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The Gerstein lab has developed many methods to unravel gene regulatory networks in a variety of contexts. In 
the following is a sequential presentation of analyses developed by the lab: 
 
Finding enhancers. Over the course of work in the ENCODE and modENCODE projects since 2003 [2, 3], 
the Gerstein lab gained extensive experience in annotating non-coding DNA. We have developed machine 
learning methods to integrate signals for histone modifications, DNA methylation, chromatin accessibility, 
sequence conservation, sequence motifs, and gene annotations to identify enhancers, including those that are 
distal to their target genes. We have also built robust computational pipelines for processing massive amounts 
of data and identifying enhancers, transcription factor binding sites, and regulatory modules [4]. 
 
Building networks. We have previously contributed a large body of work on regulatory networks. Via data 
integration, we have constructed gene networks of various regulators, including transcription factors (TF) and 
micro-RNAs (mRNA) and their target genes [6-12]. Upon analyzing the structures of these networks, we found 
that, relative to centrality, hierarchy levels are better predictors of regulator importance [6, 13-16]. Thus, we 
developed a general-purpose algorithm to measure the hierarchical structure of any type of regulatory network 
[17]. Our network analysis software tools include TopNet [18], tYNA[19], and PubNet [20]. In addition to the 
global attributes of regulatory networks (such as their hierarchy), we also analyzed local topological features, 
such as network motifs (e.g., feed-forward loops) [6, 9, 12]. We further integrated regulatory networks with 
gene expression to uncover functional modules [21-24]. We integrated ENCODE data on TF binding, histone 
modifications, and target gene expression to establish regulatory relationships using a probabilistic model 
named TIP [25]. Identifying potential enhancers from gene-distal regions, we used these modules to 
characterize the associations between TF binding and gene expression [26-29]. We further integrated these 
data with protein-protein interaction and transcriptional regulation networks [8, 9, 30, 31]. This enabled us to 
separate TFs into histone-sensitive and -insensitive classes, which refined the prediction of target gene 
expression levels. To analyze multiple interconnected networks simultaneously, we constructed co-expression 
networks from the extensive RNA-seq data in various consortia [3]. We further developed a novel framework 
consisting of a cross-species multi-layer network (OrthoClust) to analyze co-expression networks in an 
integrated fashion using orthologous genes across species [29]. 
 
Developing approaches for relating regulatory networks to human genomic variation. We have 
extensive experience in identifying expression quantitative loci (eQTL) and allelic sites. In particular, we have 
developed the AlleleSeq method, which uses RNA-seq and ChIP-seq data to detect allelic sites, including 
those associated with gene expression and TF binding [41]. Furthermore, AlleleSeq constructs personal diploid 
genomes. Using AlleleSeq, we have spearheaded allele-specific analyses as part of our efforts in several 
major consortia, including ENCODE and the 1000 Genomes Project[3, 12, 42]. We have further developed 
AlleleSeq and applied the new version to 1,139 RNA-seq and ChIP-seq datasets for 382 samples in the 1000 
Genomes Project, which enabled us to annotate the 1000 Genomes Project SNP catalog with allelic 
information. We constructed a database (AlleleDB) to house all the results as a resource. Both AlleleSeq and 
AlleleDB have are widely used by the scientific community. Recently, we also developed PrivaSeq, a tool to 
quantify how much individual-characterizing information is leaked by eQTLs[43]. 
 
Integrative modeling. Based on machine learning and network approaches, we have developed various 
integrated methods to model gene regulatory mechanisms. For example, we applied statistical models to 
characterize the relationships between the extent of TF binding and gene expression by integrating ChIP-seq 
and RNA-seq data [45]. Recently, we developed DREISS, a method to integrate a state-space model with 
dimensionality reduction using matrix factorization to identify the temporal expression patterns for various 
biological processes, such as the oscillation and degradation expression patterns during the cell cycle, 
embryonic development, and cancer progression [46]. We have also developed Loregic, a method to 
characterize the gene regulatory logics in complex systems [17]. We used Loregic to identify the cooperative 
logic among TFs binding to promoters and enhancers in leukemia by integrating ENCODE and TCGA data. 
We also have extensive experience in using the network framework to integrate human variation data. Our 
NetSNP method quantifies the indispensability of each gene by incorporating multiple network and evolutionary 
properties. Based on network properties and other genomic features, we have developed FunSeq [47] and 



 

 2 

FunSeq2  for prioritizing somatic variants. Using 1000 genomes data, we have prioritized mutations in non-
coding regions that may cause diseases [47]. 
 
Peak-calling methods. The Gerstein Lab has developed two peak calling algorithms, PeakSeq [49] and 
MUSIC[5] . PeakSeq calls the peaks for transcription factor ChIP-seq data and is used by the ENCODE and 
modENCODE consortia. MUSIC performs multi-scale decomposition of ChIP signals to enable simultaneous 
and accurate detection of enrichment at a wide range of peak breadths. MUSIC is particularly applicable to 
histone modifications and some transcription factors that display both punctate and broad regions of 
enrichment. 
 
Integrating data from other consortia. We have extensive experience in performing large-scale integrative 
analyses. We have played key or lead roles in the DOE KBase, Brainspan, ENCODE, modENCODE, 1000 
Genomes, PCAWG, and exRNA consortia. We work in multi-disciplinary teams and interact with scientists and 
physicians of highly diverse backgrounds within these consortia. We have applied simulation, machine learning, 
and knowledgebase design for working with multi-layered datasets. 
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