Integrated Analysis of Partial Sampling Techniques in Bioinformatics

Jiang Du CS@Yale

Feb 2010

Background

- Machine learning and data mining studies in Bioinformatics
 - build mathematical models explaining the experimental results (samples)
 - A model $Model(\Theta)$ will be defined with parameters Θ
 - The samples S will be used to find the Θ that optimizes an objective function Obj(Model, S, Θ)
- Samples in Bioinformatics
 - Multiple sampling (experimental) technologies with different cost and characteristics
 - Large-scale (whole-genome), high-throughput
 - Limited by the experimental cost and budget
 - Are usually *partial* samples when compared to the object being observed

Questions

- How to construct different *Model*(Θ)s and formulate *Obj*(*Model*, *S*, Θ)s for some important biological experiments, where *S* is a set of partial samples from different sampling methods?
- **2** How to find Θ that optimizes $Obj(Model, S, \Theta)$?
- **③** How to estimate the accuracy of our Θ estimation?
 - Even in simulations where the true Θ is "known", can we estimate the accuracy of our Θ estimation more efficiently than the brute-force method?
- Given a fixed total budget, how to find a low-cost integration of different sampling methods to get the best outcome in estimating Θ?

Outline

Integrated Analysis of Partial Sampling Techniques

- In Efficient Simulation of a Random Sampling Process (brief)
 - Optimal Low Cost Integration of Sampling Techniques in Re-sequencing
- Optimal Utilization of Deterministic Sampling Techniques (brief)
 - Deterministic Sampling in A Supervised Hidden Markov Model Framework
- Integrated Analysis of Partial Sampling Techniques
 - Distribution Estimation based on Nondeterministic Partial Samples

Genome/Gene Primer: a crude view

Genome

- Long string of A, C, G, T
- Human genome: diploid, each 3Gbases
- Reference human genome: 3Gbases, first release in 2003
- $\bullet\,$ An individual's genome: estimated to differ from the reference by $0.05\%\,$
- Genes
 - Regions in the genome with certain functions, e.g. coding proteins
 - Different expression levels
 - Transcribed to mRNA, then translated to protein
- Second Exon (intron)
 - Regions in the gene that are (not) present in the gene transcripted mRNA

Partial Samples Example #1: individual genome re-sequencing

- Sequencing
 - sampling DNA fragments at random genomic locations
 - Sometimes need to be assmbled for novel insertion reconstruction

More on sequencing techniques

- Different characteristics, different costs
- Sometimes needs to be combined to obtain optimal analysis results

	Long Sequencing	Medium Sequencing	Short Sequencing
Read length (bases)	~ 800	~ 250	~ 30
Approximate cost per base	$\sim 1E - 3$	$\sim 7E-5$	$\sim 7E-6$
(\$)			
Error rate per base	0.001 - 0.002%	0.3 - 0.5%	0.2 - 0.6%
Major error type	Substitution errors	Insertion / deletion	All error types
		errors (usually caused	
		by homo-polymers)	

Optimal Low Cost Integration of Sampling Techniques in

Re-sequencing: reconstructing large novel insertions

Given a fixed budget, what are the sequencing coverage A, B and C that can achieve the maximum reconstruction rate (on average/worst-case)?

Optimal Low Cost Integration of Sampling Techniques in

Re-sequencing: simple assembly algorithms in reality

Optimal Low Cost Integration of Sampling Techniques in Re-sequencing: simulation based method

Optimal Low Cost Integration of Sampling Techniques in Re-sequencing: results

Partial Sample Example #2: identifying transcriptional activity

GenomeATGCCAGTAGA...GCCCGTTTAGGGCA...AATCGACCG...TAA.....

Sampling: tiling-array: large-scale, high-throughput, noisy

Sampling: experimental validation: accurate, low-throughput

Transcriptional tiling array and experimental validation:

• Sampling at deterministic genomic locations

Optimal Sampling in Supervised Hidden Markov Model

How to choose samples to best train the model?

Optimal Sampling in Supervised Hidden Markov Model

When M is a Hidden Markov Model

 MaxEntropy: selects m non-overlapping sub-regions with the highest entropies.

Partial Samples Example #3: transcript isoform quantification

- Transcript isoforms: exon skipping
- RNA Sequencing:
 - Sampling at random genomic locations
 - in a pool of different transcript isoforms

Isoform Quantification based on Partial Samples

Given the isoform structures and the reads, what are the relative abundances of the isoforms?

Generalized Question #1: Distribution Estimation based on Partial Samples

- Isoforms (I = {I₁, ..., I_K}): Objects that may be similar to each other
 - Different object has different abundances ($\Theta = (\theta_1, ..., \theta_K)$)
- \bullet Reads: Partial samples generated based on I and Θ
 - One partial sample may be compatible to multiple isoforms
 - Can be generated by different sampling (sequencing) techniques (*Samp*₁, ..., *Samp*_M)
 - Each sampling technology has its own mechanism for generating a sample (e.g. read length, sequencing bias)
- Question #1: Given I and $S = \{s \text{ from } Samp_m | m = 1, ..., M\}$, how to estimate Θ ?

Probabilistic Solution to Q1: Maximum Likelihood Estimation

- For each possible isoform I_k , assign a probability (abundance) value θ_k
- Given all the sequencing data S, Find the Θ that maximizes $Pr(S|\Theta)$
 - Consider integrating different types (*Samp_m*) of sequencing data
 - For each sample s:
 - $\delta_{s,k}$: indicator of whether s is compatible with I_k
 - take into account the local model of sequences being generated
 - $G_{s,k}^{(m)} = Pr(\text{generating } s|I_k, Samp_m)$
 - simplified G: reads with fixed length and uniformly random starts along *I_k*; always uniquely mappable back to the genome

•
$$\hat{\Theta} = \operatorname{argmax}_{\Theta} \sum_{m=1}^{M} \sum_{s=s_{m,*}} \log \sum_{k=1}^{K} \delta_{s,k} \theta_k G_{s,k}^{(m)}$$

Solving MLE with Expectation Maximization

• Introduce hidden variable Z

•
$$Z_{s,k} = Ind(s \text{ is from } I_k)$$

• Also define:
$$\zeta_{s,k}^{(n)} = \mathbf{E}_{Z|S,\Theta^{(n)}}[Z_{s,k}]$$

• $\zeta_{s,k}^{(n)} = \frac{\delta_{s,k}\theta_k^{(n)}G_{s,k}^{(m)}}{\sum_{k'=1}^{K}\delta_{s,k'}\theta_k^{(n)}G_{s,k'}}$

• E step: $Q^{(n)}(\Theta) = \mathbf{E}_{Z|S,\Theta^{(n)}} \left[\log(\Pr(Z, S|\Theta)) \right]$

• M step: Maximize $Q^{(n)}(\Theta)$ with constraint $\sum_{k=1}^{K} \theta_k = 1$

•
$$\theta_k^{(n+1)} = \frac{\sum_{m=1}^M \sum_{s=s_{m,*}} \zeta_{s,k}^{(n)}}{N} = \frac{\sum_{m=1}^M \sum_{s=s_{m,*}} \frac{\delta_{s,k} \theta_k^{(n)} G_{s,k}^{(m)}}{\sum_{k'=1}^K \delta_{s,k'} \theta_{k'}^{(n)} G_{s,k'}}}{N}$$

Application to human RNA-seq Data

- 4 known isoforms from UCSC known genes
- 4 sequencing technologies: 454/Solexa single/paired-end reads

Revisiting the Questions

• Question #1: Given I and $S = \{s \text{ from } Samp_m | m = 1, ..., M\}$, how to estimate Θ ?

New questions:

- Question #2: How good is the estimation?
 - Average estimation variance: $\frac{\sum_{k=1}^{K-1} var(\theta_k)}{K-1}$
 - Using Fisher information to estimate MLE variance
- Question #3: Suppose different sampling techniques have different costs, given a fixed budget, what is a most cost-efficient way to combine these sampling methods?
 - Brute-force simulation using MLE
 - FIM based estimation

Answering Q2: Fisher Information Matrix

- Θ : isoform probabilities, w/ degree of freedom: K-1
- Observed and Expected FIM

• $\Im(\Theta)_{p,q} = -\frac{\partial^2 \log(Pr(S|\Theta))}{\partial \theta_p \partial \theta_q}$, where p, q = 1, ..., K - 1• $\mathcal{I}(\Theta)_{p,q} = \mathbf{E} [\Im(\Theta)_{p,q}]$

- Why is $\mathcal{I}(\Theta)$ important?
 - In one dimensional case

$$\mathsf{var}(\hat{ heta}) \geq rac{1}{\mathcal{I}(heta)}$$

•
$$\sum_{k=1}^{K-1} \frac{1}{\mathcal{I}(\Theta)_{k,k}} \sim \sum_{k=1}^{K-1} \operatorname{var}(\theta_k)$$
?

• Computing $\mathcal{I}(\Theta)$

• can be decomposed into individual samples

•
$$\mathcal{I}(\Theta) = \sum_{m=1}^{M} N_m \mathcal{I}^{(m)}(\Theta)_{p,q}$$

• $\mathcal{I}^{(m)}(\Theta)_{p,q} = \mathbf{E}_{s \sim Samp_m} \left[-\frac{\partial^2 \log \sum_{k=1}^{K} \delta_{s,k} \theta_k G_{s,k}^{(m)}}{\partial \theta_p \partial \theta_q} \right]$

Fast computation of $\mathcal{I}^{(m)}(\Theta)$: Definitions

Based on the concept of equivalent samples.

Definition 1

Two partial samples s_1 and s_2 are equivalent w.r.t. $Samp_m$ if and only if $\mathfrak{I}_{s_1}^{(m)}(\Theta) = \mathfrak{I}_{s_2}^{(m)}(\Theta)$.

Lemma 2

If
$$\forall I_k \in I$$
, $\delta_{s_1,k} G_{s_1,k}^{(m)} = \delta_{s_2,k} G_{s_2,k}^{(m)}$, then s_1 and s_2 are equivalent w.r.t. Samp_m.

Definition 3

A set of partial samples S is an equivalent sample set w.r.t. $Samp_m$ if and only if $\forall s_1, s_2 \in S$, s_1 and s_2 are equivalent w.r.t. $Samp_m$.

A simple shotgun read generation model

Definition 4

A simple shotgun sampling method $Samp_m$ generates samples with fixed read length r_m . When sampling from an isoform I_k with length I_k , there are in total $I_k - r_m + 1$ different samples $s_{[a,b)}^{(k)}$, where $a = 0, 1, 2, ..., (I_k - r_m)$; and $b = a + r_m$. Each of these samples has equal probability of being generated from I_k : $G_{s,k}^{(m)} = 1/(I_k - r_m + 1)$.

Examples of Equivalent Samples

Fast computation of $\mathcal{I}^{(m)}(\Theta)$

Lemma 5

Given an isoform I_k and a sampling method $Samp_m$, if we divide all its possible partial samples into n non-overlapping equivalent sample sets $S_1, S_2, ..., S_n$, then:

$$\mathcal{I}^{(m)}(\Theta)_{p,q} = \sum_{k=1}^{K} \theta_k \sum_{1}^{n} |S_i| G^{(m)}_{s_i,k} \mathfrak{I}^{(m)}_{s_i}(\Theta)_{p,q}, \text{ for any } s_i \in S_i$$

Theorem 6

Given the sample generation model $Samp_m$ in Definition 4, if two samples s_1 and s_2 generated by this method overlap with all the junctions in a same set of connected exons $e_{k_1} \rightarrow e_{k_2} \rightarrow ... \rightarrow e_{k_n}$, then s_1 and s_2 are equivalent w.r.t. $Samp_m$.

Algorithms for computing FIM: Brute-force

Enumerate all possible samples.

Algorithm 1 BRUTEFORCEFIM($I, \Theta, Samp_m, p, q$)

- 1: **REQUIRE:** Possible isoforms $I = \{I_1, I_2, ..., I_K\}$; Relative abundances $\Theta = (\theta_1, \theta_2, ..., \theta_K)$; Sampling method Samp_m Integer p, $q \in \{1, 2, ..., K - 1\}$.
- 2: ENSURE: The value of $\mathcal{I}^{(m)}(\Theta)_{p,q}$.

```
\begin{array}{l} 3: \ \mathcal{I} \leftarrow 0 \\ 4: \ \text{for all } I_k \in I \ \text{do} \\ 5: \quad \mathcal{I}_k \leftarrow 0 \\ 6: \quad \text{for all } [a, b) \in I_k \ \text{do} \\ 7: \quad s \leftarrow s^k_{[a, b)} \\ 8: \quad \mathcal{I}_k \leftarrow \mathcal{I}_k + G^{(m)}_{s,k} \Im^{(m)}_s(\Theta)_{p,q} \\ 9: \quad \text{end for} \\ 10: \quad \mathcal{I} \leftarrow \mathcal{I} + \theta_k \mathcal{I}_k \\ 11: \ \text{end for} \\ 12: \ \text{return } \ \mathcal{I} \end{array}
```

Algorithms for computing FIM: Fast

Combine equivalent samples within isoforms.

Algorithm 2 FASTSHOTGUNFIM $(I, \Theta, Samp_m, p, q)$

1: while $a \leq \text{length}(I_k) - r_m$ do $b \leftarrow a + r_m;$ $s \leftarrow s_{[a,b]}^k$ 9: $(e_{k_1} \rightarrow e_{k_2} \rightarrow \ldots \rightarrow e_{k_n}) \leftarrow \texttt{overlappingExons}(s, I_k)|$ $\mathsf{N}_{\mathsf{EqSamples}} \gets \mathsf{min}\left(\sum_{e_{\mathbf{k}'} \in I_{\mathbf{k}}; \mathbf{k}' < =k_1} \mathtt{length}(e_{\mathbf{k}'}) - a, \sum_{e_{\mathbf{k}'} \in I_{\mathbf{k}}; \mathbf{k}' < =k_n} \mathtt{length}(e_{\mathbf{k}'}) - b + 1 \right)$ 10: 11: $\mathcal{I}_{k} \leftarrow \mathcal{I}_{k} + N_{EqSamples} G_{s,k}^{(m)} \mathfrak{I}_{s}^{(m)}(\Theta)_{p,q}$ 12: $a \leftarrow a + N_{EaSamples}$ 13: 14: end while $\mathcal{I} \leftarrow \mathcal{I} + \theta_{k} \mathcal{I}_{k}$ 15: end for 16: return \mathcal{I}

Algorithms for computing FIM: Faster

Combine equivalent samples within and across isoforms.

Algorithm 3 FASTERSHOTGUNFIM $(I, \Theta, Samp_m, p, q)$

1: for all $I_k \in I$ do 2: $CoveredSampleStarts_{k} \leftarrow empty interval list$ 3: end for 4: for all / for all $I_k \in I$ do 5: $a \leftarrow \min NotCoveredStart(CoveredSampleStarts_k, Samp_m)$ 6: while $a < \text{length}(I_k) - r_m$ do 7: $N_{EqSamples} \leftarrow \min\left(\sum_{e_{k'} \in I_k; k' < =k_1} \texttt{length}(e_{k'}) - a, \sum_{e_{k'} \in I_k; k' < =k_n} \texttt{length}(e_{k'}) - b + 1\right)$ 8: 9: $\mathcal{I} \leftarrow \mathcal{I} + \theta_k N_{EqSamples} G_{s,k}^{(m)} \mathfrak{I}_s^{(m)}(\Theta)_{p,q}$ 10: $CoveredSampleStarts_k \leftarrow CoveredSampleStarts_k + [a, a + N_{EaSamples})$ 11: for all $I_{k'} \neq I_k$ do 12: if $I_{k'}$ contains $(e_{k_1} \rightarrow e_{k_2} \rightarrow \ldots \rightarrow e_{k_n})$ then 13: 14: $CoveredSampleStarts_{k'} \leftarrow CoveredSampleStarts_{k'} + [a', a' + N_{EaSampleS})$ 15: 16: 17: end if end for a ← minNotCoveredStart(CoveredSampleStarts, Sampm) 18: end while end for return T

Example: TCF7

- TCF7 in UCSC knownGenes
 - 10 known isoforms
 - 96 possible paths (isoforms) in the splicing graph
- Assumptions
 - The known isoforms are the actual isoforms (the "true" isoforms)

Example: Speedups in computing FIM

Speedups in computing FIM

All possible isoforms

Answering Q3: Simulations on Simplified Gene Models

Simulation results

- 3 simplified gene models
- Short single and paired-end reads w/ fixed total cost
- 1000 trials for each cost configuration

Answering Q3: Simulations on Simplified Gene Models

Total trials for	Number of trials $ imes$
one gene	Number of sampling
	method combina-
	$tions = 1000 \times 21$
Total FIM com-	Number of sampling
putation for one	methods = 2
gene	
Total CPU time	\sim 52 minutes
used by brute-	
force simulation	
Total CPU time	< 1 second
used by FIM	
based heuristic	

Answering Q3: Simulations on TCF7

• Average variance of MLE estimation $\hat{\theta}_k$:

$$\frac{\sum_{k=1}^{K-1} \operatorname{var}(\theta_k)}{K-1}$$

Estimation based on FIM

•
$$\frac{\sum_{k=1}^{K-1} \frac{1}{\mathcal{I}(\Theta)_{k,k}}}{K-1}$$

- Simulation:
 - gene: TCF7, equal probabilities for its known isoforms
 - medium reads: 250bp, $$7 \times 10^{-5}$ per bp
 - short reads: 30bp, $$7 \times 10^{-6}$ per bp
 - total budget: \$0.2
 - at each cost configuration (e.g. \$0.1 for medium reads, \$0.1 for short reads)

 - 200 trials compute $\frac{\sum_{k=1}^{K-1} var(\theta_k)}{K-1}$

Answering Q3: Simulations on TCF7 contd.

Simulation results vs. Estimation based on $\mathcal{I}(\Theta)$

Answering Q3: Simulations on TCF7 contd.

Percentage cost for short PE reads (%)

Answering Q3: Simulations on TCF7 contd.

Total trials for	Number of trials \times	
one gene	Number of sampling	
	method combina-	
	tions = 200×21	
Total FIM com-	Number of sampling	
putation for one	methods = 2	
gene		
Total CPU time	~ 10.6 hours	
used by brute-		
force simulation		
Total CPU time	< 1 second	
used by FIM		
based heuristic		

Revisiting the Questions

- Question #1: Given I and $S = \{s \text{ from } Samp_m | m = 1, ..., M\}$, how to estimate Θ ?
 - MLE
- Question #2: How good is the estimation?
 - Efficient algorithm to compute the Fisher information matrix
 - Using FIM to estimate MLE variance
- Question #3: Suppose different sampling techniques have different costs, given a fixed budget, what is a most cost-efficient way to combine these sampling methods?
 - Brute-force simulation using MLE
 - FIM based estimation

Conclusion & Discussions

Recap

- Integrated analysis of partial samples
- Fast algorithms to estimate analysis performance
- Optimal integration
- Efficient simulation
- Further Discussions
 - Incorporation of more accurate partial sampling models.
 - e.g. more realistic modeling of the sequencing process
 - tradeoff between model accuracy and computational efficiency
 - Incorporation of domain-specific knowledge
 - utilizing relevant biological knowledge
 - e.g. characteristics of genes and splicing
 - Integration of different types of sampling methods
 - e.g. combining sequencing and array data

Acknowledgements

- Mark Gerstein @Gerstein lab@Yale
- Drew McDermott, Martin Schultz @CS@Yale
- Roderic Guigo @CRG
- Michael Snyder @Stanford
- Joel R, KevinY, Lukas H, Zhengdong Z, Jing L, Hugo L, Andrea S, ..., TECH, ASSEM @Gerstein lab
- Jiaqian W @Snyder lab, Nicholas C, Robert B @HPC@Yale, Yong K @Keck@Yale, Joseph C, Andrew B @Stat@Yale
- Family (Beiliang D, Weiwei J, Cecile L)
- Roommates (Hong G, Bing W, Yinli X, Jianye L)
- Friends (Chen X, Songhua X, Hongzhi W, Yinghua W, Peishen Q, Haiyong X, Zheng M, Hao W, Jinqiang H, ...)

EE

Details: Optimal Sampling in HMM: a bit of formalism

Definition 7 (Idealized HMM Tiling Problem (HTP))

An idealized HMM tiling problem is a tuple $\langle D, C_{sample}, O \rangle$, where D is the emission sequence corresponding to a hidden state sequence S generated by an unknown HMM M, C_{sample} is the constraint on how sample sub-regions can be selected in D (e.g. the maximum length of each sample sub-sequence), and O is a labeling oracle (an imaginary black box which is able to answer certain questions) that can discover the corresponding hidden state sequence of any sample sub-region in D. A solution to the problem first selects a set of sample sub-regions in D according to the constraint C_{sample} , asks the labeling oracle O about the corresponding state sequences of these sample sub-regions, then efficiently computes a model M' for D and outputs the corresponding state sequence S' for D.

Details: Mapability

Definition 8 (Mapability)

For a given genome *G* and a given sequence *s*, the mapability function M(s, G, m) is defined as the total number of occurrences of the elements in *S* in *G*, where $S = \{s' | mismatch(s, s') \le m\}$. For simplicity, we also denote that M(s, G) = M(s, G, 0), which is the extract occurrence of *s* in *G*.

Lemma 9

Given a genome G and two sequences s and s', if s contains s', then $M(s,G) \leq M(s',G)$. M(s,G) = M(s',G) if and only if all the occurrences of s' in G are within sequence s.

Lemma 10

Given a genome G, a sequence s, and two non-negative integers m, m', if m > m', then $M(s, G, m) \ge M(s, G, m')$.

Details: Computing $\zeta_{s,k}^{(n)}$

$$\begin{aligned} \zeta_{s,k}^{(n)} &= \mathbf{E}_{Z|S,\Theta^{(n)}} [Z_{s,k}] \\ &= \mathbf{E} \left[Z_{s,k} | S, \Theta^{(n)} \right] \\ &= Pr \left(Z_{s,k} = 1 | s, \Theta^{(n)} \right) \\ &= \frac{Pr \left(Z_{s,k} = 1, s | \Theta^{(n)} \right)}{Pr \left(s | \Theta^{(n)} \right)} \\ &= \frac{\delta_{s,k} \theta_k^{(n)} G_{s,k}^{(m)}}{\sum_{k'=1}^K \delta_{s,k'} \theta_{k'}^{(n)} G_{s,k'}} \end{aligned}$$

Details: E step

 $Q^{(}$

$$\begin{aligned} {}^{n)}(\Theta) &= \mathbf{E}_{Z|S,\Theta^{(n)}} \left[\sum_{m=1}^{M} \sum_{s=s_{m,*}} \log \sum_{k=1}^{K} Z_{s,k} \theta_k G_{s,k}^{(m)} \right] \\ &= \mathbf{E}_{Z|S,\Theta^{(n)}} \left[\sum_{m=1}^{M} \sum_{s=s_{m,*}} \sum_{k=1}^{K} Z_{s,k} \log \theta_k G_{s,k}^{(m)} \right] \\ &\quad \text{(for all } Z_{s,*}, \text{ one and only one can have a value of 1)} \\ &= \sum_{m=1}^{M} \sum_{s=s_{m,*}} \sum_{k=1}^{K} \zeta_{s,k}^{(n)} (\log \theta_k + \log G_{s,k}^{(m)}) \\ &= \sum_{m=1}^{M} \sum_{s=s_{m,*}} \sum_{k=1}^{K} \zeta_{s,k}^{(n)} \log \theta_k + C \end{aligned}$$

Details: M step

We introduce a Lagrange multiplier λ and rewrite the problem as maximizing:

$$T^{(n)}(\Theta,\lambda) = Q^{(n)}(\Theta) + \lambda \left(\sum_{k=1}^{K} \theta_k - 1\right)$$

$$\frac{\partial T^{(n)}(\Theta, \lambda)}{\partial \theta_k} = 0$$

$$\sum_{m=1}^{M} \sum_{i=1}^{N_m} \frac{\zeta_{s,k}^{(n)}}{\theta_k} + \lambda = 0$$

$$\theta_k = -\frac{\sum_{m=1}^{M} \sum_{i=1}^{N_m} \zeta_{s,k}^{(n)}}{\lambda}$$

Details: M step contd.

Inserting the result above into the constraint, we have:

$$-\sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{s=s_{m,*}} \zeta_{s,k}^{(n)} \frac{1}{\lambda} = 1$$

$$-\sum_{m=1}^{M} \sum_{s=s_{m,*}} \frac{\sum_{k=1}^{K} \delta_{s,k} \theta_{k}^{(n)} G_{s,k}^{(m)}}{\sum_{k=1}^{K} \delta_{s,k} \theta_{k}^{(n)} G_{s,k}^{(m)}} \frac{1}{\lambda} = 1$$

$$\lambda = -\sum_{m=1}^{M} \sum_{s=s_{m,*}} 1$$

$$\lambda = -\sum_{m=1}^{M} N_{m}$$

$$= -N$$

Details: M step contd.

$$\theta_{k}^{(n+1)} = \frac{\sum_{m=1}^{M} \sum_{s=s_{m,*}} \zeta_{s,k}^{(n)}}{N} \\ = \frac{\sum_{m=1}^{M} \sum_{s=s_{m,*}} \frac{\delta_{s,k} \theta_{k}^{(n)} G_{s,k}^{(m)}}{\sum_{k'=1}^{K} \delta_{s,k'} \theta_{k'}^{(n)} G_{s,k'}}}{N}$$

Guaranteed convergence to a local maximum.