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Background

Machine learning and data mining studies in Bioinformatics
build mathematical models explaining the experimental results
(samples)

A model Model(Θ) will be defined with parameters Θ
The samples S will be used to find the Θ that optimizes an
objective function Obj(Model ,S ,Θ)

Samples in Bioinformatics

Multiple sampling (experimental) technologies with different
cost and characteristics
Large-scale (whole-genome), high-throughput
Limited by the experimental cost and budget
Are usually partial samples when compared to the object being
observed
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Questions

1 How to construct different Model(Θ)s and formulate
Obj(Model ,S ,Θ)s for some important biological experiments,
where S is a set of partial samples from different sampling
methods?

2 How to find Θ that optimizes Obj(Model , S ,Θ)?
3 How to estimate the accuracy of our Θ estimation?

Even in simulations where the true Θ is “known”, can we
estimate the accuracy of our Θ estimation more efficiently
than the brute-force method?

4 Given a fixed total budget, how to find a low-cost integration
of different sampling methods to get the best outcome in
estimating Θ?
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Outline

Integrated Analysis of Partial Sampling Techniques
1 Efficient Simulation of a Random Sampling Process (brief)

Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing

2 Optimal Utilization of Deterministic Sampling Techniques
(brief)

Deterministic Sampling in A Supervised Hidden Markov Model
Framework

3 Integrated Analysis of Partial Sampling Techniques

Distribution Estimation based on Nondeterministic Partial
Samples
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Genome/Gene Primer: a crude view

1 Genome

Long string of A, C, G, T
Human genome: diploid, each 3Gbases
Reference human genome: 3Gbases, first release in 2003
An individual’s genome: estimated to differ from the reference
by 0.05%

2 Genes

Regions in the genome with certain functions, e.g. coding
proteins
Different expression levels
Transcribed to mRNA, then translated to protein

3 Exon (intron)

Regions in the gene that are (not) present in the gene
transcripted mRNA
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Partial Samples Example #1: individual genome re-sequencing

   ACATGCCGTA    TCCATGGC

   ACATGACGTA    TCC--GGC
   ACATGCCGTA    TCC--GGC

   TCGATTCCAGG...CGTTAAGC
b) Deletion (homozygous)

   CTCTTCGA---------CAAGT
c) Novel insertion (homozygous)

Target diploid
genome

Reference

   TCGATTCC---------TAAGC

   TCGATTCC---------TAAGC

   CTCTTCGAGGA...AACCAAGT

   CTCTTCGAGGA...AACCAAGT

a) SNP (heterozygous) & Indel (homozygous) 

        *           **   

           [*******]       

           [*******]       

ACAT CGTA

TGAC

CCGG

CGGC

Sequencing
reads

CCTA

GCCG ATTC

CTAA

CGAG

GAGG

GA..

.AAC

CCAA

Sequencing
sampling DNA fragments at random genomic locations
Sometimes need to be assmbled for novel insertion
reconstruction
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More on sequencing techniques

Different characteristics, different costs

Sometimes needs to be combined to obtain optimal analysis
results

Long Sequencing Medium Sequencing Short Sequencing
Read length (bases) ∼ 800 ∼ 250 ∼ 30
Approximate cost per base
($)

∼ 1E − 3 ∼ 7E − 5 ∼ 7E − 6

Error rate per base 0.001− 0.002% 0.3− 0.5% 0.2− 0.6%
Major error type Substitution errors Insertion / deletion

errors (usually caused
by homo-polymers)

All error types
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Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing: reconstructing large novel insertions
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Given a fixed budget, what are the sequencing coverage A, B and
C that can achieve the maximum reconstruction rate (on
average/worst-case)?
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Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing: simple assembly algorithms in reality

A Reads for insertion reconstruction 

B Iterative contig elongation with the best supported extension 

Current contig(s) 

Current contig(s) 

Current contig(s) 

…

Current contig(s) 

Current contig(s) 

Output contig(s) 

Overlapping 
reads 

Additional 
overlapping 
reads 

Elongate with the best supported extension 

Best overlap w/ current contig 

Most supported extension 

Reads for the 
assemble of  

a 
new contig 
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Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing: simulation based method
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Optimal Low Cost Integration of Sampling Techniques in
Re-sequencing: results

 

short reads
coverage

medium reads
coverage

long reads
coverage

0.67x

9.6x

96x

total cost: ~$7 on a
10Kb novel insertion
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Partial Sample Example #2: identifying transcriptional activity

Genome ... ...ATGCCAGTAGA...GCCCGTTTAGGGCA...AATCGACCG...TAA... ...

Sampling: tiling-array: large-scale, high-throughput, noisy

probe

Gene region

exon     intron

signal intensity on the probes

genomic position

Sampling: experimental validation: accurate, low-throughput

Transcriptional tiling array and experimental validation:

Sampling at deterministic genomic locations
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Optimal Sampling in Supervised Hidden Markov Model

Labeling Oracle O

probe signal

probe pos
probe signal

probe pos

U1, U2, U3, ...

probe pos

V1, V2, V3, ...

probe signal

S:

M'

probe pos

probe signal

S':

Data D 

Sampling according

to C and D

Labeling probes (e.g.

transcribed or not) in

the sample sub-regions

(according to gene

annotataion, validation

experiments, etc.)

Training the model

based on the samples

Labeling all the data

according to M'

sample

1. 

2. 

3. 

4. 

How to choose samples to best train the model?
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Optimal Sampling in Supervised Hidden Markov Model

When M is a Hidden Markov Model

MaxEntropy: selects m non-overlapping sub-regions with the
highest entropies.
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Partial Samples Example #3: transcript isoform quantification

Transcript isoforms: exon skipping
RNA Sequencing:

Sampling at random genomic locations
in a pool of different transcript isoforms

split read

paired-end read

Gene
Region

Isoform 1
(relative abundance: θ1)

Isoform 2
(θ2)

Isoform 3
(θ3)

read1

read3

read2

read4

read5

read6

read7 15 / 47
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Isoform Quantification based on Partial Samples

Given the isoform structures and the reads, what are the relative
abundances of the isoforms?

split read

paired-end read

Gene
Region

Isoform 1
(relative abundance: θ1)

Isoform 2
(θ2)

Isoform 3
(θ3)

read1

read3

read2

read4

read5

read6

read7

compatible
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Generalized Question #1: Distribution Estimation based
on Partial Samples

Isoforms (I = {I1, ..., IK}): Objects that may be similar to
each other

Different object has different abundances (Θ = (θ1, ..., θK ))

Reads: Partial samples generated based on I and Θ

One partial sample may be compatible to multiple isoforms
Can be generated by different sampling (sequencing)
techniques (Samp1, ...,SampM)
Each sampling technology has its own mechanism for
generating a sample (e.g. read length, sequencing bias)

Question #1: Given I and S = {s from
Sampm|m = 1, ...,M}, how to estimate Θ?
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Probabilistic Solution to Q1: Maximum Likelihood
Estimation

For each possible isoform Ik , assign a probability (abundance)
value θk
Given all the sequencing data S , Find the Θ that maximizes
Pr(S |Θ)

Consider integrating different types (Sampm) of sequencing
data
For each sample s:

δs,k : indicator of whether s is compatible with Ik
take into account the local model of sequences being
generated
G

(m)
s,k = Pr(generating s|Ik ,Sampm)

simplified G : reads with fixed length and uniformly random
starts along Ik ; always uniquely mappable back to the genome

Θ̂ = argmaxΘ
∑M

m=1

∑
s=sm,∗

log
∑K

k=1 δs,kθkG
(m)
s,k
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Solving MLE with Expectation Maximization

Introduce hidden variable Z

Zs,k = Ind(s is from Ik)

Also define: ζ
(n)
s,k = EZ |S,Θ(n) [Zs,k ]

ζ
(n)
s,k =

δs,kθ
(n)
k G

(m)
s,kPK

k′=1
δs,k′θ

(n)

k′ Gs,k′

E step: Q(n)(Θ) = EZ |S ,Θ(n) [log(Pr(Z , S |Θ))]

M step: Maximize Q(n)(Θ) with constraint
∑K

k=1 θk = 1

θ
(n+1)
k =

PM
m=1

P
s=sm,∗ ζ

(n)
s,k

N =

PM
m=1

P
s=sm,∗

δs,kθ
(n)
k

G
(m)
s,kPK

k′=1
δs,k′θ

(n)

k′
Gs,k′

N
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Application to human RNA-seq Data

4 known isoforms from UCSC known genes

4 sequencing technologies: 454/Solexa single/paired-end reads
chr1:

UNQ548/uc001buo.2
C1orf91/uc001bup.2
C1orf91/uc009vub.1
C1orf91/uc001buq.2

32454000 32455000 32456000 32457000 32458000 32459000 32460000
GM12878: reads in 545 from sampling method #0

GM12878: reads in 545 from sampling method #1

GM12878: reads in 545 from sampling method #2

GM12878: reads in 545 from sampling method #3

UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

17 reads

17 reads

52 reads

57 reads
0.337

[GM12878]

0.107 0.194 0.361
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Revisiting the Questions

Question #1: Given I and S = {s from
Sampm|m = 1, ...,M}, how to estimate Θ?

New questions:

Question #2: How good is the estimation?

Average estimation variance:
PK−1

k=1 var(θk )

K−1
Using Fisher information to estimate MLE variance

Question #3: Suppose different sampling techniques have
different costs, given a fixed budget, what is a most
cost-efficient way to combine these sampling methods?

Brute-force simulation using MLE
FIM based estimation
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Answering Q2: Fisher Information Matrix

Θ: isoform probabilities, w/ degree of freedom: K − 1
Observed and Expected FIM

I(Θ)p,q = −∂
2 log(Pr(S|Θ))
∂θp∂θq

, where p, q = 1, ...,K − 1

I(Θ)p,q = E [I(Θ)p,q]

Why is I(Θ) important?
In one dimensional case

var(θ̂) ≥ 1

I(θ)∑K−1
k=1

1
I(Θ)k,k

∼
∑K−1

k=1 var(θk)?

Computing I(Θ)
can be decomposed into individual samples
I(Θ) =

∑M
m=1 NmI(m)(Θ)p,q

I(m)(Θ)p,q = Es∼Sampm

[
−∂

2 log
PK

k=1 δs,kθkG
(m)
s,k

∂θp∂θq

]
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Fast computation of I(m)(Θ): Definitions

Based on the concept of equivalent samples.

Definition 1

Two partial samples s1 and s2 are equivalent w.r.t. Sampm if and

only if I
(m)
s1 (Θ) = I

(m)
s2 (Θ).

Lemma 2

If ∀Ik ∈ I , δs1,kG
(m)
s1,k

= δs2,kG
(m)
s2,k

, then s1 and s2 are equivalent
w.r.t. Sampm.

Definition 3

A set of partial samples S is an equivalent sample set w.r.t. Sampm

if and only if ∀s1, s2 ∈ S , s1 and s2 are equivalent w.r.t. Sampm.
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A simple shotgun read generation model

Definition 4

A simple shotgun sampling method Sampm generates samples with
fixed read length rm. When sampling from an isoform Ik with

length lk , there are in total lk − rm + 1 different samples s
(k)
[a,b),

where a = 0, 1, 2, ..., (lk − rm); and b = a + rm. Each of these
samples has equal probability of being generated from Ik :

G
(m)
s,k = 1/(lk − rm + 1).

...

... ...

coverage

0                                                           L 

L

r

position
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Examples of Equivalent Samples

paired-end read

Gene
Region

Isoform 1
(relative abundance: θ1)

Isoform 2
(θ2)

Isoform 3
(θ3)

read1

read2

read7

read10

read3

read4

read5
read6

read8

read11read9

read12
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Fast computation of I(m)(Θ)

Lemma 5

Given an isoform Ik and a sampling method Sampm, if we divide all
its possible partial samples into n non-overlapping equivalent
sample sets S1, S2, ...,Sn, then:

I(m)(Θ)p,q =
K∑

k=1

θk

n∑
1

|Si |G
(m)
si ,k

I
(m)
si (Θ)p,q, for any si ∈ Si

Theorem 6

Given the sample generation model Sampm in Definition 4, if two
samples s1 and s2 generated by this method overlap with all the
junctions in a same set of connected exons ek1 → ek2 → ...→ ekn ,
then s1 and s2 are equivalent w.r.t. Sampm.
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Algorithms for computing FIM: Brute-force

Enumerate all possible samples.

Algorithm 1 BruteForceFIM(I ,Θ,Sampm, p, q)

1: REQUIRE: Possible isoforms I = {I1, I2, ..., IK};
Relative abundances Θ = (θ1, θ2, ..., θK );
Sampling method Sampm Integer p, q ∈ {1, 2, ...,K − 1}.

2: ENSURE: The value of I(m)(Θ)p,q .

3: I ← 0
4: for all Ik ∈ I do

5: Ik ← 0

6: for all [a, b) ∈ Ik do

7: s ← sk
[a,b)

8: Ik ← Ik + G
(m)
s,k

I
(m)
s (Θ)p,q

9: end for
10: I ← I + θkIk

11: end for
12: return I
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Algorithms for computing FIM: Fast

Combine equivalent samples within isoforms.

Algorithm 2 FastShotgunFIM(I ,Θ, Sampm, p, q)

1: ...

2: I ← 0
3: for all Ik ∈ I do

4: Ik ← 0

5: a← 0
6: while a ≤ length(Ik )− rm do

7: b ← a + rm ;
8: s ← sk

[a,b)

9: (ek1
→ ek2

→ ...→ ekn )← overlappingExons(s, Ik)|

10: NEqSamples ← min

„P
ek′∈Ik ;k′<=k1

length(ek′ )− a,
P

ek′∈Ik ;k′<=kn
length(ek′ )− b + 1

«
11: Ik ← Ik + NEqSamplesG

(m)
s,k

I
(m)
s (Θ)p,q

12: a← a + NEqSamples

13: end while
14: I ← I + θkIk

15: end for
16: return I
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Algorithms for computing FIM: Faster

Combine equivalent samples within and across isoforms.

Algorithm 3 FasterShotgunFIM(I ,Θ,Sampm, p, q)

1: for all Ik ∈ I do

2: CoveredSampleStartsk ← empty interval list

3: end for
4: for all Ik ∈ I do

5: a← minNotCoveredStart(CoveredSampleStartsk , Sampm)

6: while a ≤ length(Ik )− rm do

7: ...

8: NEqSamples ← min

„P
e
k′∈Ik ;k′<=k1

length(ek′ )− a,
P

e
k′∈Ik ;k′<=kn

length(ek′ )− b + 1

«
9: I ← I + θkNEqSamplesG

(m)
s,k

I
(m)
s (Θ)p,q

10: CoveredSampleStartsk ← CoveredSampleStartsk + [a, a + NEqSamples )

11: for all Ik′ 6= Ik do

12: if Ik′ contains (ek1
→ ek2

→ ...→ ekn ) then

13: ...
14: CoveredSampleStartsk′ ← CoveredSampleStartsk′ + [a′, a′ + NEqSamples )

15: end if
16: end for
17: a← minNotCoveredStart(CoveredSampleStartsk , Sampm)

18: end while
19: end for
20: return I

29 / 47



Introduction Efficient Simulation Optimal Deterministic Sampling Integrated Analysis of Random Samples Discussions

Example: TCF7

TCF7 in UCSC knownGenes
10 known isoforms
96 possible paths (isoforms) in the splicing graph

Assumptions
The known isoforms are the actual isoforms (the “true”
isoforms)

chr5:

CDKN2AIPNL/uc003kys.1
TCF7/uc003kyt.1
TCF7/uc003kyu.1
TCF7/uc003kyv.1
TCF7/uc003kyw.1
TCF7/uc003kyx.1
TCF7/uc003kyy.1
TCF7/uc003kyz.1
TCF7/uc003kza.1
TCF7/uc003kzb.1
TCF7/uc010jdu.1

133485000 133490000 133495000 133500000 133505000 133510000
UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

Exon 0

445 bp

Exon 1

67 bp

Exon 6

125 bp

Exon 7

53 bp

Exon 8

106 bp

Exon 2

34 bp Exon 3

16 bp Exon 4

61 bp Exon 5

173 bp

Exon 9

88 bp

Exon 11

120 bp

Exon 12

163 bp

Exon 10

721 bp

Exon 13

108 bp Exon 14

49 bp

Exon 15

73 bp

Exon 16

81 bp

Exon 17

445 bp

Exon 18

23 bp

Exon 19

2006 bp

END

START
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Example: Speedups in computing FIM

Brute−force FIM FastFIM FasterFIM

1
2

5
10

20
50

10
0

20
0

50
0

Gene: TCF7; Read: 30bp short read
All possible isoforms

Speedups in computing FIM

1
2

5
10

20
50

10
0

20
0

50
0

Theoretical speedup
Actual speedup in a typical run
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Answering Q3: Simulations on Simplified Gene Models

Simulation results

3 simplified gene models

Short single and paired-end reads w/ fixed total cost

1000 trials for each cost configuration
Scale 10 kb

SampleGeneA

SampleGeneB

SampleGeneC

GeneA.I2
GeneA.I1

GeneB.I2
GeneB.I1

GeneC.I1
GeneC.I2
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Answering Q3: Simulations on Simplified Gene Models

Total trials for
one gene

Number of trials ×
Number of sampling
method combina-
tions = 1000× 21

Total FIM com-
putation for one
gene

Number of sampling
methods= 2

Total CPU time
used by brute-
force simulation

∼ 52 minutes

Total CPU time
used by FIM
based heuristic

< 1 second
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Answering Q3: Simulations on TCF7

Average variance of MLE estimation θ̂k :PK−1
k=1 var(θk )

K−1

Estimation based on FIMPK−1
k=1

1
I(Θ)k,k

K−1

Simulation:

gene: TCF7, equal probabilities for its known isoforms
medium reads: 250bp, $7× 10−5 per bp
short reads: 30bp, $7× 10−6 per bp
total budget: $0.2
at each cost configuration (e.g. $0.1 for medium reads, $0.1 for short reads)

200 trials

compute
PK−1

k=1
var(θk )

K−1
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Answering Q3: Simulations on TCF7 contd.

Simulation results vs. Estimation based on I(Θ)
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Answering Q3: Simulations on TCF7 contd.
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Answering Q3: Simulations on TCF7 contd.

Total trials for
one gene

Number of trials ×
Number of sampling
method combina-
tions = 200× 21

Total FIM com-
putation for one
gene

Number of sampling
methods= 2

Total CPU time
used by brute-
force simulation

∼ 10.6 hours

Total CPU time
used by FIM
based heuristic

< 1 second
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Revisiting the Questions

Question #1: Given I and S = {s from
Sampm|m = 1, ...,M}, how to estimate Θ?

MLE

Question #2: How good is the estimation?

Efficient algorithm to compute the Fisher information matrix
Using FIM to estimate MLE variance

Question #3: Suppose different sampling techniques have
different costs, given a fixed budget, what is a most
cost-efficient way to combine these sampling methods?

Brute-force simulation using MLE
FIM based estimation
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Conclusion & Discussions

Recap

Integrated analysis of partial samples
Fast algorithms to estimate analysis performance
Optimal integration
Efficient simulation

Further Discussions
Incorporation of more accurate partial sampling models.

e.g. more realistic modeling of the sequencing process
tradeoff between model accuracy and computational efficiency

Incorporation of domain-specific knowledge

utilizing relevant biological knowledge
e.g. characteristics of genes and splicing

Integration of different types of sampling methods

e.g. combining sequencing and array data
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Details: Optimal Sampling in HMM: a bit of formalism

Definition 7 (Idealized HMM Tiling Problem (HTP))

An idealized HMM tiling problem is a tuple 〈D,Csample ,O〉, where
D is the emission sequence corresponding to a hidden state
sequence S generated by an unknown HMM M, Csample is the
constraint on how sample sub-regions can be selected in D (e.g.
the maximum length of each sample sub-sequence), and O is a
labeling oracle (an imaginary black box which is able to answer
certain questions) that can discover the corresponding hidden state
sequence of any sample sub-region in D. A solution to the problem
first selects a set of sample sub-regions in D according to the
constraint Csample , asks the labeling oracle O about the
corresponding state sequences of these sample sub-regions, then
efficiently computes a model M ′ for D and outputs the
corresponding state sequence S ′ for D.
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Details: Mapability

Definition 8 (Mapability)

For a given genome G and a given sequence s, the mapability
function M(s,G ,m) is defined as the total number of occurrences
of the elements in S in G , where S = {s ′|mismatch(s, s ′) ≤ m}.
For simplicity, we also denote that M(s,G ) = M(s,G , 0), which is
the extract occurrence of s in G .

Lemma 9

Given a genome G and two sequences s and s ′, if s contains s ′,
then M(s,G ) ≤ M(s ′,G ). M(s,G ) = M(s ′,G ) if and only if all
the occurrences of s ′ in G are within sequence s.

Lemma 10

Given a genome G , a sequence s, and two non-negative integers
m, m′, if m > m′, then M(s,G ,m) ≥ M(s,G ,m′).
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Details: Computing ζ
(n)
s,k

ζ
(n)
s,k = EZ |S ,Θ(n) [Zs,k ]

= E
[
Zs,k |S ,Θ(n)

]
= Pr

(
Zs,k = 1|s,Θ(n)

)
=

Pr
(
Zs,k = 1, s|Θ(n)

)
Pr
(
s|Θ(n)

)
=

δs,kθ
(n)
k G

(m)
s,k∑K

k ′=1 δs,k ′θ
(n)
k ′ Gs,k ′
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Details: E step

Q(n)(Θ) = EZ |S ,Θ(n)

 M∑
m=1

∑
s=sm,∗

log
K∑

k=1

Zs,kθkG
(m)
s,k


= EZ |S ,Θ(n)

 M∑
m=1

∑
s=sm,∗

K∑
k=1

Zs,k log θkG
(m)
s,k


(for all Zs,∗, one and only one can have a value of 1)

=
M∑

m=1

∑
s=sm,∗

K∑
k=1

ζ
(n)
s,k (log θk + log G

(m)
s,k )

=
M∑

m=1

∑
s=sm,∗

K∑
k=1

ζ
(n)
s,k log θk + C
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Details: M step

We introduce a Lagrange multiplier λ and rewrite the problem as
maximizing:

T (n)(Θ, λ) = Q(n)(Θ) + λ

(
K∑

k=1

θk − 1

)

∂T (n)(Θ, λ)

∂θk
= 0

M∑
m=1

Nm∑
i=1

ζ
(n)
s,k

θk
+ λ = 0

θk = −
∑M

m=1

∑Nm
i=1 ζ

(n)
s,k

λ
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Details: M step contd.

Inserting the result above into the constraint, we have:

−
K∑

k=1

M∑
m=1

∑
s=sm,∗

ζ
(n)
s,k

1

λ
= 1

−
M∑

m=1

∑
s=sm,∗

∑K
k=1 δs,kθ

(n)
k G

(m)
s,k∑K

k=1 δs,kθ
(n)
k G

(m)
s,k

1

λ
= 1

λ = −
M∑

m=1

∑
s=sm,∗

1

λ = −
M∑

m=1

Nm

= −N
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Details: M step contd.

θ
(n+1)
k =

∑M
m=1

∑
s=sm,∗

ζ
(n)
s,k

N

=

∑M
m=1

∑
s=sm,∗

δs,kθ
(n)
k G

(m)
s,kPK

k′=1 δs,k′θ
(n)

k′ Gs,k′

N

Guaranteed convergence to a local maximum.
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