Biological Network Analysis

Mark B Gerstein
Yale

slides at
Lectures.GersteinLab.org

(See Last Slide for References & More Info.)
Networks occupy a midway point in terms of level of understanding

1D: Complete Genetic Partslist

~2D: Bio-molecular Network Wiring Diagram

3D and 4D: Detailed structural understanding of cellular machinery (e.g. ribosome in different functional states)

[Fleischmann et al., Science, 269:496]
[Chiu et al. Trends in Cell Biol, 16:144]
Networks as a universal language

Internet [Burch & Cheswick]
Food Web
Electronic Circuit
Disease Spread [Krebs]
Protein Interactions [Barabasi]
Neural Network [Cajal]
Social Network
Combining networks forms an ideal way of integrating diverse information.

- **Metabolic pathway**
- **Transcriptional regulatory network**
- **Physical protein-protein Interaction**
- **Co-expression Relationship**
- **Genetic interaction (synthetic lethal)**
- **Signaling pathways**

Part of the TCA cycle
• Why Networks?

• Network Comparisons
 (reg. net. in many organisms)
 – in rel. to social hierarchy
 – scaling in rel. to partnerships
 – Computer OS Comparisons

• Network Dynamics
 Across Environments
 (prokaryote metab. pathways)
 – Metabolic Pathways
 – Entry pts. (Mem. Proteins)
Network Comparison #1
Comparing the Yeast Regulatory Network to a Governmental Hierarchy
Determination of "Level" in Regulatory Network Hierarchy with Breadth-first Search

I. Example network with all 4 motifs

II. Finding terminal nodes (Red)

III. Finding mid-level nodes (Green)

IV. Finding top-most nodes (Blue)

Level 3
Level 2
Level 1

[Yu et al., PNAS (2006)]
Regulatory Networks have similar hierarchical structures

[S. cerevisiae] [E. coli]

[Yu et al., Proc Natl Acad Sci U S A (2006)]
Yeast Regulatory Hierarchy: the Middle-managers Rule

A. Regulatory hierarchy in *S. cerevisiae*

[Yu et al., PNAS (2006)]
Yeast Network Similar in Structure to Government Hierarchy with Respect to Middle-managers

B. Governmental hierarchy of a representative city (Macao)
Characteristics of Regulatory Hierarchy: Middle Managers are Information Flow Bottlenecks

Average betweenness at each level

[Yu et al., PNAS (2006)]
Network Comparison #2
Broadening the comparison to different types of hierarchies & different types of biological networks
Different kinds of Hierarchies

Autocratic
- Well-defined levels and a clear chain of command
- A military hierarchy

Democratic
- Without well-defined levels & with more co-regulatory partnerships
- A club or a scientific collaboration network

Intermediate
- High degree of co-regulation and can be organized into hierarchies
- A law firm

<table>
<thead>
<tr>
<th></th>
<th>Autocratic</th>
<th>Democratic</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betweenness (△)</td>
<td>1.03</td>
<td>3.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Betweenness (△)</td>
<td>4.1</td>
<td>1.08</td>
<td>3.4</td>
</tr>
<tr>
<td>Var. Betw. (triangles)</td>
<td>2.1</td>
<td>0.58</td>
<td>1.74</td>
</tr>
<tr>
<td>Var. Betw. (all)</td>
<td>2.9</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>$D_{Net-collab}$</td>
<td>0</td>
<td>0.91</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Decreases σ^2 of ‘stress’

Increases ‘collaboration’

[Bhardwaj et al., PNAS (2010), in press]
Collaborative Nature of the Nodes

Degree of Collaboration D_{collab}^i

More Collaborative: Democratic
More Autonomous: Autocratic

[1/6 = 0.16] [4/4 = 1]

[Bhardwaj et al., PNAS (2010), in press]
Higher species are more show more collaborative nodes (more democratic)

[Bhardwaj et al., PNAS (2010), in press]
Collaborative Nature of the Levels

Level L:

$D^i_{collab} = 0.1\ 0.3\ 0.2\ 0.4$

$D^L_{Level-collab} = \frac{0.1 + 0.3 + 0.2 + 0.4}{4} = 0.25$

[Bhardwaj et al., PNAS (2010), in press]
Collaboration Between Levels

\[D_{\text{betw-level-collab}}^{L,M} = \sum_{A \in L} \sum_{B \in M} \frac{|G_A \cap G_B|}{|L| \cdot |M|} \]

[Bhardwaj et al., PNAS (2010), in press]
Middle Managers Interact the Most in Efficient Corporate Settings

[Bhardwaj et al., PNAS (2010), in press]
Co-regulation Instantiates a Multi-Input Motif

[Bhardwaj et al., PNAS (2010), in press]
Network Comparisons #3
Relating the size of co-regulation in partnership networks with the scale of the regulated
Co-regulation Partnerships

- Readily seen in many commonplace social contexts.
- An academic institution (say a high school), multiple teachers supervise the same set of students and have partnership interactions amongst themselves.

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
Building and Analysis of Networks

Edge placed if two regulators co-regulate

<table>
<thead>
<tr>
<th>Network type</th>
<th>Species</th>
<th>Number of regulators</th>
<th>Number of targets</th>
<th>Number of interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription</td>
<td>E. coli</td>
<td>160</td>
<td>1,420</td>
<td>3,123</td>
</tr>
<tr>
<td>Transcription</td>
<td>Yeast</td>
<td>157</td>
<td>4,410</td>
<td>12,873</td>
</tr>
<tr>
<td>Transcription</td>
<td>Mouse</td>
<td>144</td>
<td>1,092</td>
<td>2,403</td>
</tr>
<tr>
<td>Transcription</td>
<td>Rat</td>
<td>91</td>
<td>461</td>
<td>1,092</td>
</tr>
<tr>
<td>Transcription</td>
<td>Human</td>
<td>156</td>
<td>3,032</td>
<td>6,896</td>
</tr>
<tr>
<td>Phosphorylation</td>
<td>Yeast</td>
<td>87</td>
<td>1,337</td>
<td>4,083</td>
</tr>
<tr>
<td>Modification</td>
<td>Human</td>
<td>518</td>
<td>1,218</td>
<td>2,782</td>
</tr>
</tbody>
</table>

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
Scaling of Regulatory Partnerships with Targets

- **Gene**
- **Central node (c):**
- **Target of c (t):**
- **Gene regulating t**
- **Partner node of c:**
- **Partnership edge:** Co-regulation of t

Mouse transcription

- \[y = 73(1-e^{-0.03x}), R^2 = 0.91 \]
- \[y = 24(1-e^{-0.02x}), R^2 = 0.81 \]

Number of Partners vs. Number of Targets

For a central node c
Scaling across many networks

Linear in *E. coli* (Due to operons)
Exponential Saturation in others

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
Comparison to Social Networks: Partnership networks effectively saturate with increasingly complex output.
A Simple Theoretical Model

On average, each regulator has n targets

f_i : the number of partners

k_i : the number of targets

When $f=0$,

$$\frac{\Delta f}{\Delta k} \bigg|_{f=0} = \frac{nm}{N}$$

When $f=1$,

$$\frac{\Delta f}{\Delta k} \bigg|_{f=1} = \frac{(m-1)n}{N}$$

Generalizing,

$$\frac{\partial f}{\partial k} = \frac{(m-f)n}{N}$$

Integrating this, we get:

$$f = m(1 - e^{-n/Nk}) = a(1 - e^{-bk})$$

[Bhardwaj et al., PLoS Comp Biol (2010), in press]
Network Comparison #4: Comparing the structure and evolution of biological regulatory networks and software call graphs
E. Coli Transcriptional regulatory network vs Linux kernel call graph

<table>
<thead>
<tr>
<th>Basic properties of systems</th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>Genes (TFs & targets)</td>
<td>Functions (subroutines)</td>
</tr>
<tr>
<td>Edges</td>
<td>Transcriptional regulation</td>
<td>Function calls</td>
</tr>
<tr>
<td>External constraints</td>
<td>Natural environment</td>
<td>Hardware architecture, customer requirements</td>
</tr>
<tr>
<td>Origin of evolutionary changes</td>
<td>Random mutation & natural selection</td>
<td>Designers’ fine tuning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>1378</td>
<td>12391</td>
</tr>
<tr>
<td>Number of persistent nodes</td>
<td>72* (5%)</td>
<td>5120 (41%)</td>
</tr>
<tr>
<td>Number of edges</td>
<td>2967</td>
<td>33553</td>
</tr>
<tr>
<td>Number of modules</td>
<td>64</td>
<td>3665</td>
</tr>
<tr>
<td>Number of comparative references</td>
<td>200 bacterial genomes</td>
<td>24 versions of kernels</td>
</tr>
<tr>
<td>Years of evolution</td>
<td>Billions years</td>
<td>20 years</td>
</tr>
</tbody>
</table>

[Yan et al., PNAS (2010), in press]
E. coli transcriptional regulatory network

Linux call graph

master regulator

middle manager

workhorse

[Yan et al., PNAS (2010), in press]
Comparison: hierarchical organization

Pyramidal vs Top-heavy

Degree distribution
Roles of hubs

% in E. coli regulatory network % in Linux call graph

master regulator 4.6 29.6
middle manager 5.1 58.2
workhorse 90.2 12.3

Comparison: hierarchical organization

Degree distribution
Roles of hubs

out-degree hubs e.g. “crp”
in-degree hubs e.g. “printk”

[Yan et al., PNAS (2010), in press]
Comparison: organization of modules

Modules are labeled by master regulators: TFs, high-level starting functions

<table>
<thead>
<tr>
<th></th>
<th>E. Coli TRN</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td># of modules</td>
<td>64</td>
<td>3665</td>
</tr>
<tr>
<td>Average overlap</td>
<td>4.3%</td>
<td>80.7%</td>
</tr>
<tr>
<td>Maximum node reuse</td>
<td>15.6%</td>
<td>87.5%</td>
</tr>
<tr>
<td>Average node reuse</td>
<td>3.5%</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Overlap(M2, M3) = \[\frac{|M2 \cap M3|}{|M2 \cup M3|} = \frac{2}{11} \]

TRN: modules overlap little, components are less generic: “ompF”

Call graph: modules overlap, Functions are highly reused (generic): “printk”

[Yan et al., PNAS (2010), in press]
Comparison of persistent components

- Persistent genes (preserve among different genomes) vs persistent functions (preserve among different releases)

- Building of the hierarchy:
 - TRN: Bottom up. Regulatory changes are the main driving forces of evolution
 - Call graph: top down

[Yan et al., PNAS (2010), in press]
Evolutionary rate of persistent functions

Persistent genes evolve slowly

Two classes of persistent functions

[Yan et al., PNAS (2010), in press]
Why and so what?

The difference can be explained by the nature of hubs evolution: tinkering vs design

- Independent modules:
 - robust
 - costly: the system needs a variety of tools for different tasks

- Overlap modules (reuse):
 - Less robust:
 - Breakdown of a generic component is harmful to the whole system
 - Fragile in the sense any change in a module may require compensating changes in a generic function
 - cost effective: components can be used by need to be fine-tuned

[Spearman correlation $r=0.25$ $P<10^{-75}$]

[Yan et al., PNAS (2010), in press]
Network Dynamics Across Environments: Metabolic Pathways

How do molecular networks change across environments?
What pathways are used more?
Used as a biosensor?
What is Metagenomics?

Traditional Genomics

- Select organism and culture
- Extract DNA and sequence
- Assemble and annotate

Estimated that less than 1% of microbes can be cultured

Metagenomics

- Collect sample from environment
- Extract DNA and sequence
- Assemble and annotate

Lose information about which gene belongs to which microbe
Sorcerer II Global Ocean Survey

Sorcerer II journey August 2003- January 2006
Sample approximately every 200 miles

Rusch, et al., *PLOS Biology* 2007
Sorcerer II Global Ocean Survey

- **Metagenomic Sequence**: 6.25 GB of data
 - 0.1–0.8 µm size fraction (bacteria)
 - 6.3 billion base pairs (7.7 million reads)
 - Reads were assembled and genes annotated
 - 1 million CPU hours to process

- **Metadata**
 - GPS coordinates, Sample Depth, Water Depth, Salinity, Temperature, Chlorophyll Content

- **Additional Metadata via GPS coordinates**

- **Metabolic Pathways**

- **Membrane Protein Families**

Rusch, et al., *PLOS Biology* 2007
Extracting Environmental Data from Other Sources

Nutrient Features Extracted:
- Phosphate
- Silicate
- Nitrate
- Apparent Oxygen Utilization
- Dissolved Oxygen

Sample Depth: 1 meter
Water Depth: 32 meters
Chlorophyll: 4.0 ug/kg
Salinity: 31 psu
Temperature: 11 C

Location: 41°5’28”N, 71°36’8”W
40% of Oceans are Impacted by Humans

* Resolution is 1 km square
* Value of a activity at a particular location is determined by the type of ecosystem present:

\[\text{Impact} = \sum \text{Features} \times \text{Ecosystem} \times \text{impact weight} \]

Anthropogenic Features Extracted:
- Ultraviolet radiation
- Shipping
- Pollution
- Climate Change
- Ocean Acidification

Halperin et al. Science 2008
Mapping Raw Metagenomic Reads to a Matrix of Families or Pathways for each Site

Patel et. al., Genome Research 2010
Expressing data as matrices indexed by site, env. var., and pathway usage

[Rusch et. al., (2007) PLOS Biology; Gianoulis et al., PNAS (in press, 2009)]
Simple Relationships: Pairwise Correlations

Gianoulis et al., PNAS (in press, 2009)
Canonical Correlation Analysis: Simultaneous weighting

Lifestyle Index = \(a \) \(\begin{array}{c} \text{km run/week} \\ \text{Weight} \end{array} \) + \(b \) \(\text{Fit Index} \) + \(c \) \(\text{Fit Index} \)

Fit Index = \(a \) \(\text{Health Index} \) + \(b \) \(\text{Fitness Index} \) + \(c \) \(\text{Weight} \)
Canonical Correlation Analysis:
Simultaneous weighting

\[\text{Lifestyle Index} = a + b + c \]

Weight

<table>
<thead>
<tr>
<th># km run/week</th>
<th>Weight</th>
</tr>
</thead>
</table>

Lifestyle Index

<table>
<thead>
<tr>
<th>Lifestyle Index</th>
<th>Fit Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Runner]</td>
<td>![Scale]</td>
</tr>
<tr>
<td>![Bike]</td>
<td>![Scale]</td>
</tr>
</tbody>
</table>

Environmental Features

- Temp etc
- Chlorophyll

Metabolic Pathways/Protein Families

- Photosynthesis etc
- Lipid Metabolism
The goal of this technique is to interpret cross-variance matrices. We do this by defining a change of basis.

Gianoulis et al., PNAS 2009
Strength of Pathway co-variation with environment

Gianoulis et al., *PNAS* 2009
Conclusion #1: energy conversion strategy, temp and depth

Gianoulis et al., *PNAS* 2009
Conclusion #2: Outer Membrane components vary with the environment

Membrane proteins interact with the environment, transporting available nutrients, sensing environmental signals, and responding to changes.

Gianoulis et al., *PNAS* 2009
Patel et al. *Genome Research* 2010
Network Dynamics Across Environments: Membrane Proteins (Pathway Entry Points)
Membrane Proteins: Sensing and Responding the Environment

- 2.3 million predicted membrane proteins
- 1.2 million unique
- 850,000 mapped to 151 membrane protein COGs

107 variant membrane protein families
44 invariant membrane protein families
20% have NO KNOWN FUNCTION
Membrane Proteins co-vary more than Metabolic Pathways

Median absolute structural Correlation Coefficient

Membrane Proteins = 0.3

Metabolic Pathways = 0.17

Patel and Gianoulis et al., (in press) Genome Research
CCA Limitations

Both the strength and the directionality of relationships between nodes is difficult to decipher in this format.
Protein Families and Environmental Features Network (PEN)

Distance: Dot product between 1st and 2nd Dimension of CCA

\[a \cdot b = |a||b| \cos \theta \]
Protein Families and Environmental Features Network (PEN)

“Bi-modules”: groups of environmental features and membrane proteins families that are associated

UV, dissolved oxygen, apparent oxygen utilization, sample depth, and water depth are not in the network
Bi-module 1: Phosphate/Phosphate Transporters

Low Phosphate, high affinity phosphate transporters which are induced during phosphate limitation

High Phosphate, low affinity inorganic phosphate ion transporter which are constitutively expressed

Patel et al., Genome Research 2010
Bi-module 2: Iron Transporters/Pollution/Shipping

Negative relationship between areas of high ocean-based pollution and shipping and transporters involved in the uptake of iron.

Pollution and Shipping may be a proxy for iron concentrations.

Patel et. al., Genome Research 2010
Biosensors: 4 logs in 4 years
Beyond Canaries in a Coal Mine

$1000 Human ~ $1 E. coli
$100 Human ~$.10 E. coli

Carr and Church, Nat Biotech 2009
• Why Networks?

• Network Comparisons
 (reg. net. in many organisms)
 – in rel. to social hierarchy
 – scaling in rel. to partnerships
 – Computer OS Comparisons

• Network Dynamics
 Across Environments
 (prokaryote metab. pathways)
 – Metabolic Pathways
 – Entry pts. (Mem. Proteins)
Conclusions: Comparison of Social and Regulatory Hierarchies

- Middle managers dominate, sitting at info. flow bottlenecks
- Democratic v Autocratic
- Collaborative (locally democratic) fraction of networks increases with organism complexity
- Middle managers most collaborative
- Most interaction occur between 2 middle managers (as seen in efficient corporate hierarchies)
- Number of collaborative partners saturates even while scale of targets governed increases. (Also seen in social networks.)
<table>
<thead>
<tr>
<th>Hierarchical organization</th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Pyramidal</td>
<td>Top-heavy</td>
</tr>
<tr>
<td>Characteristic hubs</td>
<td>Upper-level TFs with high out-degree</td>
<td>Generic workhorse functions with high in-degree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization of modules</th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream modules as labeled by</td>
<td>Master TFs responsible for sensing environmental signals</td>
<td>High-level starting functions which initiate execution for specific tasks</td>
</tr>
<tr>
<td>Node reuse</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Overlap between modules</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Persistent nodes</th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Specialized (non-generic) workhorses</td>
<td>Generic or reusable functions</td>
</tr>
<tr>
<td>Location in hierarchy</td>
<td>Mostly bottom</td>
<td>Mostly top</td>
</tr>
<tr>
<td>Evolutionary rate</td>
<td>Mostly conservative (e.g. dnaA)</td>
<td>Conservative (e.g. strlen) & adaptive (e.g. mempool_alloc)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design principles</th>
<th>E. coli transcriptional regulatory network</th>
<th>Linux call graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building of hierarchy</td>
<td>Bottom up</td>
<td>Top down</td>
</tr>
<tr>
<td>Optimal solution favors</td>
<td>Robustness</td>
<td>Cost-effectiveness (reuse of components)</td>
</tr>
</tbody>
</table>
Conclusions: Network Dynamics Across Environments

- Developed approach to connect quantitative features of environment to usage of pathways & families
 - CCA + PEN
- Applied to available aquatic datasets, identified footprints predictive of environment (potentially useful as biosensor)
- Integration of geospatial data can highlight unexpected trends as anthropogenic factors seem to be reflected in microbial function

Specific Conclusions
- Strong correlation exists between a community’s energy conversion strategies & env. parameters (e.g. temperature & chlorophyll)
- Relation between Fe and P transporters & amt. of chemical in environment
 - For Fe illustrates impact of pollution & shipping
Acknowledgements

N Bhardwaj
K-K Yan
P Patel
T Gianoulis
H Yu

A Paccanaro
K Yip
R Bjornson
G Fang
Y Xia
J Korbel
J Raes
P Bork
D Engelman
M Snyder

Networks.GersteinLab.org

Job opportunities currently for postdocs & students
Default Theme

- Default Outline Level 1
 - Level 2
More Information on this Talk

SUBJECT: Networks

DESCRIPTION:
Structural Bioinformatics session tomorrow at OCCBIO, Columbus, Ohio, 2010.06.16, 15:10-16:00; [i0OCCBIO] (Medium-length networks talk.)

NOTES:
This PPT should work on mac & PC. Paper references in the talk were mostly from Papers.GersteinLab.org.

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2010. Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html. Feel free to use images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info. In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt.