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The Gerstein lab has experience developing ‘omics’ pipelines, computational methods and tools for large consortia, particularly the ENCODE and modENCODE projects. The following describes expertise for different ‘omics’ types and their integration.

Transcriptome Analysis.
We have extensive experience in developing RNA-Seq processing pipelines[103] as part of the mod/ENCODE consortia [26, 34]. We have developed tools for identifying non-coding transcription and novel transcribed elements[9, 22, 34, 65, 87], and contributed to the ExceRpt[2] pipeline for the analysis of extracellular small RNA-Seq experiments. We have also developed a number of tools and data formats to handle large quantities of data generated by RNA-Seq experiments[41, 103]. 

ChIP-Seq analysis of TFs and chromatin marks. 
We have developed PeakSeq[86], a tool for the genome-wide identification of TF binding sites from ChIP-Seq data, which is used by ENCODE. More recently, we developed MUSIC[32], a peak caller that performs multiscale decomposition of ChIP-Seq signal, which is applicable to studies of histone modifications enabling detection of broad and punctate regions of enrichment.

DNA Methylation Analysis.
We developed criteria for the design of epigenome-wide association studies[44, 67] and algorithms for whole-genome bisulfite sequencing[24, 60], and applied them to analyze over 100 methylomes as part of the NIH Roadmap Epigenomics project[83]. We have performed integrative extensive analyses of the methylome, genetic variation[23, 62], and chromatin marks[83].

Proteomics Analysis.
We have experience with the analysis of proteomic data[90, 97, 101] and its integration with genomic data such as the combination of mass spectrometry (MS) proteomic and transcriptomic data[56, 104]. We developed miBAT on top of RNA-Seq to improve the reference proteome [55].
Metabolomics Studies. 
We analyzed Gas Chromatrography Mass Spectrometry profiles for unknown metabolites, which can constitute as much as 50% of spectral features[16]. By integrating these data with transcriptomics profiles from different experimental conditions[36] and defining statistics to correlate the co-occurrence patterns of metabolites and genes we generated hypotheses about the identities of unannotated biosynthetic pathways.
Normalization and deconvolution
We have developed a number of advanced methods for normalization, analysis, and comparison of RNA-seq profiles. In particular: (1) incRNA, a method that predicts novel ncRNAs using known ncRNAs of various biotypes as a training set[65]; (2) FusionSeq, a pipeline to detect transcripts that arise due to trans-splicing or chromosomal translocations[77, 89]; (3) IQSeq, a transcript isoform quantification tool that uses an EM algorithm to resolve the maximum likelihood expression level of individual transcript isoforms; (4) Pseudo-seq[75], which addresses the issue of quantification of pseudogene and repetitive region expression; and (5) Aggregation and Correlation Toolbox (ACT), which is a general purpose tool for comparing genomic signal tracks[52]. In addition, we contributed to the development of a classification and analysis scheme for “spike” event patterns in omics data with longitudinal profiles[16].
To identify both intracellular and tissue composition changes in profiled cells and tissues it is highly desirable to deconvolute the “omics” profiles of heterogeneous tissue samples. Toward this end, we have developed and experimentally validated Epigenomic Deconvolution (in review), a novel in silico deconvolution method that provides estimates of genomic CpG methylation, gene transcription, and other “omic” profiles within a diversity of constitutive cell types. The method employs an iterative algorithm for constrained matrix factorization using quadratic programming and extends the related method of Houseman[45 ] by deconvoluting gene expression and other “omic” profiles in addition to just CpG methylation profiles.
Clustering and module formation
[bookmark: _GoBack]We have extensive experience in analyzing gene expression data to identify co-regulated modules. For example, we recently developed a new method, OrthoClust, to simultaneously cluster cross-species gene networks into gene modules[105]. We applied OrthoClust to human and cross-species gene co-expression networks from the mod/ENCODE projects and discovered novel human developmental transcriptional programs.
Gene regulatory factors work cooperatively, forming a complex regulatory circuit controlling gene expression. We developed Loregic, a general-purpose method to characterize the cooperativity of regulatory factors[102]. Using ENCODE ChIP-Seq and TCGA RNA-Seq data, we demonstrated how Loregic characterizes complex circuits involving TFs and miRNAs in human cancer. We developed continuous model-based approaches such as DREISS[4] to identify gene expression dynamics driven by external and internal regulatory modules, helping dissect the temporal dynamic effects of different regulatory subsystems on gene expression.

Building Integrative models
We have comprehensive experience integrating transcriptomic, metabolomics, and proteomic data. We integrated unknown metabolites, which can constitute as much as 50% of spectral features[16], with transcriptomics profiles from different experimental conditions[36]. By defining statistics to correlate the co-occurrence patterns of metabolites and genes we generated hypotheses about the identities of unannotated biosynthetic pathways. In addition, we have experience with the analysis of proteomic data and its integration with transcriptomics [56, 90, 97, 104]. This allowed us to identify previously uncharacterized proteins in a temporally and spatially resolved manner[104].
We have extensively used machine-learning to generate models from integrated datasets. For example, we integrated ENCODE data on transcription factor (TF) binding, histone modifications, and target gene expression to establish regulatory relationships using a probabilistic model we named TIP (Target Identification from Profiles)[19]. We identified potential enhancers from distal gene regions and we used these modules to quantify the relationship between TF binding and gene expression [17, 18, 25, 106]. We integrated these data types with protein-protein interaction and transcriptional regulation networks [20, 21, 27, 33]. This allowed us to group TFs into histone-sensitive and -insensitive classes that refined the prediction of gene-regulation targets and effects. Finally, we were able to build cross-organism integrative chromatin models [105].
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