Overview of Genome Annotation & ENCODE Elements

M Gerstein
on behalf of

ENCODE

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @markgerstein).
See last slide for references & more info.
How might we annotate a human text?

The Semicolon Wars

Brian Hayes

If you want to be a thorough-going world traveler, you need to learn 6,912 ways to say “Where is the toilet, please?” That’s the number of languages known to be spoken by the peoples of planet Earth, according to Ethnologue.com.

If you want to be the complete polyglot, you also have quite a challenge ahead of you, learning all the ways to say:

```
printf("hello, world\n");
```

(This one is in C.) A catalog maintained by Bill Kinnersley of the University of Kansas lists about 2,500 programming languages. Another survey, compiled by Diamuid Piggott, puts the total even higher, at more than 8,500. And keep in mind that whereas human languages have had millennia to evolve and diversify, all the computer languages have sprung up in just 50 years. Even by the more-conservative standards of the Kinnersley count, that means we’ve been inventing one language a week, on average, ever since Fortran.

For ethnologists, linguistic diversity is a cultural resource to be nurtured and preserved, much like biodiversity.

Every programmer knows there is one true programming language. A new one every week

a good-enough notation—for expressing an algorithm or defining a data structure.

There are programmers of my acquaintance who will dispute that last statement. I expect to hear from them. They will argue—zealously, ardently, vehemently—that we have indeed found the right programming language, and for me to claim otherwise is willful ignorance. The one true language may not yet be perfect, they’ll concede, but it’s built on a sound foundation and solves the main problems, and now we should all work together to refine and improve it. The catch, of course, is that each of these friends will concede which end of a boiled egg to crack.

This famous tempest in an egg cup was replayed 250 years later by designers of computer hardware and communications protocols. When a block of data is stored or transmitted, either the least-significant bit or the most-significant bit can go first. Which way is better? It hardly matters, although life would be easier if everyone made the same choice. But that’s not what has happened, and so quite a lot of hardware and software is needed just to swap ends at boundaries between systems.

This modern echo of Swift’s Endian wars was first pointed out by Danny Cohen of the University of Southern California in a brilliant 1980 memo, “On holy wars and a plea for peace.” The memo, subsequently published in Computer, was widely read and admired; the plea for peace was ignored.

Another feud—even forgotten, I think, but never settled by truce or treaty—focused on the semicolon. In Algol and Pascal, program statements have to be separated by semicolons. For example, `in x := 0; y := x + 1; z := 2` the semicolons tell the compiler where one statement ends and the next begins. C
Non-coding Annotations: Overview

There are several collections of information "tracks" related to non-coding features

Sequence features, incl. **Conservation**

Functional Genomics
ChIP-seq (Epigenome & seq. specific TF) and ncRNA & un-annotated transcription

[Image of a diagram showing the process of signal processing, segmentation, and grouping active regions into annotation blocks.]

Signal Track for RNA-seq & ChIP-seq
Functional Genomics Annotations

A) PEAKS
1. DNase peaks at the UCSC genome browser {on many cell lines}
2. The regulation track at the UCSC genome browser, with compilation of TF ChIP-seq peaks from uniform processing (individual peaks are annotated with TF and cell line)
3. Blacklist Regions

B) PROMOTERS
Annotated GENCODE TSSes (also, TSSes with FANTOM CAGE support)

C) ENHANCERS (Supervised)

D) UNSUPERVISED SEGMENTATIONS, INCLUDING ENHANCERS
ChromHMM, SegWay, HiHMM....

E) HOT/LOT REGIONS

F) CONNECTIVITY
1. Enhancer-target gene connection
2. TF-target network connectivity
3. TADs: Topologically Associated Domain

G) MOTIFS
for TF binding

H) RNA
1. A matrix of expression data of known genes (or exons) for protein-coding genes & known ncRNAs {on many cell lines}
2. Novel RNA contigs track, i.e., possible novel transcripts (ie Transcriptionally Active Regions or TARs)
3. Novel junctions

I) OTHER
1. List of Allelic SNPs & Regions
2. Models
Higher level Information from ChIP-seq

TFs with Peaks
- K562 Pol2 Sig
- K562 Pol2 Pk
- K562 c-Myc Sig
- K562 c-Myc Pk
- K562 mlgG Sig
- K562 H3K4me3 S
- K562 H3K36me3 S1

Control
- His.
- Marks (broad)

Networks

Transcript Level
- Autosomal
 - top 20%
 - bottom 20%

Aggregations

[Science 330: 1775
+ ENCODE Data Sources
TFs & Control: Yale
HMs: UW & Broad]
Data Flow: peaks to proximal & distal networks

Peak Calling

Assigning TF binding sites to targets

Filtering high confidence edges & distal regulation

Based on stat. model combining signal strength & location relative to typical binding

[Cheng et al., Bioinfo. (‘11); Nature 489:91 (‘12), doi:10.1038/nature11245; Yip et al., GenomeBiology (‘12)]
DNase Peaks & Open Chromatin

DNase hypersensitivity as a mark of functionality

Thurman et al. Nature 2012
H3K27ac is an important mechanism to regulate the activity of enhancers in different developmental stages.

Epigenetically, H3K27ac marks are present near active enhancers.

Nord, et al., Cell, 2013
Unsupervised segmentation of chromatin features groups regions with similar patterns and labels each pattern, thus, annotating the genome.

Higher level Information from RNA-seq: Avg. signal at exons & "TARs" (RPKMs)

[PNAS 4:107: 5254 ; IJC 123:569]
Genomic annotations

Introduction
The ENCODE Project provides a set of candidate genomic regions that can serve as predictions for further investigation. This page provides links to download a set of candidate genomic regions as well as a list of publications that contain additional data.

Candidate genomic regions
• Gene expression matrix over ENCODE cell lines (~60 cell lines in total) in GENCODE 19 [Download data | Download methods]
• GENCODE v18 TSS list stratified by Fantom5 CAGE data [View README]
 • Strict CAGE clusters [Download]
 • Robust CAGE clusters [Download]
 • Permissive CAGE clusters [Download]
• Candidate enhancers based on DNase hypersensitivity and H3K27ac and annotated with TF-ChIP peaks as well as candidate promoters annotated with TF-ChIP peaks. [Visualize data | Download methods]
 • Distal DNase peaks [Download]
 • Proximal DNase peaks [Download]
 • H3K27ac annotations [Download]
 • Distal TF binding sites [Download]
 • Proximal TF binding sites [Download]

Additional annotations
Papers previously published by the ENCODE Consortium contain data files that include additional genomic annotations. Search for all publications with ENCODE element data

Peaks
Peaks are enriched regions of the genome corresponding to either sites of transcription factor binding or DNase hypersensitivity identified during various functional genomic assays. In this section, we provide a list of peaks in various cell lines using both DNase-Seq and ChIP-Seq assays. View publications.

RNAs
RNA represents the direct readout of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation. A catalogue of the RNA species made inside the cell and the amount of RNA from each of these loci across various cell lines is provided in this section. View publications.

Promoters
The promoter is the region proximal to the transcription start site of a gene that regulates its transcription using transcription factor binding sites. These transcription factors recruit RNA polymerase after binding to the promoter and initiate transcription of the gene. View publications.
"Simplified" Annotation

- "Slice" through the ENCODE, providing close-to-data subset of the annotations

- Gene expression matrix
 - over ENCODE2 cell lines (~60 cell lines in total) in GENCODE 19
- TSS list
 - GENCODE v19

- “Tissue type” facet for the cell lines (DCC)
Simplified regulatory sites

- **Candidate enhancers**: The master list of TSS-distal DHS peaks annotated with
 - H3K27ac enrichment (percentile over background) in a cell-type-specific manner.
 - TF ChIP-seq peaks across cell-types

- **Candidate promoters**: The master list of TSS-proximal DHS peaks annotated with TF ChIP-seq peaks across cell types.
Access candidate genomic annotations via encodeproject.org on the "Data" menu bar

encodeproject.org/data/annotations
Default Theme

• Default Outline Level 1
 – Level 2
Details of DNase peaks, H3K27ac annotation and TF ChIP-seq annotations

DNase peak detail

<table>
<thead>
<tr>
<th>Item: re9.73027455</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell lines merged: HMEC, Osteobl, HepG2, HSMMtube, GM12878, HSMM, HUVEC</td>
</tr>
<tr>
<td>Number of cell lines merged: 7</td>
</tr>
<tr>
<td>Number of peaks merged: 7</td>
</tr>
<tr>
<td>DNase scores of peaks merged: 52, 32, 9, 5, 23, 37, 23</td>
</tr>
</tbody>
</table>

H3K27ac annotation

<table>
<thead>
<tr>
<th>Item: H1-hESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3K27ac percentile over background: 99.53</td>
</tr>
</tbody>
</table>

TF annotation

<table>
<thead>
<tr>
<th>Item: FOS, SPI1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors (cell lines) represented by interval: FOS (HUVEC), SPI1 (GM12878), SPI1 (GM12891)</td>
</tr>
</tbody>
</table>
Peak Calling

• Generate and threshold the signal profile and identify candidate target regions
 – Simulation (PeakSeq),
 – Local window based Poisson (MACS),
 – Fold change statistics (SPP)

• Score against the control

Potential Targets

Normalized Control

Significantly Enriched targets
Chromatin is the combination or complex of DNA and proteins that make up the contents of the nucleus of a cell. The basic repeat element of chromatin is the nucleosome, interconnected by sections of linker DNA.

http://www.integratedhealthcare.eu/1/en/histones_and_chromatin/