
Gerstein lab has considerable expertise in developing these standardized pipelines and 
evaluating them in many consortia including ENCODE, exRNA, KBase. We have developed 
tools like RSeqTools [1], IQSeq [2], FusionSeq [3] for the processing of RNA-seq data, and 
PeakSeq [4], which was the first peak caller to process ChIP-seq data relative to a correctly 
normalized input DNA control as well as accounting for variability in genome-wide sequence 
mappability, and MUSIC [5] for processing ChIP-seq data. The lab also played an important role 
in developing the so-called IDR method for determining reproducibility of target lists identified 
from replicate ChIP-seq experiments in order to correctly set thresholds uniformly across 
different ChIP-seq experiments for different TFs across different labs. These and other 
standards for performing and analyzing ChIP-seq experiments were published in Landt et al. 
2012 [6].  

Gerstein lab also have experience on setting the standards within ENCODE and other 
consortia. For example, capitalizing on the uniformly processed and matched experimental data 
obtained by mod/ENCODE consortia, we have performed a series of comparative studies 
across distant metazoan phyla. A comparative analysis of human, worm, and fly revealed 
remarkable conservation of general properties of regulatory networks [7]. Also, as part of the 
GENCODE project we carried out a comprehensive annotation of pseudogenes, which was 
further integrated with ENCODE and 1000 Genomes Project data. All the information was 
stored in an online resource called psiDR [8].  

The Gerstein lab has a tremendous amount of experience in developing large databases of 
QTLs and allelic sites. AlleleSeq [9] is a tool developed specifically for the detection of allelic 
sites, including those associated with gene expression and transcription factor binding using 
RNA-seq and ChIP-seq datasets. AlleleSeq has been applied in several publications [10-12]. 
Notably, we have previously used AlleleSeq in allele-specific analyses associated with gene 
expression using ENCODE RNA-seq datasets from a single cell line [11]. Recently, we have 
further developed AlleleSeq and applied the new version to 1,139 RNA-seq and ChIP-seq 
datasets for 382 cell lines found in the 1000 Genomes Project. We harmonized and aggregated 
multiple RNA-seq and ChIP-seq datasets separately for each cell line and uniformly 
reprocessed them using the updated AlleleSeq. This allowed us to annotate the 1000 Genomes 
Project SNP catalog with allelic information. We constructed a database, AlleleDB, to house all 
the results. The database can be queried for specific genomic regions and visualized as a track 
in the UCSC browser [13] and visualizer such as the Integrated Genomics Viewer [14] or 
downloaded as flat files for downstream analyses for users that are more advanced in 
bioinformatics training. We continue to maintain and update AlleleSeq as a publicly available 
resource. It has been utilized considerably by the scientific community, as indicated by the 
number of citations and publications using our data and tool.   

The Gerstein and Sestan labs have rich experience in the mapping of RNA-seq data and the 
construction of transcripts form human brain and non-brain tissues. For example, RSEQtools is 
a computational package that enables expression quantification of annotated RNAs and 
identification of splice sites and gene models. IQseq provides a computationally efficient method 
to quantify isoforms for alternatively spliced transcripts. Both of these tools employ a special 
sequence read format we developed that can dissociate genome sequence information from 



RNA-Seq signal, maintaining the privacy of test subjects. FusionSeq is designed for detecting 
fusion transcripts generated from either trans-splicing or genomic translocations in paired-end 
RNA-sequencing.  

We have developed such as RSEQtools, IQSeq and FusionSeq. The combination of these three 
tools allows us to efficiently discover brain specific spliced transcripts and their potential 
functions.  

We have much experience with developing enhancer calling pipelines in the framework of 
ENCODE, which we will utilize here. For example, we have applied machine-learning methods 
that integrate multiple genomics features to classify human regulatory regions from ENCODE 
data of more than 100 transcription factor binding sites. A computational pipeline was developed 
to identify potential enhancers from regions classified as gene-distal regulatory modules [18]. 
Making use of the potential enhancers, we developed the Function-based Prioritization of 
Sequence Variants (FunSeq) tool [12] for identification of candidate drivers in tumor genomes, 
and more recently, a more elaborate and flexible framework, FunSeq2, integrating various 
genomic and cancer resources to prioritize cancer somatic variants, especially regulatory 
noncoding mutations [19].  

We have extensive experience in performing large scale integrative analysis in various consortia 
like ENCODE, modENCODE, 1000 Genomes, KBase and Brainspan. First, using the machine-
learning approaches we developed method for identifying individual proximal and distal edges 
together with miRNA target prediction (and other) algorithms, we have completed the highly 
ambitious goal of constructing highly integrated regulatory networks for humans and model 
organisms based on the ENCODE [10] and modENCODE datasets [21,22]. These integrated 
networks consist of three major types of regulation: TF-gene, TF-miRNA and miRNA-gene, 
showing rich statistical patterns. For instance, the human regulatory network uniquely displays 
distinct preferences for binding at proximal and distal regions. The distal binding preference is 
possibly due to the intergenic space in the human genome, which is much larger relative to the 
genomes of other model organisms. More recently, we have constructed co-expression 
networks from the extensive amount of RNA-Seq data generated by ENCODE and 
modENCODE consortia [23]. We have developed a novel cross-species multi-layer network 
framework, OrthoClust, for analyzing the co-expression networks in an integrated fashion by 
utilizing the orthology relationships of genes between species [24]. OrthoClust revealed 
conserved modules across human, worm and fly that are important for development. We also 
introduced a framework to quantify differences between networks and by comparing matching 
networks across organisms, found a consistent ordering of rewiring rates of different network 
types [25].  

We have extensive experience in using network framework to integrate data of human variation. 
We have developed NetSNP [26], an approach to quantify indispensability of each gene in the 
genome by incorporating multiple network and evolutionary properties. Based on network 
properties, as well as many other genomics features, we have developed FunSeq [12], and 
more recently FunSeq2 [19] for prioritizing variants. Using 1000 genomes variants, our pipeline 



has demonstrated great potential in prioritizing mutations in non-coding regions that are related 
to cancer [12]. 
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