
 
We have ENCODE ChIP-seq data processing pipeline developed by both Gerstein lab and 
Zhiping Weng’s lab. This pipeline includes steps of quality assessment, trimming the 
contamination, alignment of the fastq files, peak calling and downstream analysis such as peak 
comparison, peak annotation, motif analysis and super-enhancers identification. The Gerstein 
lab developed PeakSeq (1), a versatile tool for identification of TF binding sites and a standard 
peak calling program used by the ENCODE and modENCODE consortia for ChIP-Seq datasets 
(1). We also developed a new peak caller MUSIC (2) recently developed in Gerstein lab. MUSIC 
performs multiscale decomposition of ChIP signals to enable simultaneous and accurate 
detection of enrichment at a range of narrow and broad peak breadths. This tool is particularly 
applicable to studies of histone modifications and previously uncharacterized transcription 
factors, both of which may display both broad and punctate regions of enrichment. We have 
already implemented this pipeline to process ChIP-Seq data from both PsychENCODE and 
BrainSpan. Moreover, we have developed methods that integrate ChIP-seq, chromatin, 
conservation, sequence and gene annotation data to identify gene-distal enhancers based on 
our experience in non-coding annotation, as part of our 10-year history with the ENCODE and 
modENCODE projects (3).  
 
We have also implemented a standard eQTL analysis pipeline in Gerstein lab for 
PsychENCODE and genomic privacy paper (4). 
We use Matrix eQTL and/or fastQTL package 
for eQTL analysis. 
 
We have substantial experience in developing 
computational approaches to identify specific 
dynamic patterns of gene expression. We have 
developed a novel clustering algorithm, 
OrthoClust to simultaneously cluster multi-layer 
networks (5). We applied OrthoClust to 
developmental gene expression datasets of 
worm (C. elegans) and fruitfly (D. 
melanogaster), and discovered the cross-
species and species-specific gene co-

expression modules (Figure 1). We also found 
the modular eigengenes, revealing the 
systematically gene expression and regulation 
dynamics during embryonic development. In 
2016, we also developed another novel 
computational method, DREISS to identify the 
gene expression dynamics driven by internal 
and external regulatory networks (6). We 
applied DREISS to the time-series gene 
expression datasets of C. elegans and D. 
melanogaster during their embryonic 
development (Figure 2). We analyzed the expression dynamics of the conserved, orthologous 
genes (orthologs), seeing the degree to which these can be accounted for by orthologous 
(internal) versus species-specific (external) TFs. We found that between two species, the 
orthologs have matched, internally driven expression patterns, but very different species-
specific, externally driven ones. This is particularly true for genes with evolutionarily ancient 
functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions 
(e.g., cell-cell communication). 
We have developed a number of advanced methods for normalization, analysis, and 
comparison of RNA-seq profiles. In particular: 1) incRNA, a method that predicts novel ncRNAs 

 

Figure 1 Cross-species gene co-expression network clustering. 

Left, human, worm and fly gene–gene co-association matrix; darker 
colouring reflects the increased likelihood that a pair of genes are 
assigned to the same module. A dark block along the diagonal 
represents a group of genes within a species. If this is associated 
with an off-diagonal block then it is a cross-species module (for 
example, a three-species conserved module is shown with a circle 
and a worm–fly module, with a star). However, if a diagonal block 
has no off-diagonal associations, then it forms a species-specific 
module (for example, green pentagon). Right, the Gene Ontology 
functional enrichment of genes within the 16 conserved modules is 
shown. GF, growth factor; nuc., nuclear; proc., processing. 



using known ncRNAs of various biotypes as a training set (7); 2) FusionSeq, a pipeline to detect 
transcripts that arise due to trans-splicing or chromosomal translocations (8, 9); 3) IQSeq, a 
transcript isoform quantification tool that uses an EM algorithm to resolve the maximum 
likelihood expression level of individual transcript isoforms (10); 4) Pseudo-seq which addresses 
the issue of quantification of pseudogene and repetitive region expression (11); and 5) the 
Aggregation and Correlation Toolbox (ACT), which is a general purpose tool for comparing 
genomic signal tracks (12). In addition, we contributed to the development of a classification and 
analysis scheme for “spike” event patterns in omics data with longitudinal profiles(13). 
 
We have comprehensive experience integrating transcriptomic, metabolomics, and proteomic 
data. We integrated unknown metabolites, 
which can constitute as much as 50% of 
spectral features (13), with transcriptomics 
profiles from different experimental conditions 
(14). By defining statistics to correlate the co-
occurrence patterns of metabolites and genes 
we generated hypotheses about the identities 
of unannotated biosynthetic pathways. In 
addition, we have experience with the analysis 
of proteomic data and its integration with 
transcriptomics (15-18). This allowed us to 
identify previously uncharacterized proteins in 
a temporally and spatially resolved 
manner(18). 
We also have made extensive use of machine-
learning to generate models from integrated 
datasets. For example, we integrated 
ENCODE data on transcription factor (TF) 
binding, histone modifications, and target gene 
expression to establish regulatory relationships 
using a probabilistic model we named TIP 
(Target Identification from Profiles) (19). We 
identified potential enhancers from distal gene 
regions and we used these modules to quantify 
the relationship between TF binding and gene 
expression(5, 20-22). We integrated these data 
types with protein-protein interaction and 
transcriptional regulation networks (23-26). 
This allowed us to group TFs into histone-
sensitive and -insensitive classes that refined 
the prediction of gene-regulation targets and effects. Finally, we were able to build cross-
organism integrative chromatin models (5). 
 
We have extensively analyzed patterns of variation in non-coding regions, along with their 
coding targets (27-29). We used metrics, such as diversity and fraction of rare variants, to 
characterize selection on various classes and subclasses of functional annotations (28). In 
addition, we have also defined variants that are disruptive to a TF-binding motif in a regulatory 
region (22). Further studies showed relationships between selection and protein network 
topology (for instance, quantifying selection in hubs relative to proteins on the network periphery 
(30, 31). In recent studies (32, 33), we have integrated and extended these methods to develop 
a prioritization pipeline called FunSeq. It identifies sensitive and ultra-sensitive regions (i.e., 
those annotations under strong selective pressure, as determined using genomes from many 
individuals from diverse populations). It then identifies potentially deleterious variants in many 

 

Figure 2 DREISS: Using State-Space Models to Infer the Dynamics of 
Gene Expression Driven by External and Internal Regulatory 
Networks. (A) DREISS models temporal gene expression dynamics 
using state-space models in control theory. The “state” refers to the 
expressions for a large group of genes of interest, such as the worm-fly 
orthologous genes investigated here. The “control” refers to any other 
group of genes that contribute to gene expressions of the “state”, such 
as the species-specific TF studied here. (B) it then projects high-
dimensional gene expression space to lower-dimensional meta-gene 
expression spaces using dimensionality reduction techniques. (C) it 
derives the effective state-space models for meta-genes so that model 
parameters can be estimated. (D) it then identifies the meta-gene 
expression dynamic patterns; i.e., canonical temporal expression 
trajectories driven by “state” (internal) and by “control” (external) based 
on the analytic solutions to estimated models. (E) it finally calculates 
the coefficients of genes for the dynamic patterns of linear 
transformations between genes and meta-genes. 



non-coding functional elements, including TF binding sites, enhancer elements, and regions of 
open chromatin corresponding to DNase I hypersensitive sites. It also detects their 
disruptiveness to TF binding sites (both loss-of and gain-of function events). Integrating large-
scale data from various resources (including ENCODE and The 1000 Genomes Project) with 
cancer genomics data, our method is able to prioritize the known TERT promoter driver 
mutations, and it scores somatic recurrent mutations higher than those that are non-recurrent. 
Using FunSeq, we identified ~100 non-coding candidate drivers in ~90 WGS medulloblastoma, 
breast, and prostate cancer samples (33). We developed Loregic, a general-purpose method to 
characterize the cooperatively of such regulatory factors (34).  
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