated with SDs. Nine percent were flanked by other repeat elements (e.g., LTR

and others). The remainder (60%) of breakpoints did not show any homology signature.

We should note here that the paired-end matching (using short sequence reads) approach

is likely to bias somewhat against repeat-rich regions, and hence the fraction of NAHR-

mediated CNVs may be higher in reality. This may also explain the discrepancy between

the above found fraction of SD-mediated CNVs (maximally 28%) with the one found here

(∼ 2%). However, many exhibit signatures that may be indicative of non-homologous end-

joining (NHEJ). Specifically, 40% of the breakpoints show the so-called microhomologies

that can be a sign of NHEJ [73]. Another 14% exhibit microinsertions, which have also

been implicated in NHEJ. We hence estimate that the latter CNVs may have been formed

by double-strand breakage and NHEJ. Aside from these sequence signatures, there is also
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biophysical evidence: Breakpoints are enriched in regions that are known to be genomically

unstable. We find that breakpoint regions tend to lie in GC-poor regions (Table 3.1), which

are known to be thermodynamically less stable. Moreover, NHEJ breakpoints tend to lie

in significantly less stable regions than NAHR breakpoints (P-value < 0.01). Also, we find

that a few NHEJ breakpoints lie in the unstable subtelomeric regions, while no NAHR

breakpoints do. We hence hypothesize that random breakage followed by NHEJ is one

major mechanism for CNV formation.

3.3 Discussion

We have presented results that suggest changes in the formation of large genome rearrange-

ments over the past 40 Mya. Our results suggest that shortly after the burst in Alu activity,

Alu- or pseudogene-mediated mechanisms were predominant in the formation of SDs. The

formed SDs then presented highly homologous regions themselves and were active shortly

after formation in generating new SDs. However, it is striking to see that the association

of SDs with Alu elements is decreasing with decreasing age of the SD (increasing sequence

similarity between the duplicates) (Figure 3.4B). Likewise, the colocalization of SDs with

their younger counterparts is decreasing. These trends are indicative of a lesser contri-

bution of homology-mediated mechanisms for SD formation. At almost the same rate,

preference of SDs for subtelomeric regions in the genome is increasing (Figure 3.4B). Gen-

esis of SDs in subtelomeric regions is largely due to a mechanism based on NHEJ mediated

by microhomologies (<25 bp homology), rather than a NAHR mechanism mediated by

larger matching repeats [56]. Note that an alternative hypothesis for the enrichment of SD

breakpoints in Alu-rich regions is the clustering of Alu elements [70, 71].

The lack of association of CNVs with Alu elements is quite surprising, as concurrent

Alu-Alu recombination has been reported in the literature [74, 75]. However, our results

indicate that while Alu-Alu recombination used to be a major force in shaping genome

rearrangements, in the very recent genome evolution it did not leave a significant signature.
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Chromosome Start End Mechanism Repeat

1 147600602 147986401 NAHR 272bp homology SD
1 154793347 154795560 NAHR 19bp homology None
1 157227979 157232826 NHEJ 4bp microhomology None
1 208144678 208152601 NHEJ 6bp microinsertion None
1 246118115 246124262 NAHR 14bp homology None
2 126159721 126168302 NHEJ 4bp microhomology None
2 146579091 146593333 NHEJ 2bp microhomology None
2 54418997 54420978 NHEJ 3bp microinsertion None
2 90959251 90972058 NAHR 205bp homology Satellite
3 10201175 10203945 NHEJ 4bp microhomology None
3 121644332 121647642 NHEJ 10bp microinsertion None
3 188063727 188068042 NHEJ 45bp microinsertion None
3 47465673 47468445 NHEJ 2bp microhomology None
3 62639438 62670706 NHEJ 3bp microhomology None
4 106926782 106936575 NAHR (repeat) LINE/L1
4 108347263 108351179 NHEJ 11bp microinsertion None
4 142450233 142452513 NHEJ 5bp microhomology None
4 165024355 165039560 None
4 42457435 42464300 NAHR (repeat) LINE/L1
4 58180961 58185488 NAHR (repeat) LINE/L1
4 79488158 79494220 NAHR 14bp homology None
5 10579961 10585291 NAHR 105bp homology SINE/Alu
5 177754281 177756656 NHEJ 8bp microhomology None
5 49471345 49476325 NAHR 303bp homology Satellite/centr
5 57715747 57721855 NHEJ 4bp microhomology None
5 71386 76029 NHEJ 3bp microhomology SD
6 165644659 165652123 NHEJ 3bp microhomology None
6 34045807 34050676 NHEJ 8bp microinsertion None
7 113203412 113209444 NAHR 15bp homology None
8 2116965 2122377 NHEJ 1bp microhomology None
8 25122602 25126570 NHEJ 7bp microhomology None
8 584397 589415 NHEJ 3bp microinsertion None
8 73950329 73956378 NAHR 10bp homology None
9 112516996 112519927 NHEJ 4bp microhomology None
9 70927942 70933175 NHEJ 2bp microhomology None
9 73446481 73449953 NHEJ 3bp microhomology None
9 84854269 84860328 NAHR 15bp homology None
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10 114102173 114106649 NHEJ 2bp microhomology None
10 128578838 128582206 NHEJ 10bp microinsertion None
10 4427701 4431391 NHEJ 1bp microhomology None
10 5627110 5677111 NHEJ 6bp microhomology None
10 84117799 84120345 NHEJ 5bp microhomology None
12 11075858 11142017 NAHR 170bp homology SD
12 128624266 128628228 None
12 15909933 15912931 NHEJ 1bp microinsertion None
12 38587965 38602082 NHEJ 13bp microinsertion None
12 55618220 55663208 NAHR (repeat) SD
12 94757723 94760459 NAHR 11bp homology None
13 33033730 33042822 None
13 56650541 56686865 NHEJ 3bp microhomology None
13 71705623 71710360 NHEJ 5bp microinsertion None
14 105282154 105397044 NHEJ 3bp microhomology None
14 34184839 34192011 NHEJ 2bp microhomology None
14 73076457 73108631 NAHR 256bp homology LINE/L1
14 81568863 81573084 NHEJ 10bp microinsertion None
15 22009161 22111478 NAHR (repeat) LTR/ERVL
15 68808907 68814563 NAHR 14bp homology LINE/L1
16 29167046 86811700 NAHR 264bp homology SD
16 76929139 76942400 None
18 14542177 14558726 NHEJ 8bp microhomology SD
18 45948971 45952385 NHEJ 4bp microinsertion None
20 28122727 28149711 NAHR (repeat) SD
20 42760727 42762938 NHEJ 1bp microhomology None
20 7044793 7050847 NAHR 12bp homology None
21 19758801 19765198 None
22 27963089 27965391 NHEJ 3bp microhomology None

Table 3.2: Newly sequenced CNV breakpoints. Most sequenced breakpoints show small
homologies indicative of NHEJ. Furthermore, some breakpoints have microinsertions, which
also indicate an NHEJ mechanism. Finally, some breakpoints show larger homologies,
which suggest NAHR.

38



Furthermore, our sequenced breakpoints confirm that there is no significant enrichment of

Alu elements near the breakpoints. Note, however, that there may be some bias of the

sequencing method against Alu repeats. Moreover, it is in line with the emerging trend of

decreasing Alu association of SDs. It is likely the result of the decrease in Alu activity since

the Alu burst, which led to continuing Alu divergence and hence, diminishing probability

of Alu-mediated NAHR. This finding is further bolstered by the fact that most SDs have

a similar sequence divergence (age) as most Alus, that is, they were likely created around

the Alu burst. While association does not imply causality, the lack of association (such as

here, with Alu elements and CNVs) certainly implies lack of causality. In other words, it

would be hard to argue that Alu elements are the predominant mediator of CNV formation

solely based on the observation of colocalization. Thus, our observations provide strong

evidence against the involvement of Alu elements in CNV formation.

On the other hand, it has previously been suggested that CNVs associate with SDs, and

we find this trend persisting. However, SDs-mediated CNV formation can only account for

a minority of the CNVs found (< 10% based on our sequenced breakpoints). Therefore,

other mechanisms have to be at work as well. We suggest the following two possibilities for

alternative mechanisms: First, we find associations of CNVs with other repeats, namely,

microsatellites and LINE repeats. Large-scale associations only give weak evidence for

this connection, but the presence of matching repeats in the immediate vicinity of the

sequenced breakpoints makes a stronger case for microsatellites and LINE involvement in

CNV formation. Since microsatellites have been implicated in genome rearrangements,

an involvement in CNV formation would certainly be sensible [72]. Second, our findings

are also suggestive of an increased role of NHEJ-based mechanisms for the generation of

CNVs, which accounts for many of the breakpoints that were not associated with any known

repeat. Indeed, we find an association of CNVs toward subtelomeric regions (P-value <

0.001), where double-strand breakage and NHEJ are known to be prevalent. Moreover,

in the sequenced breakpoint data, we find some indication that NHEJ is an alternative

mechanism for CNV formation, such as the microhomologies present in many breakpoint
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sequences.

In summary, we find evidence for formation of duplications via NAHR that was medi-

ated by repeat elements. While the colocalization does not imply causality, this mechanism

has been proposed before and is supported by several pieces of data for SDs. It also explains

nicely the decrease of colocalization of SDs with Alus and with each other. This leads to

a coherent picture: ∼40 Mya, there was a peak in Alu activity, known as the Alu burst

(Figure 3.8). The burst created a high number of repeat elements that served as templates

for NAHR. Hence, ectopic recombination took place at a high rate and set off extensive

genome rearrangement, thereby creating many SDs. The SDs themselves then could also

serve as NAHR templates, ‘feeding the fire’ of recombination. This also nicely explains

the existence of the rearrangement hot spots in the current human genome. Therefore, the

majority of SDs that we find have low sequence identity (∼ 90%), similar to Alu elements

stemming from the burst, suggesting that they were formed during a similar time. More-

over, the number of SDs decreases with rising sequence identity, in sync with the decrease

of Alu repeats (correlation r = 0.92, P < 0.001) (Figure 3.5). This is consistent with our

hypothesis that the decline in retrotransposition activity then led to an overall decline

in genome rearrangements. Moreover, the relative importance of other repeat elements,

such as LINE elements or microsatellites, in terms of mediating NAHR increased; while

they were created in the genome at a basal level, the strong effect of the Alu burst had

previously masked their influence. This is why we find a stronger signature of enrichment

of these elements with CNV breakpoint regions. Finally, other mechanisms play a much

bigger role in reshaping the genome today, again consistent with the fact that a majority

of current CNV breakpoints exhibit signatures suggesting a formation through NHEJ.

Aside from the factors discussed above, selection could have influenced the sequence

signatures found around SDs or CNVs. Many SDs may have undergone some kind of

selection during their way to fixation. In contrast, most CNVs are likely to be neutral,

even though, analogous to SNPs, some may have been selected for or against [55, 11, 4].

As a result, one may assume that the differences between CNVs and SDs pointed out
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Figure 3.8: A schematic of the change of formation mechanism over the last 40 million
years in the mammalian lineage.

above could be due to selection. The most striking difference is certainly the difference in

association with Alu elements; if selection were responsible for this difference, two scenarios

are possible: First, Alu elements in the vicinity of SDs could lead to preferential fixation

of these SDs. It is hard to imagine how Alu elements in the genomic neighborhood should

influence the fixation of SDs; therefore, we deem this scenario very unlikely. Second, Alu

elements in the vicinity of CNV were removed by negative selection. This possibility is

equally unlikely, and we believe that the far more parsimonious explanation is that Alu

elements had a predominant role in past SD, but not in present CNV formation.

3.4 Methods

3.4.1 Sequence data preparation

We used the segmental duplications database from the University of Washington (http:

//eichlerlab.gs.washington.edu/database.html) based on the build 36 genome [49].

We binned all existing SDs into sequence identity categories and different size categories.

To enable comparison with low-resolution copy number variation data, we finally binned
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all segmental duplications according to genomic coordinate. We varied the bin size from

10 kb to 1 Mb. Because the copy number variant mapping resolution is at most 50 kb for

the techniques employed in the used data sets [61], we report the results for calculations

with a bin size of 100 kb. For copy number variants, we used three separate data sets,

based on three different assay methodologies. The three-way comparison should avoid

biases that may have been introduced by a single method. First, we used the recent set

from the Human Copy Variation Consortium, which was based on microarray methods

[47]. Secondly, the structural variation data based on Fosmid-paired-end sequencing was

used [45]. Finally, a comparison of two different genome assemblies has revealed putative

copy number variations [76].

3.4.2 Breakpoint sequencing

A total of 67 CNVs identified by the paired-end matching (PEM) were sequenced using

the following approach. PCR fragments were extracted either by gel purification or gel

extraction with Millipore Ultrafree-DA centrifugal filter devices (Millipore Corp.) or by

bead purification from the reaction mixture with Agencourt AMPure (Agencourt Biocience

Corporation). Amplified fragment pools (50–150 fragments each) were randomly sheared

by nebulization, converted to blunt ends, and adaptors ligated with the GS DNA Library

Preparation kit according to the manufacturer’s protocols (454 Life Sciences; Roche Diag-

nostics). The resulting single-stranded DNA shotgun libraries were then sequenced with

454 Sequencing. Both the resulting reads (median length = 250 bp) and contigs gener-

ated by 454’s de novo assembler Newbler (see software user manual; 454 Life Sciences and

Roche Diagnostics) were scanned for the respective SV breakpoints with BLAST alignment

against the human reference genome; we required best hits to the genome for both portions

of a read/contig matching on either side of a candidate breakpoint junction.
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3.4.3 Repeat analysis

Different kinds of repeats were identified using the genome annotation on the UCSC

Genome Browser, based on the output of RepeatMasker. As above, distributions of Alu

elements, LINE elements, and microsatellites were binned according to their genomic co-

ordinates. Recombination hot spot data were taken from the HapMap recombination data

[77]. Data for the processed pseudogenes were obtained from Pseudogene.org [78].

3.4.4 Computation of associations

Coarse-grained colocalization was assessed by computing the Spearman rank correlations

between the binned distributions of each feature (SD occurrence, CNV occurrence or repeat

occurrence) per bin. This measure is an accurate and robust measure of association and

is independent of any assumptions of the distribution of the respective features. We used

a bin size of 100 kb for the analysis, but changes in the binning procedure did not have

an effect on our results. This coarse-grained approach can identify larger-scale trends.

It is especially suitable for the analysis of CNV associations because of the current low-

resolution mapping of their breakpoints. However, it may not be able to pinpoint exact

breakpoint characteristics.

For sequenced breakpoints, we calculated enrichments both in a global and a local

context. In a global context, we compared the average number of a random nucleotide

in the genome intersecting with a given genomic element to that of a breakpoint. Since

this may be biased by local genomic context, we also calculated the average number of a

random nucleotide intersecting with a given genomic element in a 50-kb window around

the breakpoint.

3.4.5 Detailed SD breakpoint analysis for processed pseudogenes

For a detailed analysis of processed pseudogene enrichment at SD breakpoints, we ana-

lyzed all SD junctions for overlap with pseudogenes. Because of potential sequencing and
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alignment errors, we defined the SD junction as ± 5 bp around the annotated breakpoint.

We then looked for SDs where pseudogenes overlapped the SD start and end junctions in

both duplicated segments. For each of these, we then compared the parent genes of the

two pseudogenes that overlapped the SD junctions. For pseudogenes with different parent

genes, we compared their sequence similarity using FASTA.

To assess the significance of the overlap between the processed pseudogenes and SD

junctions, we first picked genomic regions of the same size and number as SDs at random

and compared the overlap with processed pseudogenes. No matching junctions that had

matching pseudogenes were found. As a second procedure that captures potential sequence

biases, we randomized the SD junctions in a 50-kb window around the actual junctions

and calculated their overlap with matching pseudogenes.

3.4.6 CNV breakpoint analysis

To complement the coarse-grained approach, we analyzed a set of 540 sequenced break-

points, a combination of the breakpoints from [11] and the newly sequenced breakpoints

above. We analyzed the occurrence of breakpoints in known repeat sequences from Repeat-

Masker. Furthermore, we analyzed each breakpoint for the occurrence of microhomologies

and microinsertions. All calculations were carried out using custom code in Matlab, R,

and Perl.
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Chapter 4

Nucleotide-resolution analysis of

structural variants using a

breakpoint library

4.1 Introduction

Structural variation of large segments (>1 kb), including copy-number variation and un-

balanced inversion events, is widespread in human genomes [44, 79, 45, 47, 11, 80] with

∼20,000 SVs presently reported in the Database of Genomic Variants (DGV) [79]. These

SVs have considerabe impact on genomic variation by causing more nucleotide differences

between individuals than single-nucleotide polymorphisms [47, 11, 80] (SNPs). In several

genomic loci, rates of SV formation could even be orders of magnitude higher than rates

of single nucleotide substitution [81, 82]. To measure the influence on human phenotypes

of common SVs (that is, those present at substantial allele frequencies in populations) and

de novo formed SVs, several studies have mapped SVs across individuals. They reported

associations of SVs with normal traits and with a range of diseases, including cancer, HIV,

developmental disorders and autoimmune diseases [6, 83, 84, 85, 5, 86]. Although most

SVs listed in DGV are presumably common, de novo SV formation is believed to occur
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constantly in the germline and several mutational mechanisms have been proposed [87].

Nevertheless, so far our understanding of SVs and the way we analyze SV maps is

limited by the limited resolution of most recent surveys, such as those solely based on

microarrays, which have not revealed the precise start and end coordinates (that is, break-

points) of the SVs. This has hampered our understanding of the extent and effects of SVs

in humans, as mapping at breakpoint resolution can reveal SVs that intersect with exons

of genes or that lead to gene fusion events [11, 15].

The lack of nucleotide-resolution maps has further prevented systematic deduction of

the processes involved in SV formation, such as whether common SVs emerged initially

as insertions or deletions at ancestral genomic loci. Instead, operational definitions have

been applied for classifying common SVs into gains, losses, insertions and deletions based

on either allele frequency measurements, or the ‘human reference genome’ (hereafter also

referred as the reference genome) that was originally derived from a mixed pool of individ-

uals [88]. Thus, inference of the ancestral state of an SV locus is crucial for relating SV

surveys to primate genome evolution and population genetics.

The lack of data at nucleotide resolution has also limited the number of SVs for which

the likely mutational mechanisms of origin have been inferred. These mechanisms are

thought to include (i) NAHR involving homology-mediated recombination between paralo-

gous sequence blocks; (ii) nonhomologous recombination (NHR) associated with the repair

of DNA double-strand breaks (that is, nonhomologous end-joining) or with the rescue of

DNA replication-fork stalling events (that is, fork stalling and template switching [60]);

(iii) variable number of tandem repeats (VNTRs) resulting from expansion or contraction

of simple tandem repeat units; and (iv) transposable element insertions (TEIs) involving

mostly long and short interspersed elements (LINEs and SINEs) and combinations thereof,

along with other types of TEI-associated events (e.g., processed pseudogenes).

Finally, owing to the lack of resolution of most SV maps, junction sequences (the

flanking sequences of breakpoints) have thus far not been exploited for testing the presence

of SVs in an individual in a similar fashion to the way SNPs can be directly detected by
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Figure 4.1: Number of SVs with sequenced breakpoints. The number of SVs with sequenced
breakpoints has been increasing rapidly since 2006, due to the recent advance of sequencing
technologies, and will grow substantially in the near future (indicated by the dashed line
with arrow) owing to collaborative efforts such as the 1000 Genomes Project.

oligonucleotide chips with probes designed for each polymorphism.

Recent advances in microarray technology and large-scale DNA sequencing have paved

the way for high-resolution SV maps. To date, nearly 2,000 SVs have been fine-mapped at

nucleotide level and efforts such as the 1000 Genomes Project (http://1000genomes.org),

which will soon sequence >1,000 human genomes, might in the near future report many

more SVs at such resolution (Figure 4.1). Thus far, however, no study has leveraged the

potential of collectively analyzing breakpoint-level SV data.

Here we present a comprehensive analysis of a library of nearly 2,000 SVs assembled

from eight recent surveys that involve individuals from three distinct populations. We

demonstrate four uses of the breakpoint library—mapping structural variation at high

resolution, revealing ancestral states of variants, inferring mechanisms of variant formation

and correlating the inferred mechanisms with DNA sequence features. We found several

lines of evidence consistent with a nonuniform distribution of SV formation mechanisms and

with locus-specific sequence properties, such as DNA helix stability, chromatin accessibility

and the propensity for a DNA sequence to recombine, which may predispose genomic

regions to SV-mutational processes.
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4.2 Results

4.2.1 Generation of a standardized SV breakpoint library

We compiled a set of breakpoints from eight published sources (Figure 4.2). In accordance

with a previously proposed operational definition [3], we defined SVs to be deletions, in-

sertions and inversions reported relative to the reference genome with a size of 1 kb or

larger. As our initial library encompassed SVs mapped using different types of evidence,

sequencing technologies and genome assembly versions, an essential first step was library

standardization. We therefore implemented a computational pipeline for generating a uni-

fied, nonredundant breakpoint library (Methods).

The pipeline yielded a nonredundant set of 1,889 SVs that were initially annotated as

deletions (1,409), insertions (419) or inversions (61) relative to the reference genome. This

set, which represents the most exhaustive compilation to date of SV breakpoints in phe-

notypically normal individuals, is available at http://sv.gersteinlab.org/breakseq. It

also has been deposited into the BreakDB database [12] (http://sv.gersteinlab.org/

breakdb).

4.2.2 High-resolution mapping of SVs from short-read sequencing data

Personal genomics endeavors based on next-generation sequencing technology [89, 92, 93]

typically detect genomic variation by mapping relatively short sequencing reads directly

onto the reference genome. Although many short indels (<1 kb) can be accurately identified

with such an approach, SVs 1 kb are commonly missed, or not identified at nucleotide (that

is, breakpoint-level) resolution. This is probably because of the difficulty in constructing

accurate sequence alignments from short reads (e.g., 36 mers), especially if they involve

long sequence gaps or span breakpoints.

We thus devised an approach, BreakSeq, for detecting SVs by aligning raw reads di-

rectly onto SV breakpoint junctions of the alternative, nonreference, alleles contained in

our library (Figure 4.3a, Methods). Briefly, the genomic coordinates of each breakpoint in
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Figure 4.2: Composition of the SV breakpoint library. SVs in the library were based
on different SV-mapping and breakpoint-sequencing strategies. A large fraction (44%)
of the breakpoints were based on data generated using 454/Roche sequencing, including
resequencing of an individual human genome (Wheeler [89], 602 SVs) and sequencing of
breakpoints in two individuals after high-resolution and massive paired-end mapping (Ko-
rbel [11] and Kim [15], 264 SVs). The remaining 56% of the breakpoints were identified
using other approaches, including Sanger capillary sequencing of breakpoints identified
by whole-genome shotgun sequencing and assembly of an individual human genome (Levy
[48], 694 SVs), fosmid-paired-end sequencing carried out in multiple individuals (Tuzun [45]
and Kidd [80], 281 SVs), breakpoints mined from SNP discovery DNA resequencing traces
(Mills [90], 98 SVs), and tiling-array-based comparative genomic hybridization followed by
breakpoint sequencing (Perry [91], 22 SVs). Fewer than five breakpoints were reported
in two genomes sequenced using short 36-bp reads (Illumina/Solexa) [92, 93], presum-
ably owing to the complex DNA sequence patterns frequently associated with breakpoints
[11, 80, 91].
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the standardized library are used to extract 30 bp of flanking sequence from the reference

genome. These 30-bp flanking sequences are concatenated into 60-bp junction sequences.

Thus, a deletion event is represented with a single junction sequence in the library (con-

taining the sequence flanking its single breakpoint), whereas an insertion has both left and

right junction sequences (containing the sequence flanking each of its two breakpoints).

DNA reads from personal genomes are aligned against the junction sequences. Success-

ful alignment requires a read to overlap a junction sequence by at least 10 bp on each

side of the breakpoint. This approach is conceptually similar to using a library of exon

splice junctions in transcriptome analyses, which leads to considerably better coverage of

alternatively spliced transcripts than restricting the analysis to reference genome sequences

lacking splice junctions [94].

To demonstrate the utility of our approach for mapping personal SVs at high resolu-

tion, we mapped short reads from three personal genomes sequenced with Illumina/Solexa

technology. These included two previously published genomes [92, 93] from individuals of

Nigerian (Yoruba from Ibadan, YRI) and Han Chinese (HCH) origins. The third genome

was from a HapMap individual of European ancestry (CEPH) that was sequenced recently

Figure 4.3 (following page): Mapping breakpoints using the library. (a) Overview of
the BreakSeq approach. Breakpoints are used to generate junction sequences spanning
breakpoints (upper)Xthe 30 bp of sequence flanking each side of the breakpoint (60 bp
total). Then, DNA reads are aligned to the junction sequences (lower). Alignment results
are interpreted as follows. In the case of insertions relative to the reference genome (left),
sequences A and B represent the left and right breakpoint junction sequences of the non-
reference SV allele, respectively. In the case of deletions (right), sequence C represents the
junction sequence of the nonreference SV allele. Solid lines with arrows, successful align-
ments. Dashed lines with crosses, no proper alignment. (b) Representative PCR validation
of detected SVs in NA12891. Primers flanking each SV were used to amplify 41 different
genomic regions. Expected band sizes for the reference and nonreference SV alleles are
given at the top of each lane. The difference in size of the products for the reference and
nonreference alleles confirmed the presence of the SVs for all loci except 6, 13 (confirmed
by LongAmp Taq in a separate experiment), 21, 25 and 36. M1 is a 100-bp marker and M2
is a 1-kb marker. (c) A subset of SVs, which were confirmed by sequencing, was analyzed
in nine additional genomic DNA samples (HapMap individuals with ancestry in Europe)
to test for SV frequency within the CEPH population. An asterisk indicates that the SV
is present polymorphically.
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in the pilot phase of the 1000 Genomes Project. To prioritize the SV calls generated by

BreakSeq, we developed a scoring system based on supportive read-matches (the number of

reads that map to a breakpoint; Methods) and distinguished low-support SV calls (with 1

to 4 supportive read-matches) from high-support SV calls. For the HCH, CEPH (NA12891)

and YRI (NA18507) genomes, we identified 158, 219 and 179 SVs, respectively. Several

SVs were shared among the three, suggesting that they may represent common alleles. For

example, among the high-support calls, we found that 57 SVs were shared between the

YRI and HCH genomes, 62 between the YRI and NA12891 genomes, 52 between the HCH

and NA12891 genomes, and 42 were common to all three genomes.

To validate these results, we used PCR to test 24 insertion and 33 deletion calls pre-

dicted in NA12891 relative to the reference genome. Specifically, PCR amplification of

predicted nonreference SV alleles [11] was used as a means for validation. In 48 cases

the predicted SVs were validated, and in one case the reaction was inconclusive (Figure

4.3b and 4.8). Furthermore, seven reactions neither revealed the reference allele nor the

predicted SV allele. (This primer failure rate can be explained by repetitive and GC-rich

sequences that occur in association with SVs.) Finally, in a single case only the reference

allele was found, suggesting either a false-positive prediction or the inability to amplify the

event band of a predicted size of 7.5 kb.

We then sequenced 12 of the PCR-validated amplicons with Sanger capillary sequencing

and confirmed the predicted breakpoint in all—that is, the Sanger-sequenced junction was

identical to that in the library, with few single base-pair differences (presumable SNPs). We

also analyzed a panel including nine unrelated CEPH individuals for the presence of six of

the sequenced SVs and found that most SVs (four) were present polymorphically, whereas

the remaining SVs likely represent rare alleles (Figure 4.3c). All together, 48 out of 57

predicted SVs (84.2%) were confirmed successfully, and the validation rate was estimated

at 98% (48 out of 49) based on the PCR reactions that could be scored, demonstrating

high specificity. Notably, as about half of our validated SVs were low-support SV calls, our

validations demonstrate that accurate calls are generated both at high- and low-support
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levels. This suggests that BreakSeq may perform reasonably even in conjunction with

low-coverage sequencing projects.

4.2.3 Inferring ancestral states of SV loci by comparing breakpoint junc-

tions to primate genomes

Global SV surveys have so far reported SV events such as insertions and deletions using

operational definitions—that is, comparisons with the human reference genome or allele

frequency measurements. However, we reasoned that a systematic assessment of SV for-

mation requires an unambiguous discrimination of SV event types—that is, one minimally

affected by ascertainment biases. As the human reference genome presumably contains a

mixture of common and rare SV alleles, it can serve only as a provisional reference for

classifying SVs as insertions or deletions. Likewise, allele frequency measurements are of

limited use in the context of classifying SVs into ‘gains’ and ‘losses’, as they may be affected

by population-specific allele frequencies. In fact, ancestral state assignments facilitate sys-

tematic surveys of SVs in the context of studies focusing on human genome evolution, SV

formational processes as well as minor and/or major allele assignment (as the ancestral

allele often corresponds to the major one).

We therefore devised a framework that automatically assigns ancestral states of SV

genomic loci based on a comparison of SV breakpoint junction sequence with the cor-

responding syntenic segments from the chimpanzee, orangutan and macaque genomes.

Our approach (Figure 4.4a and Methods) involves extracting ± 500-bp flanking sequences

around each breakpoint junction, combining them into putative ancestral regions (stretches

resembling the allele present in the reference genome and stretches resembling the alter-

native allele), and then comparing the regions with syntenic primate genome sequences to

deduce the most likely ancestral state. We defined SV loci as ‘rectifiable’ if unambiguous

high-quality alignments to putative ancestral regions could be constructed for the loci in

any primate genomes.

Overall, ancestral states of 1,281 (70%) out of 1,828 SV indel events could be assigned.

53



Figure 4.4: Ancestral state classification. (a) Junction sequences are aligned onto syntenic
regions of a nonhuman primate genome to infer SV ancestral states. For rectifying an
SV insertion event (from deletion) according to ancestral state (left), sequences A and B
represent the junction sequences of the reference SV allele, whereas sequence C represents
the junction sequence of the nonreference SV allele. For rectifying an SV deletion event
(from insertion) according to ancestral state (right), sequence C represents the junction
sequence of the reference SV allele and sequences A and B represent the junction sequences
of the nonreference SV allele. Solid lines with arrows indicate successful alignments and
dashed lines with crosses indicate no proper alignment. (b) Results of classifying SVs as
insertions or deletions according to ancestral state. An SV event is defined as ‘rectifiable’
(indicated by darker color) if unambiguous high-quality alignments to putative ancestral
regions could be constructed for the loci in any primate genomes (regardless of whether
the classification is changed), and as ‘unrectifiable’ (represented by lighter color) if not.
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For the vast majority of these (1,142), the chimpanzee genome contributed to the an-

cestral state assignment. For an additional 139 cases located in hard-to-align regions in

the chimpanzee genome (e.g., sequence assembly gaps), the ancestral state was inferred

based on aligning junctions to the orangutan and macaque genomes. After ancestral state

assignment, 665 SVs (36%) were classified as insertions and 1,163 (64%) as deletions. Fur-

thermore 925 out of the 1,281 events were consistently rectifiable in at least two genomes.

Of those, 420 were consistently rectifiable in all three genomes, with an approximate bal-

ance between insertions (212) and deletions (208) (4.4b). We note that this balance differs

substantially from earlier provisional SV classifications, which were strongly biased toward

deletions, probably owing to the difficulty of many SV detection approaches in identifying

insertions relative to the reference genome.

4.2.4 Inferring mechanisms of SV formation

Breakpoint junction sequences can also be used to deduce the molecular mechanisms of ori-

gin for SVs. To systematically classify SVs in our library, we evaluated previously reported

signatures of particular formation mechanisms (such as VNTR, TEI, NAHR and NHR)

with a computational pipeline (Figure 4.6a and Methods). TEIs can be identified by the

underlying genomic signatures of transposable elements; VNTRs, by underlying tandem

repeats and low-complexity DNA; NAHRs, by the extended stretches of high sequence

identity at the breakpoint junctions; and NHRs, by events lacking the former patterns.

Parameters of the pipeline were chosen so as to yield results comparable to those achieved

manually; in this regard, we confirmed the applicability of the chosen parameters by per-

forming a sensitivity analysis (Methods).

We found, consistent with earlier findings based on considerably smaller data sets [11,

91], that NHR events constitute the most abundant mechanism of SV formation in the

genome (Figure 4.6b). Our analyses inferred NHR as the formation mechanism for nearly

half of all SVs in our set (45%), whereas 28% involved NAHRs, 21% involved TEIs, 5%

involved VNTRs and 2% were ambiguous. Although VNTRs have the ability to contract
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and expand more than a kilobase, most of the 92 VNTRs identified in this study involved

simple repeat units <1 kb in size. We thus reasoned that they do not fall strictly into

the stringent SV definition given above and excluded VNTRs from most of the remaining

analyses below. Additionally, for NAHR and TEI mechanisms, we focused on the high-

confidence sets in the analyses unless indicated otherwise (Methods).

We then analyzed SV formation mechanisms of 1,281 rectifiable SV-indel events. As

discussed above, SVs were provisionally mostly reported as deletions owing to ascertain-

ment biases [11, 15, 89], regardless of the respective formation mechanisms. For example,

despite the fact that retrotransposons are thought to move within the genome by a ‘copy-

and-paste process’ involving reverse transcription of RNA intermediates and insertion of

full-length or fragmented mobile elements [95], most TEIs were previously annotated as

deletions. Nevertheless, our ancestral state analysis revised the actual locus origin for a

considerable number of SVs, and helped to resolve this apparent contradiction. Our results

show that nearly all SVs associated with transposable elements for which ancestral states

could be assigned were categorized as insertions (98%).

Through manual inspection, we found that the remaining transposable elementVasso-

ciated deletions can be reasonably explained as NHR-mediated SV deletions in regions of

concentrated transposon annotations, which are difficult to distinguish from retrotranspo-

sitions. This shows that using the class name TEI was justified in retrospect, and that

our ancestral analysis pipeline is able to produce results consistent with prior knowledge

on the formation mechanism of TEI. On the other hand, even after classification by an-

cestral states, NAHR and NHR events were mostly annotated as deletions (Figure 4.6c),

which may be due to biases of these formation mechanisms toward deletions (as previously

reported for NAHR [81]) or due to biases in SV detection methods toward ascertaining

deletions in ancestral loci.

Further analysis of TEI events showed that they involved LINEs, SINEs, LTR-elements,

composite retrotransposons and processed pseudogenes. Our results show that LINE-1s

(L1s) represent the most abundant class at the given size range (>1 kb) as expected
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Figure 4.5: UCSC browser view of an example of active L1 insertion in the human genome.
The top bar represents an insertion event of a SV (STEI) after rectification. The colored
arrows represent the corresponding syntenic regions in the other primate genomes. The
bottom bar represents the RepeatMasker annotated L1, which is also annotated as active
by Mills et al., 2006.

[96], with 71% of the TEIs mediated by LINE/L1 transposable elements. Although many

transposable elements in the human genome have lost their ability to retrotranspose au-

tonomously, several full-length elements, including 147 L1s, are still implicated in recent

or ongoing retrotransposition activity [95]. Interestingly, our results suggest the possible

recent activity in the human population of at least 84 L1 elements, which were reported

by our pipeline as ‘full-length’ with poly-A tracts and target-site duplications. To the best

of our knowledge, 38 of these putative active mobile elements have not yet been impli-

cated with recent L1 activity (Figure 4.6b, Table 4.1). The remaining TEIs include three

potential processed pseudogenes that were identified on the basis of their spliced primary

transcripts, poly-A tracts and target site duplications (Figure 4.6b, Table 4.1).

We then focused on SVs associated with NAHR and NHR. Because these SVs mostly

involve deletions relative to ancestral sequence, we reasoned that they might represent a

particularly interesting class of SVs with potential impact on conserved DNA sequence. In

fact, we found that 41% and 33% of the NAHR and NHR-based deletions, respectively, in-

tersect with annotated exons from RefSeq genes (Methods) and thus may have a functional
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Chr Start End SV Size STEI

chr1 216249121 216255226 6106 LINE/L1
chr2 4759167 4765234 6068 LINE/L1
chr3 89592655 89598696 6042 LINE/L1
chr4 18688549 18694648 6100 LINE/L1
chr4 81107079 81113123 6045 LINE/L1
chr4 167913617 167919651 6035 LINE/L1
chr5 151436616 151442649 6034 LINE/L1
chr6 85374869 85380945 6077 LINE/L1
chr7 96313827 96319934 6108 LINE/L1
chr10 6451585 6457650 6066 LINE/L1
chr20 53868019 53874024 6006 LINE/L1
chr10 6451587 6457652 6066 LINE/L1
chr2 4759186 4765250 6065 LINE/L1
chr20 53868031 53874036 6006 LINE/L1
chr4 18688564 18694663 6100 LINE/L1
chr4 81107087 81113131 6045 LINE/L1
chr5 151436624 151442657 6034 LINE/L1
chr6 85374871 85380947 6077 LINE/L1
chr6 86765474 86771525 6052 LINE/L1
chr7 96313838 96319945 6108 LINE/L1
chrX 80983310 80989360 6051 LINE/L1
chr4 147444746 147444747 6049 LINE/L1
chr5 89486537 89486538 6089 LINE/L1
chr3 75963555 75969765 6211 LINE/L1
chr20 53868018 53874023 6006 LINE/L1
chr5 151436607 151442640 6034 LINE/L1
chr10 91707613 91707614 6047 LINE/L1
chr15 52916843 52916844 6075 LINE/L1
chr15 81348674 81348675 6055 LINE/L1
chr18 49679741 49679742 6047 LINE/L1
chr2 169813375 169819421 6047 LINE/L1
chr2 41904907 41904908 6049 LINE/L1
chr3 20723908 20723909 6101 LINE/L1
chr4 82425590 82425591 6078 LINE/L1
chr4 88487270 88493324 6055 LINE/L1
chr6 72856220 72856221 6103 LINE/L1
chr6 86765466 86771517 6052 LINE/L1
chr8 123713059 123713060 6089 LINE/L1
chr1 166291199 166292371 1173 Pssd. Pseudogene
chr19 23825024 23825025 1147 Pssd. Pseudogene
chr19 14593346 14595142 1797 Pssd. Pseudogene

Table 4.1: Potential active L1 elements (38) and processed pseudogenes (3).
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impact. On the other hand, insertions generated by NAHR or NHR have thus far received

little attention, presumably due to difficulties in tracing these. Therefore, we extended our

analysis to infer the most likely loci of origin of the inserted DNA sequences for 427 con-

sistently rectifiable insertions (Methods). We found that NAHR insertions usually involve

nearby sequence stretches stemming from the same chromosome as would be expected from

the NAHR duplication mechanism. On the contrary, TEIs were found to originate ran-

domly from inter-chromosomal locations in the genome, probably owing to the nature of

retrotransposition of RNA intermediates. Furthermore, NHR-based insertions commonly

involve both intra- and inter-chromosomal rearrangements (Figure 4.6d–f).

4.2.5 Insights into SV formational biases

Finally, we analyzed the relationship between mechanisms of SV formation and sequence

features located near to the breakpoints (including chromosomal landmarks, recombination

hotspots, repeat sequences, GC content, short DNA motifs and microhomology regions).

Briefly, we first extracted the DNA sequences flanking both sides of each breakpoint junc-

tion. In the case of insertions, junction sequences included flanking DNA reconstructed

Figure 4.6 (following page): Inferring mechanisms of SV formation. (a) Pipeline for classi-
fying SV-formation mechanisms. TE, transposable element. TSD, target site duplication.
(b) Mechanisms of formation inferred for SVs in the library (larger circle on right). In
NAHR (red) and MTEI/STEI (green), darker wedges represent high-confidence classifica-
tion subsets, and lighter wedges are extended subsets. STEI is further subdivided in the left
circle according to the fraction of previously reported L1 insertions26, novel L1 insertions
and processed pseudogene insertions in our data set. STEI, single transposable element
insertion; MTEI, multiple transposable element insertion. (c) SV-indel distribution for
all rectifiable events, broken down by formation mechanism. (d) Distribution of inter-
versus intra-chromosomal events for all consistently rectifiable insertions, broken down by
formation mechanism. (e) Distances of putative ancestral loci to insertion sites for all con-
sistently rectifiable intra-chromosomal insertions, showing that intra-chromosomal NAHR
insertions usually involve nearby sequences, whereas TEIs and NHR-associated insertions
usually involve distant sequences. (f) Genome-wide view of insertion trace. The outer-
most circle represents chromosomal ideograms; the second circle represents SV formational
mechanisms of 1,554 events in a stacked histogram. The lines in the innermost circle in-
dicate the origin of the insertion sequences in the human genome for all 321 consistently
rectifiable insertions.
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from the inserted sequence. We also generated two random background sets, one by ran-

domly picking sequences from the reference genome (global background), and the other by

randomly picking DNA sequences from the local sequence context specific to each mecha-

nistic class (local background). We then identified sequence features in the flanking regions

of each breakpoint and calculated their enrichment with P-values based on randomization

tests (Methods).

We correlated SVs with chromosomal landmarks and found that NAHR events are

significantly (P ≤ 1E-05) more proximal to telomeres and human-chimp synteny block

boundaries than the other mechanistic classes. Moreover, we observed that VNTRs are

significantly (P ≤ 1E-10) enriched in centromeric and pericentromeric regions, as expected

(Figure 4.7a). These results demonstrate a nonuniform distribution of SV formation mech-

anisms in the human genome (Figure 4.6f).

We correlated SVs with recombination hotspots [97] and observed that they are sig-

nificantly enriched for NAHR events (1.5-fold enrichment; P = 2.96E-03). Recombination

hotspots are typically enriched for segmental duplications [62], which may act as mediators

for NAHR during meiotic recombination. We further observed biases toward recombination

hotspots for TEIs (Table 4.2), but not for NHR-mediated events. Whereas the accumula-

tion of TEIs might in part be due to the formation of such elements by NAHR-mediated

recombination involving interspersed repeat sequence, the lack of an enrichment for NHR

indicates that DNA double-strand breaks occurring during recombination might be insuf-

ficient for initiating double-strand repair mediated by nonhomologous end-joining.

We assessed associations between SV formation mechanisms and common repeat el-

ements in the genome. For example, NAHR events have previously been reported to be

associated with various types of genomic DNA repeats, in particular segmental duplications

[11, 80, 15]. After classification of NAHR events by our pipeline, we confirmed that signifi-

cant (P∼ 0) associations with segmental duplications are present both for NAHR-insertions

(3.9-fold) and NAHR-deletions (7.4-fold). Furthermore, we found NAHR significantly (P

∼ 0) associated with the SINE/Alu class of mobile elements. On the other hand, LINE
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Figure 4.7: Analysis of breakpoint features. (a) Distance to chromosomal landmarks.
Brackets indicate significantly different classes (P < 0.05 in Wilcoxon rank sum test af-
ter multiple hypothesis test correction by the Holm method). NAHR events are found to
be significantly closer to telomeres and human-chimpanzee synteny block boundaries than
the other mechanistic classes; VNTRs are significantly enriched in centromeric and peri-
centromeric regions. (b) DNA flexibility (dashed lines and left y-axis) and helix stability
(solid lines and right y-axis) around NAHR and NHR breakpoints. (c) Distribution of NHR
events with different lengths of microhomologies at the breakpoints. Microhomologies are
significantly enriched in NHR breakpoints compared to a random background (KS test, P
= 2.43E-11).
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NAHR Observed Global Enrich. P-value Local Enrich. P-value

Recomb. Hotspots 0.13 1.51 1.75E-03 1.04 4.03E-01
SINE/Alu 0.29 2.72 0.00E+00 2.17 0.00E+00
SINE/MIR 0 0.14 1.85E-03 0.23 2.30E-02
LINE/L1 0.1 0.59 1.54E-04 0.67 3.50E-03
LINE/L2 0 0.13 1.18E-03 0.22 1.79E-02
Dupl. Pseudogene 0.03 4.51 8.17E-08 0.96 4.52E-01
Pssd. Pseudogene 0 1.59 2.86E-01 0.66 3.13E-01
SD 0.96 5.95 0.00E+00 1.16 1.34E-01
GC 0.49 1.21 0.00E+00 1.06 1.61E-05
Flexibility 10.33 0.96 0.00E+00 0.98 3.90E-04
Helix Stability 1.99 1.07 0.00E+00 1.03 4.88E-07

NHR Observed Global Enrich P-value Local Enrich. P-value

Recomb. Hotspots 0.09 1.02 4.26E-01 1.03 3.90E-01
SINE/Alu 0.13 1.16 5.45E-02 1.13 9.43E-02
SINE/MIR 0.02 0.74 1.00E-01 0.9 3.21E-01
LINE/L1 0.18 1.04 3.04E-01 0.95 2.62E-01
LINE/L2 0.02 0.62 2.27E-02 0.66 3.68E-02
Dupl. Pseudogene 0.01 1.29 2.64E-01 0.98 4.77E-01
Pssd. Pseudogene 0 0.91 4.50E-01 0.68 2.95E-01
SD 0.33 2.06 1.86E-06 0.9 2.55E-01
GC 0.41 1.01 3.19E-01 1 4.51E-01
Flexibility 10.86 1.01 1.87E-02 1.01 1.85E-02
Helix Stability 1.85 0.99 1.93E-02 0.99 2.25E-02

TEI Observed Global Enrich P-value Local Enrich. P-value

Recomb. Hotspots 0.12 1.39 3.11E-02 0.9 2.77E-01
SINE/Alu 0.05 0.47 1.45E-03 0.7 9.48E-02
SINE/MIR 0 0.14 1.01E-02 0.24 5.20E-02
LINE/L1 0.29 1.66 7.88E-07 0.76 1.43E-03
LINE/L2 0.01 0.25 1.49E-02 0.42 1.00E-01
Dupl. Pseudogene 0 0 1.21E-01 0 2.01E-01
Pssd. Pseudogene 0 0 2.17E-01 0 2.09E-01
SD 0.09 0.57 1.55E-01 1.04 4.70E-01
GC 0.31 0.76 0.00E+00 0.76 0.00E+00
Flexibility 10.38 0.96 0.00E+00 0.96 0.00E+00
Helix Stability 1.84 0.99 3.71E-02 0.99 4.00E-02

Table 4.2: Enrichment analysis of features at breakpoint junctions generated by different
mechanisms.
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elements (both the L1 and L2 classes) were significantly (P ≤ 1E-03) depleted among

the NAHR events in our set whereas NHR events did not show significant enrichment (or

depletion, except marginally for L2) with genomic repeat-structure (Table 4.2).

We analyzed various features related to the physical properties of DNA at SV break-

point junctions. In contrast to NHR, NAHR events were found to be biased toward GC-rich

regions (Table 4.2). A possible explanation for this bias is the known GC-richness of re-

combination hotspots [98], which we found to be significantly (P = 2.96E-03) enriched

for NAHR events. Further, our results may indicate SV formation biases owing to DNA

duplex stability. We thus extended our analyses by two additional features: DNA helix

stability predicted by calculating the average of the dissociation free energy of each over-

lapping dinucleotide [99], and DNA flexibility based on the calculation of the average of

the twist angle among each overlapping dinucleotide [100]. Our results indicate that in

contrast to NAHR, NHR events are associated with high DNA flexibility and low helix

stability, both of which are believed to be markers of fragility [101]. This is possibly due

to sequence-specific biases for SV formation (Table 4.2). We went on to characterize the

change of these fragility marker signatures in a region of ± 500 bp around the breakpoint

by smoothing the signal with a 50-bp sliding window. Interestingly, we observed that the

strength of the marker signatures was most extreme at or very close to the SV breakpoints

(Figure 4.7b).

We reasoned that our comprehensive breakpoint junction library may enable us to

identify simple DNA sequence motifs associated with SV breakpoints. Thus, we used the

MEME tool [102] to carry out a comprehensive search for DNA motifs (6–12 nt, Meth-

ods) and found a significant enrichment (2.1-fold; P ∼ 0) of the dinucleotide repeat (TG)6

near breakpoints of NHR events, a sequence motif that fits with their relatively neutral

GC content as shown above. We further analyzed all the NHR breakpoint sequences and

found that the maximum consecutive occurrence of the TG-dinucleotide was 26. The

MEME search did not reveal significantly enriched sequence motifs near NAHR or TEI

events. Nevertheless, we used the MAST tool [102] to search for the DNA sequence mo-
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tif ‘CCNCCNTNNCCNC’ that recently was reported to be associated with chromosomal

recombination hotspots [103], and found a significant enrichment (1.5-fold; P ∼ 0) of the

motif near NAHR-associated SVs, but not near NHR- or TEI-associated SVs.

Previous studies have observed the occurrence of stretches of short repeating sequences

of 2 to ∼10 bp (that is, microhomologies) at the breakpoints of NHR events [60, 56]. We

used our breakpoint junction library to scan NHR breakpoints for microhomology stretches

of different lengths, and observed statistical enrichment relative to a random background

(1.4-fold on average; KS test, P = 2.43E-11; Figure 4.7c) as expected. This suggests a

strong association of microhomology stretches with SV formation by nonhomologous end-

joining [56] or fork stalling and template switching [60].

4.3 Discussion

In this study we presented a comprehensive library of 1,889 nonredundant SVs identified

by breakpoint-resolution mapping in eight studies. Our approach, BreakSeq, leverages a

breakpoint junction library for SV detection. Whereas other computational approaches for

SV detection (such as paired-end mapping [11, 104], DNA read-depth analysis [105, 106, 9]

and split-read alignment analysis [13]) remain essential for identifying previously unknown

SVs (a process that typically involves targeted PCR and sequencing), our approach serves

as a tool for rapidly identifying specific SV alleles in personal genomics data. Specifically, by

mining personal genomes for sequences present in the breakpoint junction library, BreakSeq

leverages alternative, nonreference genomic sequence data to rapidly detect previously

described SVs that short-read based personal genomics surveys commonly fail to ascertain.

As such, BreakSeq enables a step towards overcoming reference bias, which is the favoring

in ascertainment of SV alleles present in the human reference genome sequence.

We foresee that the utility of BreakSeq will increase as data sets grow (e.g., when

SV calls from the 1000 Genomes Project are published). As our approach has a linear

time complexity (Methods), it is easily extendable to larger data sets. In this regard,
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the size of our junction library currently comprises 0.004% of the reference genome in

terms of nucleotide bases, and even a 100-fold increase of its size (>0.2 million SVs; ∼10

times of DGV) will result in a data set considerably smaller than the reference genome.

Thus, applying BreakSeq in personal genomics studies adds negligible computing efforts

(compared to SNP genotyping) and at the same time dramatically improves SV calling.

The library will be updated regularly to serve the personal genomics community in enabling

precise SV detection with various next-generation sequencing platforms.

In addition to enabling accurate SV mapping, our junction library allows characterizing

SV ancestral states. Whereas the ancestral states of SNPs and small indels have been

inferred according to ancestral alignments in earlier studies [107, 108], we here report

systematic ancestral state inference for SVs. When applying our new classification approach

to 1,281 SVs, we found that overall there is a balance of insertions and deletions, unlike

most currently published SV sets that display a considerable bias toward deletions. It

should be noted that the nonhuman primate genomes used in our ancestral state inference

correspond to single animals, which certainly do not represent idealized ancestral genomes.

Nonetheless, we reasonably assume that SV loci can be classified at high confidence when

ancestral states can be consistently inferred across three distinct primates.

Furthermore, we have developed a computational pipeline for classifying SVs according

to their formation mechanisms and for analyzing various DNA sequence characteristics

of the affected genomic loci. Together with the ancestral state analysis, this allowed us

to analyze SV formation processes with respect to likely ancestral loci, an analysis that

revealed some insights into SV formation. For example, our analyses suggest that the

physical properties of the underlying DNA sequence influence locus-specific propensities

for different SV formation mechanisms. We observed that NAHR-based SVs are associated

with a relatively high GC content and with recombination hotspots, indicating that double-

strand breaks occurring specifically during meiotic recombination contribute to NAHR-

associated SV formation. On the other hand, NHR breakpoint regions appear to have

lower DNA stability and higher flexibility, features that may increase the chance of double-
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strand breaks in general. Overall, our analysis reveals formational biases underlying SV

formation and conforms to the fact that NAHR is driven by recombination between repeat

sequences, whereas NHR is likely driven by DNA repair and replication errors.

By applying BreakSeq on a large scale, we envisage that it could be used for genotyping

and determining SV allele frequencies. In fact, it should be possible to put each of the

breakpoint sequences in our library directly onto a commercially available SNP chip, which

could be used to precisely assess SV genotypes simultaneously with all of the SNPs in an

individual. (This should add only a small number of probes to the ∼1 M probes already

on commercial chips.)

Lastly, we note that as our approach depends on current SV lists, it is inevitably affected

by their existing biases owing to presently applied technologies. Likely biases include the

difficulty in mapping insertions relative to the reference genome and in ascertaining SVs

in repetitive regions, for example, segmentally duplicated sequences. We anticipate that in

the near future, as technologies advance in terms of read-lengths, inherent biases against

repeat-rich sequences will be further reduced and the mapping of SVs onto our junction

library will further improve, making it essentially comparable to SNP genotyping. In this

regard, as thousands of human genomes will be sequenced in the coming years, there will

be a huge demand for reliable and accurate SV mapping and SV genotyping.

4.4 Methods

4.4.1 Data preparation

Our initial breakpoint library altogether represented 1,961 SVs identified at high preci-

sion based on the Nationl Center for Biotechnology Information (NCBI) build 36 of the

human genome. It was compiled from eight different published sources based on paired-

end mapping [11, 15], fosmid-paired-end sequencing [45, 80], Sanger capillary sequencing

[48], resequencing of an individual human genome using second-generation sequencing [89],

DNA resequencing traces for SNP discovery projects (support by at least two reads was
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required for an SV to be included in our data set) [90], and high-resolution array-based

comparative genomic hybridization [91]. For the 253 SVs identified through fosmid-paired-

end sequencing [45, 80], 387 published sequenced clones originally used to identify SVs in

NCBI build 35 were realigned to the NCBI build 36 human genome before inclusion in the

library. A split-read analysis was then carried out using BLAT to infer the breakpoints of

the events. For the 98 SVs from resequencing traces [90], the liftover tool available at the

UCSC genome browser (http://genome.ucsc.edu/) was used to convert the breakpoint

coordinates from human NCBI build 35 to build 36. All SVs in our analysis were between

1 kb and 1 Mb in length (that is, we removed events >1 Mb, reasoning that they may be

lower in confidence). After accounting for redundancy, our standardized breakpoint library

consisted of 1,889 SVs that were used in all subsequent calculations and analyses.

4.4.2 SV mechanism classification pipeline

Four major steps were involved in our procedure to classify SV formation mechanisms.

First, SVs were examined for extensive coverage by tandem repeats and regions of low com-

plexity (here, low-complexity DNA refers to micro-satellite DNA, polypurine/polypyrimidine

stretches, and regions of extremely high AT or GC content, as defined by the Repeat-

Masker program; http://www.repeatmasker.org/) to identify instances of expansion or

contraction of VNTRs. Second, ± 100-bp flanking sequences derived from both break-

point junctions were aligned against each other to scan for blocks of extensive homology.

SVs were classified as ‘high-confidence NAHR’ if the homologous blocks had a minimum

sequence identity of 85%, a minimum length of 50 bp for the identical sequences, a maxi-

mum offset of 20 bp between the homologous blocks, correct orientations and covered the

breakpoints. SVs displaying at least three but not all of the above criteria were classified

as ‘extended NAHR’. Third, SVs aligning to known interspersed mobile elements carrying

the common diagnostic features of corresponding transposable elements, that is, target site

duplications and poly-A tracts [95], were classified as ‘high-confidence TEIs’. Events miss-

ing one or more of the diagnostic features were classified as ‘extended TEIs’. TEIs were
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furthered categorized as single transposable element insertions (STEIs) if a single element

was involved and multiple transposable element insertions (MTEIs) if multiple elements ap-

peared to be involved. Furthermore, full-length TEIs were discriminated from transposable

element fragments and transposable element subfamilies were also recorded. Through iden-

tification of spliced protein-coding gene sequences and TEI-diagnostic features, processed

pseudogenes likely inserted via a TEI-associated mechanism were also identified. Finally,

SVs lacking signatures of any of the above diagnostic sequence features were classified as

NHR events.

4.4.3 Sensitivity analysis for the SV mechanism classification

Sensitivity analysis was performed on five key parameters used in the mechanism classi-

fication pipeline. Classification results were examined as each parameter was varied over

a large range while fixing the other parameters at default values. First, the cutoff for

the length of homologous blocks in the flanking sequences alignment for classifying NAHR

events (NAHRhomolen) was varied from 10 to 150 bp with a step size of 10 bp. Second, the

cutoff for the percentage identity of homologous blocks in the flanking sequences alignment

for classifying NAHR events (NAHRpct) was varied from 70 to 100% with a step size of

1%. Third, the cutoff for the coverage of VNTR regions in the SV was varied from 0 to

100% with a step size of 5%. Fourth, the window size used to examine the consistency

of the transposable element boundary with a breakpoint for classifying STEI and MTEI

events (TEIwin) was varied from 10 to 400 bp with a step size of 10 bp. Finally, the gap

size used to examine whether adjacent transposable elements can be joined for classifying

MTEI events (TEIgap) was varied from 0 to 300 bp with a step size of 10 bp. Default val-

ues for NAHRhomolen, NAHRpct, VNTRcutoff, TEIwin and TEIgap used in the pipeline

were 50, 85, 50, 200 and 150, respectively.
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4.4.4 Analysis of ancestral state

For a ‘deletion’ relative to the reference genome, a ± 500-bp flanking sequence at each

breakpoint was extracted to obtain two sequences of 1,000 bp representing both the left

(A) and right (B) breakpoint junction sequences. Then a 1,000-bp junction sequence at

the breakpoint of the alternative allele, representing 500 bp upstream and downstream of

the left and right breakpoints, respectively (C), was also extracted. If C aligned onto a

nonhuman primate genome (that is, a potential ancestral genomic locus) at high-quality

and with better length and sequence identity (represented by the BLAT score) than A and

B, then the event was rectified as an insertion relative to the ancestral genome. Conversely,

for an ‘insertion’ relative to the reference genome, the A, B (alternative allele) and C

(reference allele) junction sequences of the event were extracted. If A and B both displayed

an alignment better than C onto a nonhuman primate genome, the event was rectified as

a deletion relative to the ancestral genome.

All the alignments were performed using BLAT on the chimpanzee (panTro2), macaque

(rheMac2), and orangutan (ponAbe2) genomes, the sequences of which were downloaded

from the UCSC genome browser (http://genome.ucsc.edu/). The Net alignments [109,

110] from UCSC were also downloaded and the top level was chosen to verify that the

alignment of the junction sequences were in the syntenic regions of the corresponding SVs.

Because all the primate ancestral genomes are highly similar, the alignment identity and

coverage were required to be >90%. Furthermore, the length ratio of target versus query

was required not to exceed a deviation of 10%.

SVs were classified as ‘rectifiable’ if unambiguous high-quality alignments to putative

ancestral regions could be constructed in any nonhuman primate genome. Particularly, an

SV was classified as ‘rectified’ if its state was changed from its original state to another

after the analysis (from deletion to insertion, or vice versa). The state of each SV was

then assigned based on the closest nonhuman primate genome (e.g., from chimpanzee to

orangutan and to macaque) in which a corresponding syntenic region existed. SVs were
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considered as ‘consistently rectifiable’ if they were rectified to the same state with no

inconsistent ancestral assignment inferred.

4.4.5 Insertion trace

After rectification based on the ancestral state analysis, all insertions that were consistently

rectifiable were aligned onto the human reference genome to scan for the presumable origin

of the inserted sequences. Because the inserted sequence of an event rectified from a deletion

is already present in the reference genome, any alignments overlapping with >50% of the

SV region were discarded and the next best match was chosen. BLAT alignments tracing

inserted sequences were required to have a sequence identity >90%.

4.4.6 Enrichment calculation

To calculate the enrichment and P-value for each feature and repeat association with break-

points, a nonparametric randomization test based on sampling was employed. For the ob-

served samples, the exact coordinates of the breakpoints were taken for location-dependent

computation and sequences flanking the breakpoints were extracted for sequence-dependent

computation. A random global background was generated by randomly sampling a set of

coordinates, or sequences with the same length, of the same amount from the reference

genome (build 36). Similarly, a local background was generated by randomly sampling in a

10-kb window at the breakpoints. The sampling was repeated 1,000 times with replacement

and the observed statistic of the breakpoints was tested against the sampling distribution

based on the whole genome. The enrichment value was calculated by comparing the ob-

served statistic over the mean of the statistics of the samplings. Then, the P-value of the

enrichment was calculated by counting the number of samplings that yielded a statistic

as extreme as, or more extreme than, the observed one. The enrichment was reported as

significant for any P < 0.05.

71



4.4.7 Correlation of chromosomal landmarks

Distance to telomeres was calculated from the midpoint of an SV to the end of the chromo-

some in the same arm. Distances to centromeres and pericentromeric gaps were calculated

from the midpoint of an SV to the closest centromeric or pericentromeric gap boundary

on the same chromosome. Distance to the closest synteny block boundary was calculated

by computing the distance from each breakpoint to the closest synteny block boundary

and then taking the average for the two breakpoints. Synteny block boundaries were taken

from the human-chimpanzee Net alignment file [109, 110] available at the UCSC genome

browser and the ‘gap’ type was excluded from the analysis. A Wilcoxon rank sum test was

then done to compare the distance measurements of different formation mechanisms in a

pair-wise fashion, followed by a correction for multiple hypothesis testing using the Holm

method.

4.4.8 Feature computation

We considered the following features at SV breakpoints in our analysis: GC content, helix

stability and DNA flexibility. All features were computed for sequences within 50 bp of

the breakpoints or randomly extracted from the genome. GC content was calculated by

computing the percentage of guanine and cytosine nucleotides over the given length of the

sequence. Helix stability of the DNA duplex was predicted by calculating the average of the

dissociation free energy of each overlapping dinucleotide [99]. Similarly, DNA flexibility was

estimated by calculating the average of the twist angle among all overlapping dinucleotides

[100]. To observe the change of the DNA flexibility and helix stability around a breakpoint,

values at each nucleotide were smoothed using a sliding window of 50 bp, which was slid

across an interval of 1 kb centered on the breakpoint.
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4.4.9 Repeat association

The association of repeat elements and pseudogenes was calculated by intersecting the

relevant data sets. Each element was overlapped with a breakpoint and the average number

of overlapping elements for all the input breakpoints was calculated. Repeat elements in

the human genome build 36 were downloaded from the RepeatMasker track of the UCSC

genome browser (March 2006 assembly). Only the elements annotated with repeat classes

SINE and LINE were included in this analysis. In total, there were 1,783,897 SINE elements

and 1,407,547 LINE elements of which 1,193,509 were Alu elements and 927,909 were L1

elements, respectively. For the pseudogene analysis, we used PseudoPipe [111] to identify

pseudogenes in the genome based on the protein annotations in the Ensembl database

(release 48). This analysis involved 2,454 duplicated pseudogenes and 10,999 processed

pseudogenes.

4.4.10 Motif discovery

MEME was used to discover sequence motifs near SV breakpoints and to generate position

weight matrices (PWMs) for significantly enriched motifs. The input data to MEME were

sequences of 200 bp centered on the breakpoints. Motif width was allowed to range from

6 bp to 12 bp. For SVs classified as NAHR-mediated we also looked for an overrepresen-

tation of a previously described sequence motif specific to recombination hotspots [103].

The recombination-hotspot motif was converted into a PWM by considering the average

genomic frequencies of the four bases ACGT (0.295, 0.205, 0.205, 0.295) and by adding

pseudocounts of 1. After identifying the motifs, MAST was applied to search for a motif

match in the original set and the global background set. The P-value cutoff for each motif

match was P < 0.0001 and a randomization test was performed as described above to

calculate the enrichment P-values for each motif.
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4.4.11 Microhomology enrichment analysis

The lengths of the microhomology sequences at the breakpoints of NHR-mediated events

were compared with the local background and a theoretical distribution. The theoretical

expectation was calculated by assuming independence between genomic positions and a

uniform distribution of the four nucleotides (ATCG) in the genome. The formula P × (1−

P )2×(i+1) was used to calculate the probability of observing homology of a specific length,

where i is the length of homology and P is the probability of observing the same pair of

nucleotides at the given genomic positions (that is, P = p(A)2 + p(T )2 + p(C)2 + p(G)2

and p(A,C,G, T ) = (0.295, 0.205, 0.205, 0.295) were estimated from the local background).

A one-sided Kolmogorov-Smirnov test (KS-test) was performed to test the enrichment

of microhomologies in NHR compared to the local background. The size of the effect

was calculated as the fold enrichment of microhomology stretches between NHR and the

background.

4.4.12 Mapping SVs with a junction library

The breakpoint junction mapping approach that we developed works as follows. The

junction library for SV mapping is created by joining 30 bp flanking sequences on each

side of a breakpoint. A deletion event is represented with a single junction sequence in

the library, while an insertion has both a left and right junction sequence corresponding to

each of its breakpoints. DNA reads from personal genomes are aligned against the junction

library. Reads are required to overlap a breakpoint by at least 10 bp on each side. All

successfully mapped reads are then aligned against the reference genome. Only those reads

that do not map onto the reference genome are labeled as ‘unique’ in the personal genome;

the other reads are labeled as ‘nonunique’. A short-read aligner, Bowtie [112], is used to

perform all the alignments (allowing for two mismatches). To score the SV candidates on

the basis of supportive hits, the following formula is used:
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Si = max(0, log2 Ti− log2Ri)

where Si is the score representing the effective number of hits (supportive hits) in log2

scale for SV i, with unique and nonunique hits denoted as Ti and Ri respectively. If Ti

or Ri is 0, the log term is replaced by 0. A score of 1 thus indicates 2 supportive hits,

whereas scores >2 (high-support) indicate the presence of >4 supportive hits.

The mapping process showed a linear time complexity in practice. On average, it re-

quired 8 h to run our junction-mapping program (open-sourced and available for download

at http://sv.gersteinlab.org/breakseq) against a sequenced genome at 40× physical

coverage on a 3GHz quad-core computer node with 16GB physical memory.

4.4.13 Intersection of the breakpoint junction library with RefSeq genes

RefSeq gene annotations were downloaded from the UCSC Genome Browser. Intersection

of the SVs in our breakpoint junction library and RefSeq genes were found by comparing

the start- and end- coordinates of the two datasets. For insertion events whose inserted

sequences could be traced, the positions from which the insertions were derived were com-

pared to the RefSeq gene annotations. In particular, 60 out of 146 NAHR deletions and 193

out of 580 NHR deletions intersected with annotated exons from RefSeq genes. Insertions

were also found to have an impact on coding regions, with 19 out of 51 NAHR insertions

and 11 out of 30 NHR insertions intersecting with the exons. These included cases where

exons at the insertion site were altered by the insertion event (19 NAHRs and 7 NHRs) and

where the inserted sequence was itself derived from exonic DNA (3 NAHRs and 6 NHRs).

4.4.14 PCR validation

We tested by PCR validation 24 insertion and 33 deletion calls predicted in NA12891

relative to the reference genome. Specifically, we designed PCR primers as previously

described [11] and amplified the predicted nonreference SV alleles. For the PCR, 10ng of
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Figure 4.8: Additional PCR validation for predicted SVs. The figure displays 17 additional
genomic regions on which PCR validations were carried out (expected band sizes for the
reference and non-reference SV alleles are shown at the top). SVs mapped in NA12891
were analyzed by PCR using SV flanking primers. The difference in size of the products
for the reference and non-reference alleles confirmed the presence of the SVs for all loci
except 2, 3, 5, 7 and 11. M1 is a 100bp marker and M2 is a 1kb marker.

genomic DNA (Coriell Institute were used with the SequalPrep Long PCR Kit (Invitrogen)

in 20 gl volumes using the following PCR conditions in a C1000 thermocycler (BioRad):

94 ◦C for 3 min, followed by 10 cycles of 94 ◦C for 10 s, 60 ◦C for 30 s and 68 ◦C for 10

min and 25 cycles of 94 ◦C for 10 s, 56 ◦C for 30 s and 68 ◦C for 10 min (+10 s/cycle),

followed by a final cycle of 72 ◦C for 10 min. Some of the reactions that failed with the

SequalPrep enzyme were amplified with the LongAmp Taq DNA Polymerase (NEB) or

the iProof High Fidelity DNA Polymerase (Biorad). PCR products were analyzed on a

1% agarose gel stained with Sybr Safe Dye (Invitrogen). Marker M1 was a 100-bp ladder

whereas M2 corresponded to a 1-kb ladder (500, 1,000, 1,500, 2,000, 3,000, etc) (NEB).
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Chapter 5

Conclusion

In this thesis, we demonstrate that with the tools, statistics and ontology provided by

Pseudofam, we can analyze pseudogenes from a different perspective and integrate pseu-

dogene families with other related datasets to better understand the genome remodeling

processes. For example, both pseudogenes and SDs represent duplicated regions of the

genome; hence, by analyzing the presence of pseudogenes located in SDs, some precious

clues about the generation processes of pseudogene and SD formation can be obtained. In

particular, comparing the substitution rates of a pseudogene and its parent gene with their

enclosing SD segments shall reveal details about their origin and time of formation.

We then present evidence for different formation mechanisms of SVs in the human

genome. Our result suggests that currently occurring copy number variants appear to

follow a pattern somewhat similar to young segmental duplications and decidedly different

from older segmental duplications. We show a shift from a prevalence of Alu-mediated

generation of old SDs toward other mechanisms for more recent SDs. The weakness of

association of CNVs with Alu elements can be viewed as the natural extension of this

trend, as CNVs are usually ‘very young’ SDs. This trend is consistent with the current

models that propose a decrease of Alu activity after the ‘Alu burst’ ∼40 Mya. Finally,

we present results suggesting that while some CNVs are formed through NAHR, a large

fraction of them are formed through NHEJ. These trends are present in the large amounts

77



of low-resolution data as well as found confirmed in the substantial number of sequenced

breakpoints.

To pinpoint the effects of SV and to characterize them, we thus extend our analysis to

a large-scale study of nucleotide-resolution SVs. Our BreakSeq approach uses a library of

previously discovered SVs that have breakpoint information to help researchers rapidly scan

for and characterize SVs in a newly sequenced personal genome. Furthermore, it has been

implemented as a computational pipeline that not only identifies SVs in a personal genome,

but also deduces the formation mechanism and ancestral state of an SV. Overall, our

analysis reveals the formational biases underlying SV formation and conforms to the fact

that NAHR is driven by recombination between repeat sequences, whereas NHR is likely

driven by DNA repair and replication errors. By applying BreakSeq on a large scale, we

envisage that it could be used for genotyping and determining SV allele frequencies. In fact,

it should be possible to put each of the breakpoint sequences in our library directly onto

a commercially available SNP chip, which could be used to precisely assess SV genotypes

simultaneously with all of the SNPs in an individual.

In the future, we will look into transposons that contribute a substantial part of the

SVs in the human genome. Transposons are DNA sequences that move around to different

positions within the genome, which consist of DNA transposons and retrotransposons.

Though ∼ 45% of the human genome are occupied by transposons or alike, there are

less than 0.05% still active. It is estimated that about 35–50 subfamilies of Alu, L1,

and SVA elements remain actively mobile, which not only produce genetic diversity but

also cause diseases by gene disruption. However, there is still no systematic and efficient

way to identify active mobile elements and their variation among individuals. To this

end, we aim to identify active mobile elements in a genome-wide fashion. For example,

a microarray with probes that represent both ends of known L1 elements can be used to

capture candidates for paired-end sequencing and subsequent alignment analyses to deduce

which are still active.
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Chapter 6

Appendix: Automated Motif

Analysis for Predicting Targets of

Modular Protein Domains

6.1 Abstract

Many protein interactions, especially those involved in signaling, involve short linear motifs

consisting of 5–10 amino acid residues that interact with modular protein domains such

as the SH3 binding domains and the kinase catalytic domains. One straightforward way

of identifying these interactions is by scanning for matches to the motif against all the

sequences in a target proteome. However, predicting domain targets by motif sequence

alone without considering other genomic and structural information has been shown to

be lacking in accuracy. Thus, we developed an efficient search algorithm to scan the

target proteome for potential domain targets and to increase the accuracy of each hit by

integrating a variety of pre-computed features, such as conservation, surface propensity,

and disorder. The integration is performed using naive Bayes and a training set of validated

experiments. By integrating a variety of biologically relevant features to predict domain

targets, we demonstrated a notably improved prediction of modular protein domain targets.
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Combined with emerging high-resolution data of domain specificities, we believe that our

approach can assist in the reconstruction of many signaling pathways.

6.2 Background

Important protein-protein interactions (e.g., those involved in signal transduction) are often

mediated by modular protein domains [113]. These domains often work in a mix-and-match

fashion, thereby acting as the building blocks of signaling pathways [114]. Examples include

the SH3 and WW domains that bind proline-rich motifs [115], and the serine/threonine

kinase domain that specifically phosphorylates the hydroxyl group of serine and threonine

[116]. Throughout we will refer to these collectively as ‘domains’. Since these kinds of do-

mains play an important role in the assembly, regulatory and signaling activities of the cell

[115, 117, 118], accurate prediction of their targets is crucial to understanding many bio-

logical pathways [119, 120]. As a result, various techniques have been developed to predict

domain targets and to enhance the prediction. Earlier studies have tried to use consensus

sequences from phage display experiments to predict the targets of peptide-binding do-

mains [121]. Also, a modern peptide library screening approach, which is commonly used

to determine phosphorylation motifs for kinases, has shown to have high accuracy in deter-

mining domain specificity [122]. Both approaches have in common that they identify the

specificity of each domain in a position-specific manner, yielding a Position Specific Scoring

Matrix (PSSM; also known as Position Weight Matrix, PWM). Furthermore, many studies

have demonstrated various ways to improve prediction performance using genomic informa-

tion. For instance, comparative genomics and secondary structure information have been

used to increase the performance of SH3 target prediction [123, 124]. Nevertheless, to date

the prediction of biologically relevant targets of these domains has yet to be addressed in

an automated and integrated fashion. To this end, we present an automated process, which

integrates comparative genomic (i.e., sequence conservation) and structural genomic (i.e.,

surface propensity and peptide disorder) data with traditional profile scanning method
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to predict domain targets based on experimental screening result (e.g. peptide library

screening) or their derived PSSMs. The process is fully automated and implemented as

an online server. The implementation is open-source and also available for download at

http://motips.gersteinlab.org.

6.3 Results and Discussion

6.3.1 An Automated Pipeline Process

Our approach first converts the input data into a PSSM and then normalizes it. Secondly,

it scans the target proteome by using the normalized PSSM and generates a hit list of

potential domain targets. Following the motif scanning, it computes the conservation

score, solvent accessibility score, and disorder score for each motif hit based on the pre-

computed scores for each protein residue. It then integrates these genomic features with

the motif matching scores and the number of hits per protein by naive Bayes to predict

the optimal targets based upon a validated training set. Lastly, it sorts the motif hits by

their likelihood of having interaction with the domain and consolidates them into unique

protein hits.

6.3.2 Data Conversion and Normalization

A number of experimental approaches, such as phage display and peptide library screening

(Figure 6.1), have been developed to identify domain binding and phosphorylation targets.

However, data from different experiments result in different formats that always complicate

the data analysis process. To keep the process consistent and standardized, these data are

converted into PSSM followed by normalization (for supported input formats, see System

Implementation and Availability).

Our approach employs two different ways to normalize the input data. The first ap-

proach is designed for signal data from experiments such as from peptide library screening.

It normalizes the signal score for each amino acid at each position by the following equation
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Figure 6.1: Experiments for motif identification. a) The phage display experiment iden-
tifies potential target peptides of short sequences, and b) the peptide library screening
measures the binding specificity at position level. The resulting experimental data of such
experiments can be converted into a Position Specific Scoring Matrix (PSSM).

Zca =
Sca
m∑
i

Sci

×m (6.1)

where Zca is the normalized score for amino acid a at position c, which has a signal

score Sca, and m is the total number of amino acids. Equation (6.1) thus computes the

weight for each amino acid at each position and scales it up by the total number of amino

acids. However, to consider the known specificity for domains such as the serine/threonine

kinase domain, which have fixed amino acid targets (e.g., serine and threonine) at a certain

position in the binding motif, a score of 0 is automatically assigned to every other amino

acid that is not expected at that position. To indicate the slight probability of observing

the fixed amino acids at other positions, a pseudo-count of 1 is assigned to each of them

at these non-specific positions.

The second way of normalization is designed for peptide data from experiments such

as from phage display experiment. Our approach employs the pseudo-count method based

on substitution probabilities to complement the incomplete or imperfect representation of

a position in the original peptide data [125]. Pseudo-counts are needed since this kind

of experiments significantly undersample sequence space, thereby severely penalizing rare

residues. It calculates the probability pca of amino acid a at position c by equation (6.2)
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as follows

Pca =
nca + bca
Nc +Bc

(6.2)

Bc = ψ ×Rc (6.3)

where nca and bca are the count and pseudo-count for amino acid a at position c, while

Nc and Bc are the total count and pseudo-count for all amino acids. The total pseudo-

count Bc is calculated from equation (6.3) with ψ as an empirically chosen positive number

(default to 5) and Rc as the unique count for all amino acids at position c. Taking different

substitution probabilities of different amino acids into consideration, substitution matrixes

such as the BLOSUM 62 [126, 127] and McLachlan [128] matrixes are used to calculate

pseudo-count bca by equation (6.4) shown as the following

bca = Bc ×
m∑
i

nci
Nc
× qia
Qi

;Qi =
m∑
i

qia (6.4)

where qia is the substitution probability for amino acid a replaced by i, and Qi is

the substitution probability for a replaced by any amino acid. In addition to the pseudo-

count method based on substitution probabilities, we also provide alternative pseudo-count

methods based on flat counting (adding 1 to all values) and entropy (adding a pseudo-count

proportional to the entropy of each position to its corresponding values).

6.3.3 Motif Scanning and Scoring

To scan the target proteome for potential domain targets and to score them, our approach

uses a window-sliding method based on a normalized PSSM similar to the method used

in Scansite [129, 130]. For each protein in the target proteome, it slides a window of size

equivalent to the length of the motif on the peptide sequence by every single amino acid

(Figure 6.2). Based on the scoring matrix, the score for each window sequence is calculated

by equation (6.5)
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Figure 6.2: Motif scanning and scoring. Identify potential target sites of the domain by
sliding a Position Specific Scoring Matrix (PSSM) across the peptides in the proteome and
comparing the motif matching scores for each window.

E′ =

l∑
c

− log2

 Sca
m∑
i

Sci

 (6.5)

where l is the length of the motif and Sca is the score for the amino acid a at position

c in the window sequence. This equation is also used to calculate an optimal score of the

motif where Sca is the maximum score at position c in the scoring matrix. Then the final

normalized score E for the window sequence is calculated by equation (6.6)

E =
E′sequence − E′optimal

E′optimal

(6.6)

To improve the efficiency of the scanning algorithm, each motif hit is compared imme-

diately to a sorted hit list of fixed size (currently 2,000 hits) and will only be retained if it

has a more significant score than the least significant one in the list.

6.3.4 Structural Features and Scoring

Although a profile-matching scan could identify possible domain targets, it does not take

into account the structural information of the target sequences that are also related to
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Figure 6.3: A peptide-binding domain example. A peptide-binding domain, such as the
SH3 domain, recognizes the binding site on a peptide which exhibits certain structural and
conservation features including surface propensity, protein disorder, and sequence conser-
vation.

protein-protein interactions. For instances, sequences exposed on the surface should be

more accessible than those that are buried; sequences that are unfolded should be more

easily bound than those that are folded; and structures that are highly conserved among

close species could have more biological significance. Taking these factors into account,

our approach includes three major structural and conservation features in the prediction,

which are surface propensity, protein disorder, and sequence conservation, to complement

the motif scanning score (Figure 6.3).

The degree of surface propensity of a given sequence is measured by its relative solvent

accessibility, which represents the extent of residue solvent exposure. It is predicted by

a protein structure prediction program, SABLE, which uses a neural network-based re-

gression algorithm [131]. To measure the disorder of the sequence, DISOPRED, a neural

networks and PSI-BLAST-based approach is used to estimate the probability of the region

being disordered [132, 133]. For measuring the conservation of the sequence structure,

orthologs of the sequence are identified using INPARANOID [134]. Following the ortholog

identification, the sequences in the orthologous groups are aligned with MUSCLE [135]
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and a conservation score for each position in the sequence is estimated by its entropy using

AL2CO [136].

For each protein in each proteome being studied, the solvent accessibility, disorder and

conservation scores are pre-computed for each residue. As a result, the scores for the motif

hits could be calculated in a timely manner.

6.3.5 Feature Integration and Target Prediction

In addition to calculating the structural and conservation scores for each motif hit, the

number of hits per protein is also calculated as a feature for the hit. Our approach then

applies a Bayesian learning algorithm to integrate all the aforementioned features, including

the motif scanning score, solvent accessibility score, disorder score, conservation score, and

number of hits per protein, to predict potential domain targets. Because of the simplicity

and efficiency of the naive Bayes model, it is employed to build a classifier based on a

validated training set under the assumption of independence of the features. In particular,

the default models (i.e., the SH3 model based on Sho1 and the S/T kinase model based on

Prk1) used a number of experimentally determined interaction pairs [137, 138] as the gold-

standard positives to train the algorithm. Moreover, a set of paired proteins in which each

pair was annotated to always localize to two different compartments (for example, nucleus

only and cytoplasm only in the Gene Ontology) in the cell was selected as the gold-standard

negatives. The conditional probability can then be calculated from the given features based

on equation (6.7)

p(I|F1, . . . , Fn) ∝ p(I)
n∏

i=1

p(Fi|I) (6.7)

where I is the class variable (i.e., interaction or non-interaction), F is the feature such as

the motif scanning score, and n is the total number of features. To assess the independence

of the features, pair-wise correlation coefficients were calculated. The results showed the

pair-wise correlation coefficients have an average of 0.23 for the SH3 model and 0.18 for the
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S/T kinase model, indicating the features are to a large extent independent. Furthermore,

since the independency assumption is not harmful for data pre-processed with Principal

Component Analysis (PCA) [139], we performed PCA to transform the possibly correlated

features into uncorrelated features. The first three principal components were chosen to

build a naive Bayes model followed by a stratified 10-fold cross-validation. The Area Under

Curve (AUC; 89.1 for the SH3 model and 75.9% for the S/T kinase model) of the Receiver

Operating Curve (ROC) resulting from the PCA transformation was then compared to the

AUC (91.8% for the SH3 model and 78.6% for the S/T kinase model) without the PCA. No

significant deviation of performance was observed between the predictions without PCA

and those with PCA, indicating no strong dependency among the original features.

Finally, the motif hits from the domain of interest are classified under the selected

model and sorted by their likelihood of having an interaction with the domain. Hits for

the same protein are consolidated into one single hit represented by the most likely target.

Genomic information that is not used in the prediction, such as protein-protein interaction

data, localization data and phosphorylome data, could also be integrated easily with the

tab-delimited hit list for further analysis while phosphorylation prediction data from mass

spectrometry experiments can be used as cross-validation.

6.3.6 Prediction Performance

To assess the prediction performance of our approach, we benchmarked with two existing

methods: 1. the Eukaryotic Linear Motif (ELM) database [140], which predicts functional

sites in eukaryotic proteins by patterns with context-based rules and logical filters such as

the structure filter; and 2. the Scansite method [129], which uses a motif profile-scoring

approach to predict sites within proteins that are likely to be phosphorylated or bind to

domains. Based on the SH3 interactome data [137], a model for the SH3 domain was trained

with the Sho1 interactions. Then, we performed our prediction, requiring a likelihood value

above 0.9, on 10 other different SH3 proteins by using the aforementioned model. We

compared our results with the predictions from the ELM database (data retrieved from
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Figure 6.4: Targets prediction performance. a) The benchmark of SH3 target prediction
based on the validated targets for 10 different SH3 proteins, and b) the Receiver Operating
Curve (ROC) comparing the prediction performance for the Prk1 kinase targets.

the web server using a Python program for 5 different SH3 ligands available on the server)

and from the Scansite scanning (which requires a score not more than 3 fold of the optimal

score). Our results (Figure 6.4) show that on average our prediction has a 49% increase

in accuracy in predicting the validated targets of the SH3 proteins when compared to the

ELM prediction. When compared to the profile-scoring method of Scansite, our prediction

is almost twice as accurate (90% higher). In addition to predicting SH3 targets, our

approach was employed to predict Prk1 phosphorylation sites [138]. A stratified 10-fold

cross-validation has shown a performance increase (Figure 6.4; 79% AUC in a ROC curve)

when compared to the profile-scoring method (72% AUC).

6.3.7 System Implementation and Availability

The motif analyzing process mentioned above is implemented as an online server, which

allows researchers to upload their experimental data representing the motifs of the domains

and to predict the targets.

Our pipeline supports various input data formats. For specific analysis software, it cur-

rently supports the Gene Pix Result format (http://www.moleculardevices.com/pages/
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software/gn_genepix_file_formats.html#gpr) that is usually used for peptide library

screening data, and the BRAIN project’s peptide format (http://www.baderlab.com/

Software/BRAIN/PeptideFile) that is usually used for phage display experiments. For

general purposes, it supports the FASTA format (i.e., a set of peptides with the same

length that represent the possible interacting sites) and the Nx20 format (i.e., a tab-

delimited format that represents the positional scores of a motif profile with the first row

labeled with the amino acid residues and the subsequent rows as the different positions).

The pipeline currently has a compilation of 20 proteomes consisting of 14 yeast proteomes

(S. cerevisiae, C. albicans, D. hansenii, C. glabrata, K. lactis, N. crassa, S. bayanus, S.

castelli, S. kluyveri, S. kudriavzevii, S. mikatae, S. paradoxus, S. pombe, Y. lipolytica), 2

worm proteomes (C. briggsae, C. elegans), and 4 mammalian proteomes (C. familiaris, P.

troglodytes, M. musculus, H. sapiens).

The feature scores were pre-computed and the default prediction models, which could

be replaced by a user-defined training set (a tab-delimited file with the gene on the first

column and a logical value on the second indicating the interaction), were also built. More-

over, the analyzing process is implemented as an asynchronous multi-threading pipeline

process so the prediction results can be delivered to the users via email offline, in addition

to being displayed online. Furthermore, the entire system is built using the Java program-

ming language under a Model View Controller architecture in which the analysis process

is implemented as a standalone open-sourced program. Therefore, the process could be

customized by researchers and executed in command line on multiple platforms. The naive

Bayes classification is performed using Weka, the open-source Java data mining software

[141].

The standalone pipeline and database are available for download at the MOTIPS server

at http://motips.gersteinlab.org.
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6.4 Conclusions

By integrating a variety of biologically relevant features and using a Bayesian learning

algorithm to predict domain targets, our approach has improved the domain binding and

phosphorylation target predictions notably compared to using only profile-matching scan.

We believe our approach is versatile enough to predict targets of domains of different kinds,

and its implementation as an online public server could facilitate researchers in predicting

domain targets more accurately.
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