This review summarizes the recent work of Gerstein Lab in Yale University on high-throughput sequencing data processing and analysis. We cover our contributions about data processing, structures of genomics, functions of genomics and proteomics, and network analysis relating the projects that we have participated: ENCODE, modENCODE, GENCODE and 1000 Genomes. For the complete list of papers, please refer to http://papers.gersteinlab.org/.

High-throughput sequencing data processing
To facilitate the integrative analysis of the ENCODE and modENCODE (Celniker et al., Nature 2009) datasets produced by different groups, we have developed and evaluated methods for uniform high-throughput sequencing data processing for all common platforms such as RNA-Seq and Chip-Seq. Moreover, we have proposed the structured digital abstracts and tables to bring scientific advantages on publishing and mining genomic data.
RNA-Seq: We have developed a suite of tools (RSEQtools, rseqtools.gersteinlab.org) and data formats to handle and analyze the large-scale RNA-Seq data (Habegger et al., Bioinformatics 2011). These tools consist of a set of modules that perform common tasks, such as calculating gene and exon expression values, generating signal tracks of mapped reads, and segmenting that signal into actively transcribed regions. Moreover, the tools can readily be used to build customizable RNA-Seq workflows. To this end, we have developed three different analysis pipelines: FusionSeq and IQSeq. FusionSeq (Sboner et al., Genome Biol 2010) is designed for detecting fusion transcripts generated from either trans-splicing or genomic translocations in paired-end RNA-sequencing. IQSeq (Isoform Quantification in next-generation Sequencing, Du et al., PLoS One 2012) is a transcript isoform quantification tool that uses a partial sampling framework (http://archive.gersteinlab.org/proj/rnaseq/IQSeq/) and an expectation-maximization algorithm to reconstruct the abundances of isoforms of a gene. We have also implemented an aggregation and correlation toolbox (ACT) for analyzing continuous signal and discrete region tracks from high-throughput genomic experiments including RNA-seq or ChIP-chip data (Jee et al., Bioinformatics 2011).
ChIP-Seq: We developed a methodology to model the mapped reads coming from a ChIP-Seq experiment (Zhang et al., PLoS Comput Biol 2008) so that we are able to accurately in silico simulate the data from an experiment. Building on this methodology we developed a tool, PeakSeq (Rozowsky et al., Nature Biotech 2009), to identify the “peak” regions across the genome where the transcription factor under investigation binds to DNA. Previous methods for identifying TF target genes via finding genes whose promoters overlap or lie near peaks had certain limitations and thus, we have developed a probabilistic method (TIP) to identify TF target genes based on ChIP-Seq data to overcome those limitations and obtain higher performance (Cheng et al., Bioinformatics 2011). 
Standardized papers: Since a clearly connecting the genomics data in a particular freeze to the literature has many scholarly advantages in terms of time stamping, attribution, and future citation (Gerstein Science 2000, Seringhaus et al., BMC Bioinformatics 2007), we have also proposed the structured digital abstract (Gerstein et al., Nature 2007) and structured digital table (Cheung et al., Mol. Syst. Biol. 2010), which facilitate both authors and readers.
Structures of genomics
The sequencing-based nature of ENCODE assays enables the inference of genotype-specific activity across difference cell lines and between alleles of the same cell line and allows for the characterization of a full spectrum of genomic variations, including single-nucleotide polymorphisms (SNPs), short insertions and deletions (indels), copy number variations (CNVs) and structural variations (SVs). We have identified those genomic variations along with their functions.
Genomic variations: We have designed an optimal alignment algorithm, called AGE for Alignment with Gap Excision, to find breakpoints of genomic structural variants (SVs) at single-nucleotide resolution (Abyzov et al., Bioinformatics 2011). We have also developed a method, CNVnator, for copy number variation (CNV) discovery and genotyping from read-depth (RD) analysis of personal genome sequencing by the 1000 Genomes Project. We established a computational pipeline based on simulation-based error models, Paired-End Mapper (PEMer; http://sv.gersteinlab.org/pemer), to infer genomic structural variants from massive paired-end sequencing data (Korbel et al., Genome Biol 2009). We built a simulation toolbox that integrates different technologies to reconstruct large structural variants (SVs) at an optimal low cost for genome re-sequencing in personal genomics (Du et al., PLoS Comput Biol 2009). We also characterized the breakpoints at nucleotide resolution from ~2,000 published SVs and developed an approach, BreakSeq, for scanning the reads from short-read sequenced genomes against those breakpoints to accurately identify previously overlooked SVs (Lam et al., Nature biotech 2010).
Functions of genomic variations: We have analyzed the genomic variations in non-coding elements using population-scale sequencing data from the 1000 Genomes Project (1000 Genomes Project Consortium et al., Nature 2010), and clustered and compared those elements (Mu et al., NAR 2011). We have developed a pipeline, AlleleSeq (Rozowsky et al., Mol. Syst. Biol. 2011), for the processing of either RNA-Seq or ChIP-seq datasets that constructs a diploid personal genome sequence using genomic variants, and then identified allele-specific events, allele-specific expression (ASE) and binding (ASB), with significant differences between maternal and paternal alleles. We have also begun to develop tools to investigate the degree of coordination of allele-specific behavior between multiple transcription factors regulating a target gene or non-coding RNA using a network framework.
Functions of genomics and proteomics
In the integrative paper (Gerstein et al., Science 2010), we built statistical models, constructed hierarchical networks and identified patterns relating chromatin, transcription factor binding, and gene expression via integrating the modENCODE data in C. elegans. Since the ENCODE project unveiled that there are other types of functions besides coding protein that genes involve (Gerstein et al., Genome Res 2007), it is very important to pay attention to research those non-protein-coding functions. Thus, our lab led and participated in a number of sub-analyses on transcription-related regions, noncoding RNAs (ncRNAs), pseudogenes, and gene expression as follows.

Transcription-related regions: We have developed four computational methods to find many novel promoters for gene regulation in 1% of human genome (Trinklein et al., Genome Res 2007). We classified the unannotated transcriptionally active regions (TARs) in the ENCODE regions and associated them with known and novel loci via a Database of Active Regions and Tools (DART.gersteinlab.org, Rozowsky et al., Genome Res 2007). We have developed an efficient data mining method called BoCaTFBS to identify transcription factor binding sites from the ENCODE data (Wang et al., Genome Biol 2006). We also found that the C. elegans factor PHA-4 acts at different times and in different tissues to mediate distinct responses, and has distinct binding sites at the different stages (Zhong et al., PLoS Genetics 2010). A novel semi-supervised learning method was presented to predict membrane-binding peripheral domains (Bhardwaj et al., BMC Bioinformatics 2010). The genomic distribution and correlation of transcriptional regulatory elements in the ENCODE regions were investigated as well (Zhang et al., Genome Res 2007). We also compared strategies for mapping transcription factor (TF) binding regions in mammalian cells using two different ChIP schemes: ChIP with DNA microarray analysis (ChIP-chip) and ChIP with DNA sequencing (ChIP-Seq) (Eurskirchen et al., Genome Res 2007). We have found that the strongest Stat1 (signal transducer and activator of transcription) binding sites are different at different times after treatments with IFN and IFN(Hartman et al., Genes Dev. 2005) using ChIP-chip data. Also, GATA-1 binding sites were mapped throughout the beta-globin locus (Horak et al., PNAS 2002). Using the worm data from modENCODE, we have determined the genome-wide binding sites of 22 transcription factors at diverse developmental stages (Niu et al., Genome Res 2011). Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we have mapped long-range chromatin interacting regions of RNA polymerase II in human cells (Li et al., Cell 2012). We also developed a statistical framework and demonstrated its ability to predict gene expression from chromatin features (Cheng et al., Genome Biol 2011). 

Non-coding RNAs: The structures of functional RNA in the ENCODE regions were detected in our computational study (Washietl et al., Genome Res 2007). Since ncRNAs seriously contribute to the gene regulation, we have presented a machine learning method, incRNA, to identify and characterize novel ncRNAs in C. elegans by integrating conservation, secondary structure, and expression data (Lu et al., Genome Res 2011). Since non-coding regions take up most of the human genome, we also summarized the recent progress to annotate non-coding regions in our review (Alexander et al., Nat Rev Genet 2010).

Pseudogenes: The study of pseudogenes is particularly valuable because recent studies indicate that some pseudogenes are transcribed and perform crucial regulatory roles (Sasidharan et al., Nature 2008). We have systematically identified processed pseudogenes in the mouse and human genomes (Zhang et al., Trends Genet 2004). We showed evidence for transcription of some human pseudogenes by in-silico analysis combining EST and other experimental evidence (Harrison et al., NAR 2005; Zheng et al.,, Journal of molecular biology 2005). Pseudopipe is our homology-based computational pipeline for identifying and annotating pseudogenes in eukaryotic genomes (Zhang et al., Bioinformatics 2006). We have also developed another pipeline to identify human-specific pseudogenes (unitary pseudogenes) by analyzing the global inventory of orthologs between the human genome and its mammalian relatives (Zhang et al., Genome Biol 2010). We proposed a consensus approach to annotate pseudogenes (derived from protein coding genes) in the ENCODE regions, and analyzed their transcriptions, functions, and evolutions, and found that a fifth of the pseudogenes in the ENCODE pilot regions were transcriptionally active (Zheng et al., Genome Res 2007). We have developed a systematic database for pseudogenes, pseudogene.org that currently includes data on 11 eukaryotes to maintain a consistent collection of pseudogenes (Karro et al., NAR 2007). We have also classified pseudogenes into families based on Pfam and developed a resource called Pseudofam (Lam et al., NAR 2009). In addition, the structural and functional relationships between pseudogenes within the same family are recorded using an ontology (Holford et al., Bioinformatics 2010). We reported the first large-scale comparative analysis of ribosomal protein pseudogenes in the genomes of human, chimpanzee, mouse and rat (Zhang et al., Genome Res 2002, Balasubramanian et al., Genome Biol 2009). We also assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes (Liu et al., BMC Genomics 2009). Based on integration of segmental duplications (SDs) and pseudogenes, we have been able to identify novel pseudogenes -- i.e. collectively the "SD pseudogenes" (Khurana et al., NAR 2010). We have inter-related the SD pseudogenes with various mechanisms of genome duplication (e.g. NAHR and NHEJ) showing that there has been a change in usage of mechanism during mammalian evolution (Kim et al., Genome Res 2008). The pseudogenes of the nuclear receptor (NR) family in eight vertebrate species were also investigated (Zhang et al., Molecular biology and evolution 2008). Moreover, recent pseudogenization of specific genes in the human or primate populations is associated with specific loss-of-function (LOF) events such as premature truncation of proteins, disruption of splicing and loss of structural domains. Considering the genetic variability for the pseudogene annotation, we recently have developed a tool called Variant Annotation Tool (VAT, vat.gersteinlab.org). This tool has already been used to investigate LOF of human protein-coding genes (MacArthur et al., Science 2012). Moreover, we have looked at LOF variants in several personal genomes to identify LOF events (Balasubramanian et al., Genes Dev. 2011).
Gene expression vs. transcription factors (TFs) and histone modifications (HMs): Previous methods for identifying TF target genes via finding genes whose promoters overlap or lie near peaks had certain limitations and thus, we developed a probabilistic method (TIP) to identify TF target genes based on ChIP-Seq data to overcome those limitations and obtain higher performance (Cheng et al., Bioinformatics 2011). We have previously modeled the relationship of TF binding information and histone modifications to gene expression in different species in yeast (Cheng et al., Genome Biol 2011) and mouse (Cheng et al., NAR 2011). 

Biological network and dynamics 

We have characterized functions of genomics and proteomics through networks. We work on systematically integrating a wide variety of functional genomic and proteomic features with data mining and machine learning techniques to predict biological networks, study network structures and dynamics, and then identify biological functions from networks. In early work, we developed methods for predicting networks from individual genome features. For example, we analyzed the protein-protein interaction networks and their relationship with mRNA expressions in yeast (Jansen et al., Genome Res 2002) via integrating other sources. We developed an approach based on support vector machines (SVMs) to predict the regulatory targets of transcription factors in yeast (Qian et al., Bioinformatics 2003). We also discussed the limits from integration to investigate networks (Lu et al., Genome Res 2005). Later, we have studied the structure and dynamics of regulatory networks and related these to other cellular networks. Hubs are nodes having many more connections than average and tend to represent essential genes or proteins. Under high noise, we developed a novel method to predict protein interaction networks by looking into the defective cliques (nearly complete complexes of pairwise interacting proteins) (Yu et al., Bioinformatics 2006). A global comparison of four basic molecular networks, regulatory, co-expression, interaction, and metabolic was also provided by us (Yu et al., Genome Biol 2006). Apart from hubs, we have developed graph algorithms to illuminate that extensive hierarchical structures existed in the regulatory networks (Yu et al., PNAS 2006). We also constructed and analyzed an integrated regulatory network consisting of three major types of regulation that are TF-gene, TF-miRNA and miRNA-gene (Cheng et al., PLoS Comput Biol 2011). To compare networks, we developed a framework to quantify the differences between networks in a unified fashion via looking at the degree of rewiring between different networks (Shou et al., PLoS Comput Biol 2011). One of our methods to calculate key statistics for networks is tYNA (Yip et al., Bioinformatics 2006), a web system developed to compare and mine multiple networks in order to identify cliques and motifs, as well as calculating statistics on a network. Statistics such as ‘eccentricity' and ‘betweeness' are helpful to explain the connectivity and behavior of nodes in a network (Yu et al., PLoS Comput Biol 2007). 

Because we found that the hierarchy rather than the connectivity better reflects the importance of regulators (Yu et al., PNAS 2006, Bhardwaj et al., Sci Signal 2010), we have previously exploited the model of hierarchical organization by examining the degree of collaboration among different regulators (Bhardwaj et al., PLoS Comput Biol 2010). We have found that in E. coli, yeast, and human the highest degree of collaboration is between regulators from the middle level, which is analogous to a corporate setting in which middle managers play an important organizational role (Bhardwaj et al., PNAS 2010). We defined a module as all accessible nodes downstream of a top regulator and investigated the overlap (share of regulators) between modules. We have found that the modules in E. coli are more independent compared to those within the call-graph of the Linux kernel (Yan et al., PNAS 2010). 
