1.1.1 Collecting and Processing RNA-Seq data 
We have extensive expertise with transcriptome analysis and in developing a wide range of customized tools, as well as building standardized pipelines for analysis and uniform processing of both long and short RNA-Seq data. These tools have been evaluated and implemented in several major consortia, including long RNA-Seq analysis tools (in mod/ENCODE[3, 5]) and short RNA-Seq pipelines for the analysis of small extracellular RNA-Seq data (in the Extracellular RNA Communication Consortium (ERCC) [6]).
For general RNA-Seq analysis, we developed an efficient in-house data processing workflow for long RNA-Seq data that includes data organization, format conversion, and quality assessment. RSEQtools (http://rseqtools.gersteinlab.org/), is a computational package that enables expression quantification of annotated RNAs, as well as identification of splice sites and gene models[7]. Comparisons between RNA-Seq samples, and to other genome-wide data, are facilitated in part by our Aggregation and Correlation Toolbox (ACT), which is a general purpose tool for comparing genome signal tracks [8]. An important challenge in RNA-Seq analysis is detecting unannotated transcription that may be hard to distinguish from noise. Our Database of Annotated Regions with Tools (DART) package contains tools for identifying unannotated genomic regions that are enriched for transcription, as well as a framework for storing and querying this information[9]. To further investigate newly-discovered transcriptionally active regions, we developed incRNA[10], a method that predicts novel ncRNAs using known ncRNAs of various biotypes (which then serves as a gold standard training set). We have also developed specific tools to identify types of transcripts that are difficult to detect using standard analysis pipelines. We recently developed FusionSeq, a pipeline to detect transcripts that arise due to trans-splicing or chromosomal translocations [11]. 


We recently developed the extra-cellular RNA processing toolkit, exceRpt http://github.gersteinlab.org/exceRpt/ (), a set of tools and a pipeline designed for comprehensive analysis of small RNA-Seq datasets: read preprocessing, filtering and alignment, biotype abundance estimation, visualization and quality assessment. It is specifically designed to handle technical issues that are often characteristic of small RNA-Seq samples, such as those obtained from extra-cellular preparations. In addition, the software is perfectly capable of processing data from more standard cellular preparations and long RNA-Seq data. The exceRpt pipeline is used for uniform processing of hundreds of RNA-Seq datasets submitted to the exRNA Atlas (http://exrna-atlas.org/) repository.
1.1.2 Building Personal Genomes and Imputation
Current human genome annotations are based on the reference genome and, as such, do not provide an accurate representation for the large genomic diversity of the human population. We have developed approaches and tools to incorporate personal variation data into the reference genome sequence producing the individual’s personal diploid genome sequence and matching annotation. For personal genome construction, we have developed a computational tool, vcf2diploid [12]. This tool integrates an individual’s genomic variation data (SNVs, indels, and SVs) into the reference genome. Phase information of heterozygous variants is also incorporated, producing maternal and paternal haplotypes. Chain files generated by the program can be used to account for coordinate offsets between the individual’s parental haplotypes and the original reference genomic sequence. The versatility to convert between reference and personal genome coordinates allows mapping of annotated genomic regions (e. g., gene or peak coordinates for RNA-Seq and ChIP-seq, respectively) between the genomes using available tools, such as the UCSC LiftOver tool [13]. 
We have previously constructed the personal diploid genome, splice-junction libraries and personalized gene annotations for NA12878 (also known as GM12878). We have made this assembly available as a resource at alleleseq.gersteinlab.org and have been updating it as new versions of the human reference genome, genomic annotations, and NA12878 genetic variation data are released. Furthermore, the availability of a computational tool enables the construction of personal genomes in a high-throughput fashion, as demonstrated in a recent publication[14] in which we built 382 personal genomes using the variant call sets from the 1000 Genomes Project.
1.1.3 Uniform calling of ASE & eQTLs and constructing a database of annotations 
We have extensive experience in developing large databases of QTLs and allelic sites. AlleleSeq [12] is a tool developed specifically for the detection of allelic sites, including those associated with gene expression and transcription factor binding using RNA-Seq and ChIP-seq datasets. Using AlleleSeq, we have spearheaded and published allele-specific analyses as part of our work in several major consortia, including ENCODE and the 1000 Genomes Project [3, 15, 16, 17]. Overall, we found a substantial number of genomic elements associated with allele-specific binding (ASB) and allele-specific expression (ASE) [15]. By constructing regulatory networks based on ASB of TFs and ASE of their target genes, we further revealed substantial coordination between allele-specific binding and expression [6] (Fig. 1). Furthermore, our AlleleSeq tool (which is available online) provides lists of detected allelic variants, and the personal diploid genome and transcriptome of NA12878 [12]. We continually update AlleleSeq, and the resource is being used by the scientific community, as evidenced by citations for our tool in the published literature [15, 16]
We have developed techniques to link eQTLs to phenotype data by quantifying the amount of information necessary to identify an individual [18]. We used eQTLs from the expression datasets generated by the GEUVADIS project[4] and the genotype dataset from the 1000 Genomes Project. Considering this as a test case, we developed statistical formalisms for quantifying the leakage of information that enables the identification of specific individuals in genotype and phenotype datasets with use of QTLs. 
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Figure 1. Workflow for uniform processing of functional genomics data from hundreds of individuals, assessment of allele-specific expression and binding events and construction of AlleleDB
Recently, we have further developed AlleleSeq and applied the new version to 1,139 RNA-Seq and ChIP-seq datasets for 382 cell lines in the 1000 Genomes Project. For each cell line, we harmonized and aggregated multiple RNA-Seq and ChIP-seq datasets separately, and then uniformly reprocessed each using the updated AlleleSeq. This allowed us to annotate the 1000 Genomes Project SNP catalog with allelic information. We constructed a database, AlleleDB[14], to house all the results. We continue to maintain and update AlleleSeq as a publicly available resource. It has been utilized considerably by the scientific community, as indicated by the number of citations and publications using our data and tool.
2.1.1 Interpreting mechanistic roles of ASEs and eQTLs for non-coding RNAs and associated protein-coding genes 
Extracellular RNA (exRNA) and cellular miRNA have received growing attention in recent years. A number of studies have recently focused on these classes of miRNAs by taking advantage of the ease with which they may be extracted from human blood samples[1, 29, 30]. A recently-published[1] dataset of microRNA-eQTLs ("miR-eQTLs") in human adult whole-blood samples (taken from the FHS) includes 5,269 cis-miR-eQTLs for 76 miRNAs. As a first step toward investigating the potential mechanistic roles of these cis-eQTLs, we have performed several analyses using these data to elucidate the relationships between miRNA expression heritability, genomic distance between the associated variants and the associated miRNAs, and metrics for eQTL strength (as measured by effect sizes, t-statistics, and significance values). Thus far, our existing results are largely consistent with intuition -- we find that stronger eQTLs (i.e., those that result in more pronounced changes in miRNA expression values) are positively correlated with significance values and miRNA expression heritability, and we find them to be negatively correlated with genomic distance.
To further investigate the potential mechanistic roles of eQTLs in human whole-blood, we have also carried out a preliminary round of analyses with the objective of determining whether cis-miR-eQTLs may act to silence target genes. We have merged the SNVs within the above-discussed cis-miR-eQTLs with SNVs associated with eQTLs in whole-blood samples of the GTEx dataset[2]. We have found that SNVs that positively influence miRNA expression values tend to negatively influence protein-coding gene expression values (and vice-versa), which forms a regulatory feedforward loop. Our next steps entail interrogating these miRNA-gene pairs for direct interactions (see section 2.2.1 within Proposed Research).
2.1.2 Network analysis of co-expressed allele-specific and eQTL-target genes and relating ASE SNVs and eQTLs with published GWAS results 
We have been at the forefront of efforts to map the large-scale structure of gene expression networks in human and model organisms through our involvement in the ENCODE and modENCODE consortia[15]

 ADDIN cite{21177976}[31]. Integrated analyses of regulatory networks, including protein-coding genes and miRNAs in human and C. Elegans, have revealed extensive large-scale hierarchical organization, differential enrichment of network motifs across hierarchical levels, and distinct preferences for TF binding at proximal and distal regions. More recently, we have developed an approach to identify regulatory network motifs at a finer level of granularity using logical functions, and have shown these to interact differentially within the hierarchical structure of Yeast and Human networks [32].
We have further introduced methods for analyzing transcriptional architecture by using co-expression networks to identify modules of co-expressed genes. We have developed a novel cross-species multi-layer network framework, OrthoClust, for analyzing the co-expression networks in an integrated fashion by utilizing the orthology relationships of genes between species [33]. OrthoClust revealed conserved modules across human, worm and fly that are important for development. Identifying such modules revealed extensive correspondences between various developmental stages in worm and fly [5]. Recently, we have shown that it is also possible to reveal large-scale expression patterns over time by identifying dynamical interactions between co-expression modules, revealing conserved dynamical interactions in worm and fly development [34].
