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Introduction

Background

@ Machine learning and data mining studies in Bioinformatics
e build mathematical models explaining the experimental results
(samples)
e A model Model(©) will be defined with parameters ©
@ The samples S will be used to find the © that optimizes an
objective function Obj(Model, S, ©)
@ Samples in Bioinformatics
o Multiple sampling (experimental) technologies with different
cost and characteristics
o Large-scale (whole-genome), high-throughput
e Limited by the experimental cost and budget
o Are usually partial samples when compared to the object being
observed

)
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Introduction

Questions

@ How to construct different Model(©)s and formulate
Obj(Model, S, ©)s for some important biological experiments,
where S is a set of partial samples from different sampling
methods?

@ How to find © that optimizes Obj(Model, S, ©)?

© How to estimate the accuracy of our © estimation?

o Even in simulations where the true © is “known”, can we
estimate the accuracy of our © estimation more efficiently
than the brute-force method?

@ Given a fixed total budget, how to find a low-cost integration
of different sampling methods to get the best outcome in
estimating ©7



Introduction

Outline

Integrated Analysis of Partial Sampling Techniques
@ Efficient Simulation of a Random Sampling Process (brief)
o Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing
@ Optimal Utilization of Deterministic Sampling Techniques
(brief)
o Deterministic Sampling in A Supervised Hidden Markov Model
Framework
© Integrated Analysis of Partial Sampling Techniques

o Distribution Estimation based on Nondeterministic Partial
Samples



Introduction

Genome/Gene Primer: a crude view

@ Genome
Long string of A, C, G, T

e Human genome: diploid, each 3Gbases
o Reference human genome: 3Gbases, first release in 2003
e An individual's genome: estimated to differ from the reference
by 0.05%
@ Genes
o Regions in the genome with certain functions, e.g. coding
proteins

o Different expression levels
o Transcribed to mRNA, then translated to protein
@ Exon (intron)

o Regions in the gene that are (not) present in the gene
transcripted mRNA



Efficient Simulation

Partial Samples Example #1.:

a) SNP (heterozygous) & Indel (homozygous)

ACATGCCGTA TCCATGGC
ACATGACGTA ICIC——EEC
ACATGCCGTA TCC==CELC
* * %
ACAT CGTA ccia
TGAC cese
Gcea ATTC

b) Deletion (homozygous)

TCGATTCCAGG. . .CGTTAAGC

TCEATTCC——mm————= TAAGC
TCEATTCC——o———ao—m TAAGC
[*******]
ccrra
CTAA

@ Sequencing

individual genome re-sequencing

Reference
Target diploid
genome

Sequencing
reads

c) Novel insertion (homozygous)

CICTTCEA=———===—= CAAGT

CTCTTCGAGGA. . .AACCAAGT
CTCTTCGAGGA. . .AACCAAGT

[*******]

cGAG :
}

CAGE '

GA . . ceaa

'

i

i

i

'
!
!
! .AAC
'
!
!
i

e sampling DNA fragments at random genomic locations
e Sometimes need to be assmbled for novel insertion

reconstruction

6
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Efficient Simulation

More on sequencing techniques

o Different characteristics, different costs

@ Sometimes needs to be combined to obtain optimal analysis

results
Long Sequencing Medium S ing Short Seq
Read length (bases) ~ 800 ~ 250 ~ 30
Approximate cost per base ~1E -3 ~T7E -5 ~T7E —6
Error rate per base 0.001 — 0.002% 0.3 —0.5% 0.2 — 0.6%

Major error type

Substitution errors

Insertion / deletion
errors (usually caused
by homo-polymers)

All error types
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Efficient Simulation

Optimal Low Cost Integration of Sampling Techniques i

Re—seq uencing: reconstructing large novel insertions

Problem
A

-

Elsewhere in

Reference genome

_ =7~ "_ -~ Targe novel insertion ~ . _ 7~ <

——

Target the genome | - Elsewhere in the genome
genome ,p -4 -" g s PR M s 1
B
Reads g —— L R e R — )
Similar-read Split-read Spanning reads Split-read Misheading-  Same-
=0 [m———— S read read
D e - uJ
--------------------- N S RN
{ e ' | G Long reads: A covernge :
1 ) 1
Highly H
| 2 :|» ¢ ' | @ Medium reads: By coverage |
1 1 1
- regions ) ! @@ Short reads: Cx coverage !
H
{ 8 Mismarches i R LG EEEEE P ’

Given a fixed budget, what are the sequencing coverage A, B and
C that can achieve the maximum reconstruction rate (on
average/worst-case)?
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Efficient Simulation

Optimal Low Cost Integration of Sampling Techniques in
Re—seq uencing: simple assembly algorithms in reality

Current contig(s) G

[~ =)
Overlapping cw
reads
[ =)

Current contig(s) GriBm

Best overlap w/ current contig.
¢

¥, Most supported extension
Current contig(s) FrmBm - ,
—_—
— 0
Additional —a
overlapping _:i:

reads p—

Current contig(s) SIS ——

-

Reads for the S

assemble of — 1
a - =

new contig

Current contig(s) Sl i s
[ e —

Output contig(s) FEREREIE T - )



Efficient Simulation

Optimal Low Cost Integration of Sampling Techniques in
Re—sequencing' simulation based method

C Simplification of the simulation to the insertion region only

1 1 Large novel insertion |
) ! /1 ‘ 2 |
I
I

D Compute mapability maps to scale to the whole genome
Count of occurrences of 4&-mers in the whole genome

Genomic

position
E Simulate the reads
Misleading-read
Sinilar-read
) Same-read wm—— WD — e
Additional Read: e T J——
from elsewhere R— ) — = With
(= =] ,':i - sequencing
error
models

Reads from
the insertion

F  Output after applying de novo assembly to reads from E

~ F:

Small errors Fulse extension  Gap



Efficient Simulation

Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing: results

Mean(recovery rate)

96x 10
» 84X
k] 08
2 72x
long reads s
coverage 60 7 06
Em E
0.67x 3
= 36x | 04
g
$ 24x —
H . 02
Z2x 4
ox 00
Min(recovery rate)
short reads 96x 10
coverage
/ 1 84X
B 08
96x £
g
§ 60x 06
f E, 48x
G
9.6x S oo 04
medium reads 524
coverage g * 02
total cost: ~$7 on a 120 3 -
10Kb novel insertion ox ‘ 00

X x ox x x X
5 & 35858 8 & 3
a e N

9.6x

x
ium (454) reads

H
3
3
£
3
3
S
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Optimal Deterministic Sampling

Partial Sample Example #2 identifying transcriptional activity

Gene region I I |
exon intron

Sampling: tiling-array: large-scale, high-throughput, noisy

probe
Isignal intensity on the probes

bttt

genomic position
Sampling: experimental validation: accurate, low-throughput

m —= [ —— mm
Transcriptional tiling array and experimental validation:

@ Sampling at deterministic genomic locations
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Optimal Deterministic Sampling

Optimal Sampling in Supervised Hidden Markov Model

probe signal
Lol i ‘
il \\m\u\ MM‘ HH
______ — "
roqe signal | '
» 1 Sampling according
’ ‘ ‘ ,‘ | ‘ ‘ ‘ ‘ | ‘ ‘ 0 C sange and D
|\ Ly \\\u HI \u\\ m
______ L--
ur, vz, ua,
Labeling Oracle O Labeling probes (e.g.
transcribed or not) in
robb Signal — T T - -==n (according to gene
J ! annotataion, validation
1

experiments, etc.)

L]
______ ~ —predk pos
Vi, V2, V3, .

Training the model
based on the samples

Labeling all the data

robe signal
( L H I
bl e bl L

s - ITIT]

probe pos

How to choose samples to best train the model?



Optimal Deterministic Sampling

Optimal Sampling in Supervised Hidden Markov Model

When M is a Hidden Markov Model

@ MaxEntropy: selects m non-overlapping sub-regions with the
highest entropies.

A3. Error in oracle = 0.1 B3. Errorin oracle = 0.1
g |
8 -~ random 8 \ - random
S -4 least KL S \ -4- least KL
& max entropy \ ©- max entropy
-0~ unbiased entropy w“ \ -0~ unbiased entropy|
- maxmin entropy 84 o maxmin entropy
S E
w S
8
T ° T o
] ) °
: § 84
g g ° e
5 g N
2 5
g 34 § 8
s 2 £ 34
3 g o
s 4
3 3 g
2 3 34
8 | S
5
w
8
g4
S
o
g 4 °
g -, g |
T T T T T T T T S T
1 2 3 4 5 6 7 8 1
log,(sample size) log;(sample size)
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Integrated Analysis of Random Samples

Partial Samples Example #3 transcript isoform quantification

@ Transcript isoforms: exon skipping

@ RNA Sequencing:
e Sampling at random genomic locations
e in a pool of different transcript isoforms

Gene

Region

Isoform 1
(relative abundance: 61)

read! p—— — read? m—
— i —
read3 mm - - SPItread o
o PSR
- - T~ fr—
(82)
— —
pr——— - mmmm read5
- ]
Isoform 3
I -
— read6 EE- - - N —
read7 pmm ~ . T [
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Integrated Analysis of Random Samples

Isoform Quantification based on Partial Samples

Given the isoform structures and the reads, what are the relative
abundances of the isoforms? .
ene

I T R I <o
7 (relative abundance: 61)
read? g -

read! m— — ]
——— ] [ =
read3 - - splitread. | oo v

read4mmm -~ o &
- - -a 1
- T o ‘compatible
|
- I
. 1 (62)
] I !
= = ‘—'eads !
e R | !
- = /
/
Isoform 3
(63)
— read6 S - - m —
read? gy ~ \\*-



Integrated Analysis of Random Samples

Generalized Question #1: Distribution Estimation based
on Partial Samples

o Isoforms (/I = {h,...,Ix}): Objects that may be similar to
each other
o Different object has different abundances (© = (64, ...,0k))
@ Reads: Partial samples generated based on / and ©
e One partial sample may be compatible to multiple isoforms
o Can be generated by different sampling (sequencing)
techniques (Sampy, ..., Samppy)
e Each sampling technology has its own mechanism for
generating a sample (e.g. read length, sequencing bias)
@ Question #1: Given [ and S = {s from
Sampm|m =1, ..., M}, how to estimate ©7

17 /47



Integrated Analysis of Random Samples

Probabilistic Solution to Q1: Maximum Likelihood
Estimation

@ For each possible isoform I, assign a probability (abundance)
value 6,

@ Given all the sequencing data S, Find the © that maximizes
Pr(S5|©)
o Consider integrating different types (Samp,,) of sequencing
data
e For each sample s:
@ Js: indicator of whether s is compatible with I,
o take into account the local model of sequences being
generated
° Gs(,'z) = Pr(generating s|lx, Sampp,)
o simplified G: reads with fixed length and uniformly random
starts along I; always uniquely mappable back to the genome

0 6= argmaxezn’\j:1 Zs:sm,* log Zszl s,k 0k GS(’T)

18 /47



Integrated Analysis of Random Samples

Solving MLE with Expectation Maximization

Introduce hidden variable Z
o Zs i = Ind(s is from Iy)
o Also define: () = Ez|s o [Zs.x]
() _ _ 065
° Cs’k - K 55,,(/917)65*/

E step: Q(M(Q) = Ezis.00m [log(Pr(Z,5(0))]
M step: Maximize Q(")(©) with constraint Z,’le O =1

Ss,

(n) o(m)
KOG Jk
zM Z C(n) Zm:l Zs:sm’* K (Sn)
° 6(”4—1) _ 2um=1 2us=sm « Ss,k 2105 k04 Cs it
k N N
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Integrated Analysis of Random Samples

Application to human RNA-seq Data

@ 4 known isoforms from UCSC known genes
@ 4 sequencing technologies: 454 /Solexa single/paired-end reads

o aaasio00 | s2as5000 | seaseo00 | s2457000 | sease00 | s24s9000 | a2460000 |
GM12878
- - GM12878: reads in 545 from sampling method #0 17 I'SadS -
-—n . =CGM12878: reads in 545 from sampling method #1 17 I'eadS
Gl112878: reads in 545 from sampling method #2 52 I’eadS
oo 2
c p.2
C10rf91/uc009vub.1 5 -
= 1 -

'
C1orf91/uc001buq.2
0107 01947 436,
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Integrated Analysis of Random Samples

Revisiting the Questions

@ Question #1: Given [ and S = {s from
Sampm|m =1, ..., M}, how to estimate ©7

New questions:

@ Question #2: How good is the estimation?
Zf;ll var(0x)
K

o Average estimation variance:
e Using Fisher information to estimate MLE variance
@ Question #3: Suppose different sampling techniques have
different costs, given a fixed budget, what is a most
cost-efficient way to combine these sampling methods?
e Brute-force simulation using MLE
o FIM based estimation

21 /47



Integrated Analysis of Random Samples

Answering Q2: Fisher Information Matrix

e O: isoform probabilities, w/ degree of freedom: K — 1
@ Observed and Expected FIM
o J(©)pq = W where p,g=1,..,K—1
° I(©)pq = E [3(@),, q]
e Why is Z(©) important?
e In one dimensional case
1

var(f) > 700)

° Zk 1 TO@)x Zk 1 var(@k)

e Computing I(@)
e can be decomposed into individual samples
o Z(0) =M N, Z(™(©),,

9% log 3K | 55 k0k Gs(.nll)
o IU™(0)p.q = Eswsampn | = 5,05,
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Integrated Analysis of Random Samples

Fast computation of Z(™)(@): Definitions

Based on the concept of equivalent samples.

Two partial samples s; and s, are equivalent w.r.t. Samp,, if and
only if 3{™ (@) = 3{™ ().

Lemma 2

| A

ItV €1, dg, k G( ) = 0, k G( k) then s; and s, are equivalent
w.r.t. Sampy,.

Definition 3

A set of partial samples S is an equivalent sample set w.r.t. Samp,
if and only if Vsi,s € S, s1 and s, are equivalent w.r.t. Samp,.

23 /47



Integrated Analysis of Random Samples

A simple shotgun read generation model

Definition 4

A simple shotgun sampling method Samp,, generates samples with
fixed read length r;,. When sampling from an isoform /, with
length /i, there are in total /, — r, + 1 different samples s[(:j)),
where a=0,1,2,...,(lk — rm); and b = a+ r,,. Each of these
samples has equal probability of being generated from /y:
G =1/l — fm + 1).

L

r coverage
— 9
]
— position
[ ] 0 L
= m]
[ ] ]
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Integrated Analysis of Random Samples

Examples of Equivalent Samples

Gene
Region

Isoform 1
(relative abundance: 61)

read! p—  read3
read? S road4
_ -~~~ paired-end read” ~ - -~ - _
reads gy - | pareden _ " -
readé__ ---""~ TTe-al
- T -

I @
(62)
read7 pommmm
readd =

— read10 - - (63)
read9 read11 S - - =D
read12_----"""""""°7° -~
=3 - -
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Integrated Analysis of Random Samples

Fast computation of Z(™)(©)

Lemma 5

Given an isoform I, and a sampling method Samp,, if we divide all
its possible partial samples into n non-overlapping equivalent
sample sets 51, 5>, ..., S,,, then:

K n
IM(©)pg = > 0k Y ISIGVI(©)pq, for any s € S

Theorem 6

Given the sample generation model Samp,, in Definition 4, if two
samples sy and s, generated by this method overlap with all the
Jjunctions in a same set of connected exons ey, — €, — ... — €,
then sy and s, are equivalent w.r.t. Samp,,.

26
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Integrated Analysis of Random Samples

Algorithms for computing FIM: Brute-force

Enumerate all possible samples.

Algorithm 1 BRUTEFORCEFIM(/, ©, Sampn,, p, q)

1: REQUIRE: Possible isoforms | = {h, b, ..., Ik}

Relative abundances © = (04, 07, ..., 0k);

Sampling method Sampy, Integer p, g € {1,2, ..., K — 1}.
: ENSURE: The value of Z(™(©), 4.

Z+—0
. forall Iy € I do
Iy — 0
for all [a, b) € Iy do
5 — S[a,b)
T, — Ty + Gs(f’;):fﬁm)(e)p,q
end for
T — T+ 6,T

11: end for
12: retumn T

O 0 NoGORw N

—
e
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Integrated Analysis of Random Samples

Algorithms for computing FIM: Fast

Combine equivalent samples within isoforms.

Algorithm 2 FASTSHOTGUNFIM(/, ©, Sampp,, p, q)

1:

2.0

3: forall I € I do

4. T 0

59 a<—o

6:  while 2 < length(ly) — rm do

7: b— a+rm;

D

9: (ek1 — ey — ek, ) < overlappingExons(s, li)|
10: NEgSamples < min Zek’ el K <=kp length(e,/) — a, Zek’ El K <=kn length(e,/) — b + l)
11: Iy — Ik + NEanmp/esGs(rZ):]EM)(e)P;q

12: a<«— a+ NEanmpIes

13: end while

14: T — T+ 0,Z

15: end for

16: retumn T

28 /47



Integrated Analysis of Random Samples

Algorithms for computing FIM: Faster

Combine equivalent samples within and across isoforms.

Algorithm 3 FASTERSHOTGUNFIM(/, ©, Sampm, p, q)

1: forall I, € I do

2: CoveredSampleStarts;, «— empty interval list

3: end for

4: forall I, € I do

5: a <« minNotCoveredStart(CoveredSampleStarts) , Samppm)

6: while a < length(ly) — rym do

7

8: NEgSamples +— min (Zek’ Elk! <=k; length(e,/) — a, zék’ k! <=kn length(e,s) — b+ 1)
9: I—TI+ ekNEanmplesGS(:z)j(sm)(e)qu

10: CoveredSampleStartsy < CoveredSampleStartsy + [a, a + Nggsamples)

11: for all [, # I do

12: if I,/ contains (e, — ex, — ... — e, ) then

13:

14: CoveredSampleStarts,, + CoveredSampleStarts,; + [a',a" + NEanmp/es)
15: end if

16: end for

17: a «— minNotCoveredStart(CoveredSampleStarts, , Samppm,)

18:  end while

19: end for

D return 7 29 /47




Integrated Analysis of Random Samples

Example: TCF7

e TCF7 in UCSC knownGenes
e 10 known isoforms
o 96 possible paths (isoforms) in the splicing graph
@ Assumptions
e The known isoforms are the actual isoforms (the “true”

isoforms)
chrs: | 133485000 | 133490000 | 133495000 | 133500000 | 133505000 | 133510000 |
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics
CDKN2AIPNL/UC003Kys. 1
TCF7/uc003kyt.1 pH - f—
TC Filt o -
TC 1 + 4+ +
TCF7/uc003kyw. 1 + -
TCF7/uc003kyx.1 ¥
Tl A Fae
TCF: 1 t >4 +
TCl 1 t Pt
TCF7/uc003kzb.1
TCF7/uc010jdu.1 P E—
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Integrated Analysis of Random Samples

Example: Speedups in computing FIM

Speedups in computing FIM

500
|

50 100 200

20
!

10
!

N —— Theoretical speedup
--- Actual speedup in a typical run

T T T
Brute-force FIM FastFIM FasterFIM

Gene: TCF7; Read: 30bp short read
All possible isoforms
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Integrated Analysis of Random Samples

Answering Q3: Simulations on Simplified Gene Models

Simulation results
@ 3 simplified gene models
@ Short single and paired-end reads w/ fixed total cost
@ 1000 trials for each cost configuration

Scale 10 kb 4

SampleGeneA

GeneA. || N
GeneA. |1 I

SampleGeneB
Geneb. |2 I ->->-->>->>>>->>>>-> .

11 I - - S
GeneB SampleGeneG

GeneC.I1 N -~ I
GeneG.I2 [ aeaa e |
Average variance of (8) Average variance of (8) Average variance of (8,)
ene: SampleGeneAlso1Maj; Total cost: $0.2 2 | Gene: SampleGeneBIsolMaj. Toal cost: 0.2 S Gene: SampleGeneClsotvaj; Total cost: 502
ofoms S i isoforms. 2known isoforms
o shortand short PE reads shortand short PE reads shortand short PE reads
BN — Simulaton result o — Simulaton result g — Simulaton result
2 ~-- FiM based esimatpn 2 24 ~-- FiM based estmatpn 2 g ~-- FiM based estimatpn
H e ~/| < B
24 S
T T T T T T ° T T T T T T T T T T T
o 20 w0 60 80 100 o 20 w0 60 80 100 o 20 w0 0 80 100
Percentage cost for short PE reads (%) Percentage cost for short PE reads (%) Percentage cost for short PE reads (%)
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Integrated Analysis of Random Samples

Answering Q3: Simulations on Simplified Gene Models

Total trials for
one gene

Number of trials x
Number of sampling
method  combina-
tions = 1000 x 21

Total FIM com-
putation for one
gene

Number of sampling
methods= 2

Total CPU time
used by brute-
force simulation

~ 52 minutes

Total CPU time
used by FIM
based heuristic

< 1 second
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Integrated Analysis of Random Samples

Answering Q3: Simulations on TCF7

@ Average variance of MLE estimation Oy
o Tilvar(6)

K-1

@ Estimation based on FIM

K—1 1
2ol TN
K—1

@ Simulation:

gene: TCF7, equal probabilities for its known isoforms

medium reads: 250bp, $7 x 107> per bp

short reads: 30bp, $7 x 107° per bp

total budget: $0.2

at each cost configuration (e.g. $0.1 for medium reads, $0.1 for short reads)
e 200 trials

K—1 0
e compute iy var(06)

K—-1

34 /47



Integrated Analysis of Random Samples

Answering Q3: Simulations on TCF7 contd.

Simulation results vs. Estimation based on Z(©)

N N
Average variance of (6;) Average variance of (6,)
o
{5
7 °© 7
o i ‘\
8 4 | |
° —— Estimation based on FIM | |
-4~ Simulation result —— Estimation based on fIM |
9 Simulation result |
~ ~ o
S 9] <
5 © 5 Gene: TCF7; Total cost: $0.2
3 Gene: TCF7; Total cost: $0.2 | g Known isoforms
H All possible isoforms | g o Medium and short reads
£ £ g |
<3 £ Medium and short reads s S
g © s
&g g
g $
< < L, N
8 o A 21 _ .
S B a ° e A
BN & e " &
o E oo A
A-AAA‘A ot
N N A N Rl PRI ES
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Percentage cost for medium reads (%) Percentage cost for medium reads (%)
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Integrated Analysis of Random Samples

Answering Q3: Simulations on TCF7 contd.

. N
Average variance of (6;)

o
<
3
o
0
@
S
— o
B
N2
k]
8 o
= Q ¢ Gene: TCF7; Total cost: $0.2
H o 10 known isoforms
; short and short PE reads
j=2)
;.!; o » PEtolerance: 0 | — Simulation result
> o | o PE tolerance: 0.1 - - - FIM based estimation
< 2 PE tolerance: 0.2
< PE tolerance: 0.3 P
o<
D R e e dn A
=t 2ot Zo- 6= o= —o- -0~ 0~ —o- 0= 0= ©~ ©°~ ©
8 ceeee
e e
S e e e

Percentage cost for short PE reads (%)
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Integrated Analysis of Random Samples

Answering Q3: Simulations on TCF7 contd.

Total trials for
one gene

Number of trials x
Number of sampling
method  combina-
tions = 200 x 21

Total FIM com-

Number of sampling

putation for one | methods= 2
gene

Total CPU time | ~ 10.6 hours
used by brute-

force simulation

Total CPU time | < 1 second

used by FIM
based heuristic
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Integrated Analysis of Random Samples

Revisiting the Questions

@ Question #1: Given [ and S = {s from
Sampm|m =1, ..., M}, how to estimate ©7
e MLE
@ Question #2: How good is the estimation?
o Efficient algorithm to compute the Fisher information matrix
e Using FIM to estimate MLE variance

@ Question #3: Suppose different sampling techniques have
different costs, given a fixed budget, what is a most
cost-efficient way to combine these sampling methods?

e Brute-force simulation using MLE
e FIM based estimation
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Discussions

Conclusion & Discussions

@ Recap

Integrated analysis of partial samples

o Fast algorithms to estimate analysis performance
e Optimal integration

o Efficient simulation

@ Further Discussions
e Incorporation of more accurate partial sampling models.

@ e.g. more realistic modeling of the sequencing process
o tradeoff between model accuracy and computational efficiency

e Incorporation of domain-specific knowledge

o utilizing relevant biological knowledge
@ e.g. characteristics of genes and splicing

o Integration of different types of sampling methods

@ e.g. combining sequencing and array data
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Discussions
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Discussions

Details: Optimal Sampling in HMM: a bit of formalism

Definition 7 (ldealized HMM Tiling Problem (HTP))

An idealized HMM tiling problem is a tuple (D, Csampie, O), where
D is the emission sequence corresponding to a hidden state
sequence S generated by an unknown HMM M, Cg,pmple is the
constraint on how sample sub-regions can be selected in D (e.g.
the maximum length of each sample sub-sequence), and O is a
labeling oracle (an imaginary black box which is able to answer
certain questions) that can discover the corresponding hidden state
sequence of any sample sub-region in D. A solution to the problem
first selects a set of sample sub-regions in D according to the
constraint Csymple, asks the labeling oracle O about the
corresponding state sequences of these sample sub-regions, then
efficiently computes a model M’ for D and outputs the
corresponding state sequence S’ for D.
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Discussions

Details: Mapability

Definition 8 (Mapability)

For a given genome G and a given sequence s, the mapability
function M(s, G, m) is defined as the total number of occurrences
of the elements in S in G, where S = {s'|mismatch(s,s’) < m}.
For simplicity, we also denote that M(s, G) = M(s, G,0), which is
the extract occurrence of s in G.

Lemma 9

Given a genome G and two sequences s and s', if s contains s/,
then M(s, G) < M(s', G). M(s, G) = M(s', G) if and only if all
the occurrences of s’ in G are within sequence s.

Lemma 10

Given a genome G, a sequence s, and two non-negative integers
m, m', if m > m', then M(s, G, m) > M(s, G, m’).
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Discussions

Details: Computing Cs(nk)

C;nk) = EZIS,@(") [Zs,k]
= E[Z45,00)]
— Pr (Zs,k = 1’5’ e(n)>
Pr(Zoy = 1,5/0)
Pr (s|©(m)
55k0" G
Zl}f/:l 5S,k/91(<7) Gs,k'
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Discussions

Details: E step

Ezso0 Z 3 logzzskekcﬁ’,’:)

=1 S=5Sm,«

EZ|5’@(n Z Z ZZshogGkG m)

IT7 15=sm,x k=1

(for all Z ., one and only one can have a value of 1)

M K
S 3 S Wog b + 10g G)

m=1s=smx k=1

M K
Z Z Zéﬂk) log Oy + C
m=1 S=5m,x k=1
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Discussions

Details: M step

We introduce a Lagrange multiplier A and rewrite the problem as
maximizing:

K
TM©,0) = QM(©)+A (Z Ok — 1)

k=1
aT(M (O, )) 0
00,
M Nm ~(n)
3 Cg’k “A =0
m=1 =1 k
g = Tl

A
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Discussions

Details: M step contd.

Inserting the result above into the constraint, we have:

_ZZ ngk)\ =1

k=1 m=1s=5m «

) ke(”) G(’Z) 1

M K
722 k=1"s,k"k sm — 1

m=15=5m,« Zf:l 55,’(95:) Gs(,k) A

A= => 31
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Discussions

Details: M step contd.

(n+1) Zgzl Zs:sm,* <§,nk)
N

YD

510" 6L
S=5m,x ZkKlzl 6s,k/9;((,11) Gs,k/
N

Guaranteed convergence to a local maximum.
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