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Research Summary: Protein Bioinformatics

As the 21st century unfolds, the biological sciences are being transformed by the advent of large-scale data. The
sequencing of the human genome is a dramatic example of this. Simultaneous to this increase in biological data,
computers and computation have had a transformative effect on the way information is handled, stored, and mined.
These computational advances apply, of course, to many facets of life. The goal of my lab is to connect these two
developments: harnessing computational advances for the analysis of large-scale biological data, principally by
performing integrative surveys and systematic data mining.

More specifically, we are focused on protein bioinformatics: understanding the structure, function, and evolution of
proteins through analyzing populations of them in databases and in whole-genome experiments. Overall we have four
research foci, which follow a progression from surveying the overall genomic landscape to analyzing individual proteins
and their interactions in more detail, to zooming in on the chemical structure of specific molecules.

1 Genomics: Mining and Annotating Intergenic Regions, especially in relation to Pseudogenes

We are involved in a number of large-scale collaborations (e.g. ENCODE) to probe the activity of intergenic regions
with tiling array technology. We have developed tools to design, score and interpret these arrays and to highlight
particular array artifacts. The overall conclusion from this work has been that much of the intergenic regions of the
human genome appear to be active, both transcriptionally and in terms of protein binding. In connection with tiling array
experiments, we have done an extensive amount of intergenic annotation, with a particular focus on mining intergenic
regions for pseudogenes (protein fossils). We were, in fact, one of the first groups to perform comprehensive surveys
of pseudogenes on a genome-wide scale in terms of protein families, which we did for human, worm, yeast and a
number of other organisms. Collectively, our studies enable us to determine the common "pseudofolds" and
"pseudofamilies" in various genomes and to address important evolutionary questions about the type of proteins that
were present in the past history of an organism.



2 Proteomics: Using Networks to Mine Functional Genomic Data and Understand Protein Function

After the main elements of the human genome are identified, we need to characterize their function.
We are trying to characterize gene function through molecular networks. We work on systematically
integrating many weak functional genomic features with data mining techniques to predict protein
networks (comprising protein interactions and other functional linkages). Some of the features
integrated are obviously related to protein interactions (e.g. expression correlations), but many others
such as gene essentiality are much less so. In addition, we have studied the structure of protein
networks, both on a large scale in terms of global statistics (e.g. the diameter) and on a small scale in
terms of local network motifs (e.g. hubs). In particular, we have correlated network hubs with gene
essentiality. Most importantly, we extensively study the dynamics of networks. This has allowed us to
show how a network dramatically changes in different conditions.

3 Structural Genomics: Analysis of Folds, Families and Functions on a Large Scale

Another area of research in our lab is structural genomics. Here, we conceptualize proteins not
purely as character sequences or abstract network nodes, but more in terms of their molecular
structure. We have examined the large-scale relationships between sequence, structure and function
in order to understand the extent to which structural and functional annotation can reliably be
transferred between similar sequences, particularly when similarity is expressed in modern
probabilistic language. We have related the occurrence of protein folds and families to phylogeny and
deep evolutionary history. Our studies enabled us to recognize that particular folds are more common
in certain organisms than in others. Finally, as part of our work on structural genomics, we relate the
properties of proteins with their eventual success at being purified and structurally characterized.
This has been in the framework of a database and decision-tree mining framework that we have built
for the NESG structural genomics consortium.



4 Computational Biophysics: Relating Macromolecular Motions and Packing

The final area of focus in the lab is analyzing small populations of structures in terms of their detailed 3D-
geometry and physical properties. Here, we try to interpret macromolecular motions in terms of packing.
We have set up a database of macromolecular motions and coupled it with simulation tools to interpolate
between structural conformations; the database also has tools to predict likely motions based on simple
models, such as normal modes and localized hinges connecting rigid domains. Part of this project involves
devising a system for characterizing motions in a highly standardized fashion. Our motions classification
scheme is motivated by the fact that protein interiors are packed exceedingly tightly, and the tight packing
can greatly constrain a protein's mobility. We have developed tools for measuring and comparing the
packing efficiency at different interfaces (e.g. inter-domain, protein surface, helix-helix, protein vs. RNA)
using specialized geometric constructions (e.g. Voronoi polyhedra).

Summary & Broader Societal Issues

In summary, my lab acts a connector, bringing quantitative approaches from disciplines such as CS and
applied math to bear on real questions and data in molecular biology. In particular, we have extensively
applied classical computational approaches involving simulation, machine learning, and database design
to biological problems. This often happens in the framework of practical, experimental collaborations,
where we function as part of multi-disciplinary teams. Team participation is a key feature of the lab. Finally,
as part of our mission to connect biology with computation, we have also extensively analyzed how a
number of larger issues relating to computation in society impact biological research. In particular, we have
examined how general aspects of e-publishing and digital libraries relate to biomedical databases and how
various legal and security concerns significantly impact genomics database interoperation.



Networks.GersteinLab.org

This is a research collaboration network centered on Dr. Mark Gerstein and Dr. Michael
Snyder. Each eclipse stands for an individual researcher.



1

« Quantifying environmental adaptation of
metabolic pathways in metagenomics.

 TA Gianoulis, J Raes, PV Patel, R
Bjornson, JO Korbel, | Letunic, T
Yamada, A Paccanaro, LJ Jensen, M
Snyder, P Bork, MB Gerstein (2009)
Proc Natl Acad Sci U S A 106: 1374-9.
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 PeakSeq enables systematic scoring of
ChlP-seq experiments relative to controls.

« J Rozowsky, G Euskirchen, RK Auerbach,
ZD Zhang, T Gibson, R Bjornson,
N Carriero, M Snyder, MB Gerstein (2009)
Nat Biotechnol 27: 66-75.

* 1 figure
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* Pseudogenes in the ENCODE regions:
consensus annotation, analysis of
transcription, and evolution.

D Zheng, A Frankish, R Baertsch, P

Kapranov, A Reymond, SW Choo, Y Lu, F
Denoeud, SE Antonarakis, M Snyder, Y
Ruan, CL Wel, TR Gingeras, R Guigo, J
Harrow, MB Gerstein (2007) Genome Res
17: 839-51.

« 2 figures
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representative pseudogenes drawn from 201 total
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* A Bayesian networks approach for
predicting protein-protein interactions from

genomic data.

« R Jansen, H Yu, D Greenbaum, Y Kluger,
NJ Krogan, S Chung, A Emili, M Snyder,
JF Greenblatt, M Gerstein (2003) Science
302: 449-53.

2 figures
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* |dentification and analysis of functional
elements in 1% of the human
genome by the ENCODE pilot project.

« ENCODE Project Consortium (2007)
Nature 447: 7199-816.

« 2 figures
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 What is a gene, post-ENCODE? History
and updated definition.

 MB Gerstein, C Bruce, JS Rozowsky, D
Zheng, J Du, JO Korbel, O Emanuelsson,
ZD Zhang, S Weissman, M Snyder (2007)
Genome Res 17:669-81.

* 1 figure
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* "Personal genomics requires redefining
privacy The human blueprint: dangerous
secrets”

* D Greenbaum, M Gerstein. (2008) Insight,
Nov. 2, Page 2 -- SF Chronicle

* No figures
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* Nucleotide-resolution analysis of structural
variants using BreakSeq
and a breakpoint library.

« HY Lam, XJ Mu, AM Stutz, A Tanzer, PD
Cayting, M Snyder, PM Kim, JO
Korbel, MB Gerstein (2010) Nat Biotechnol
28:47-55.

2 figures
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* Positive selection at the protein network
periphery: evaluation in terms of structural

constraints and cellular context.

 PM Kim, JO Korbel, MB Gerstein (2007)
Proc Natl Acad SciU S A 104: 20274-9.

« 2 figures



Fig.1. The human proteininteraction network and its connection to positive
selection. Proteins likely to be under positive selection are colored in shades of
red (light red, low likelihood of positive selection; dark red, high likelihood)
(6). Proteins estimated not to be under positive selection are in yellow, and
proteins for which the likelihood of positive selection was not estimated are
in white (6).
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Fig. 2. Relationship of protein network centrality and single-nucleotide
changes. (A) The periphery of the human interactome is strongly enriched for
genes under positive selection. Shown is the correlation of the likelihood to be
positively selected (6) and betweenness centrality (18). Dots are colored
according to the same scheme as in Fig. 1. As expected for a highly significant
Spearman rank correlation, almost all dots are near the x axis for high
betweenness centralities, whereas high probabilities for positive selection are
only observed at low betweenness centralities (Spearman p = —0.06, signifi-
cant at P = 1.2e-06). (B) The periphery of the human interaction network is
more variable on the protein sequence level. Shown is the ratio of nonsyn-
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The significance level of the differences is given as the Wilcoxon rank sum P
value between the bars.
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* Relating three-dimensional structures to
protein networks provides evolutionary

Insights.

« PM Kim, LJ Lu, Y Xia, MB Gerstein (2006)
Science 314: 1938-41

« 5 figures
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UTILIZING PROTEIN CRYSTAL STRUCTURES, WE CAN DISTINGUISH THE DIFFERENT
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The Structural Interaction Network (SIN)

PN s
®

/ %e

v ﬁ”ﬁ‘%@f%ﬁ@%& Shatesateses
A?’e}@ A BBEE 0BT BRI EITITET

%?%%??9@’969GGG‘QGSG‘GQGOGGG%GQG@G}’Q%G’Q%%9-99%9@9‘-‘99‘9689—8%89
acbalabadndindnlindmndndndadndndndndndndmndndidinbndndndndndndadidnd

LA A A A A A L A A A b A b e b b b b sl b s
S PoPEO RSP dR SR RIS TR SR s RoOSeFRce TR e coaD e gD e

~

Represents a “very high
confidence” network

Total of 873 nodes and
1269 interactions, each
of which is structurally
characterized

438 interactions are
classified as mutually
exclusive and 831 as
simultaneously possible

While much smaller than
DIP, it is of similar size
as other high-confidence
datasets

Source: PDB, Pfam, iPfam and Kim et al. Science (2006)




T I I T T I I T T R -

, -

PR N

Degree
Adjusted Interface Surface Area
oo omo o™

- | | @

0 001 002 003 004 005 006 007 008 009 0.1
Evolutionary rate (dN/dS ratio)

Fig. 2. Dependence of the average evolutionary rate (dN/dS ratio) of a protein with the degree and
the interacting accessible surface area (adjusted by protein size, as estimated from molecular
weight). For the degree correlation coefficient, we get r? = 0.05, and for the adjusted interface
surface area, r® = 0.12, suggesting that more than twice as much of the variation in dN/dS is
accounted for by adjusted interface surface area (12%) than by the degree (5%).



O © "
O=0 (=) :
- B3
Duplicate Gene B3
(preferential attachment)
B1
B2
Bs)
Clo :
B3’ is an equal interaction B3’ and A actually evolve
partner of A. a new binding interface

Fig. 3. The concept of network evolution by gene duplication. A given protein may acquire a new
interaction by duplication of an existing one. Given equal likelihood of any gene to be duplicated,
a protein with many partners is more likely to get a new partner than one with few—hence, there
is effective preferential attachment. For singlish-interface hubs, this mechanism is straightforward.
However, for multi-interface hubs, it would then require coevolution of the hub and the duplicated
gene to form a new interface.



11

« Genomic analysis of the hierarchical
structure of regulatory networks.

 HYu, M Gerstein (2006) Proc Natl Acad
SciUS A103: 14724-31

« 5 figures



Determination of "Level" in Regulatory Network Hierarchy with Breadth-first Search
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Regulatory Networks have similar hierarchical structures

E. coli

S. cerevisiae

[Yu et al., Proc Natl Acad Sci U S A (2006)]
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[Yu et al., PNAS (2006)]

Example of Path Through Regulatory Network
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Level in hierarchy

-

Yeast Network Similar in Structure to Government Hierarchy with Respect to Middle-
managers

B. Governmental hierarchy of a representive city (Macao)

c—Average # of regulated people (out-degree)
-=# of managers at each level

oooooooooooooooooooooooooooooooooooooooo

0 10 20 30 40 50

# of people
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.Average betweenness at each level

Characteristics of Regulatory Hierarchy: Middle Managers are Information Flow Bottlenecks

15

10

P<10™
Average betweenness (x1000)

[Yu et al., PNAS (2006)]
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« The Database of Macromolecular Motions:
new features added at the decade mark.

S Flores, N Echols, D Milburn, B
Hespenheide, K Keating, J Lu, S
Wells, EZ Yu, M Thorpe, M Gerstein
(2006) Nucleic Acids Res 34:
D296-301.

« 5 figures



[Flores et al. (2006) NAR 34:D296.]

Example

"Morph™: MBP

= 2 Known Crystal Structures
(endpoints, not necessarily same seq.)

u Std GeometriC StatS. (from structure comparison)
= Pathway Interpolation

Lectures.GersteinLab.org

(c) 2007



Motions collecting together and annotating

Individual morphs into logical units

~19K morphs

(instances of conformational variability)
(384 canonical ones)

User
submission

Automatic
submission

\ /

Morph Server

Play 2D Movie

Comments: "OVOTRANSFERRIN, N-TERMINAL LOBE, IRON LOADED OPEN FORM" vs.
“Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications
for transferrin iron release.”

Other visual representations:
Create new custom MPEG of this morph Color protein by motion
View interpolation animated in Protein

Explorer Color protein by nma
(Rotate, color, render as desired. Requires PC/Mac, Netscape, flexibility
Chime)

View as Flickerbook Page in Adobe PDF 1.2 Color protein by b-factors
Downloads and other analyses:

Torsion angle analysis of
morph

Download interpolation as gzip'ped NMR format Energy profile plot of
PDB file morph

Download interpolation as tar'red PDB file

Statistics generated for this morph [ help page

Display percentiles for rankable statistics versus morph set: =

Rankable statistics: Other information:
2ndCoreCAs 164 Hinge0D0X -0.07825
2ndCoreRMS 13.9799 Hingeoooy 14.3199
2ndCoreRMSpostrefitting 2.36497 Hinge000Z 2.2362
AlignedCoreCas 164 Hinge00Ores 68:91
AlignedCoreRMS 0.521611 LYS LEU LYS PRO ILE
Max2ndCoreDeviation 25.308 ALA ALA GLU VAL TYR
MaxCoraDeviation 181454 Hinge000seq GLU HIS THR GLU GLY
T o SER TH THR SER TV
Min2ndCareDeviation 1.95204

oneen e Hinge000x0dist 63.0576

of

Jupay
Fle Edt View Favotes Toos Help Links | 4
molmovdb.org & & oF oF oF ¥ e¥ o¥ e ¥ ol i
Ovotransferrin [vainftA-1nntA]
View the motions datab entry for this morph @
o SE= Representation Video Custom_ MF,'EG
» X ~ Format movies:
;B < @ Ribbon @ MUIIGIf  balls-small mp
,‘%ﬁ&‘ < © CAtrace cartoon-small. mpgy 09516-4458
© Ball-and-Stick surResisinhon:
smallmpg

118796-03295

870211-6478

d4reqa_-déreqga_

66043-735

Q000

T

~200 classified
motions

calmodulin

transferrin

actin

.

35 Motion repor - Microsoft Intemet Explorer [-[0/x]
Fle Edt Vew Favoies Took Heb | inks »] 3
molmovdb.org & = o oF wF eF e¥ ¥ wd o} =
1} Motion in Transferrins (N-terminal lobe) [tferzin]
{jump to morphs |
Classification Suspected Domain Motion, Hinge Mechanism [p-h-2
Structures
ATFD  [(Conformation 1) [ParsList
1BP5
1A8E Partslist
Description
Similar to lactoferrin
References
R Sarra, R Garratt, B Gorinsky, H Jhoti and P Lindlay (1990). High-resolution X-ray studies on rabbit serum
transferrin preliminary structure analysis of the N-terminal half-molecule at 2.3 A resolution. Acta Cryst. B46: 763-
771 Mediine info for 93376766 ) |
Morphs
[ show all images ]
Best representative
Morph Morph name Structure #1 Structure #2 Residues
,»& transferrin 1ibpSal 1aBe[a] 329
User-submitted morphs
Morph Morph name Structure #1 Structure #2 | Residues
19655-2506 Bacterial Transferin 1d9v[a] 1mrp a1 309
752165-30779 hTF 1a8e (4] 1bpS (4] 337
759107-9594 htft upload [ 4] upload [ A ] 328
762554-15491 htf2 upload [ A ] upload [ A ] 328
01532-13480 ovotransferrin itfagal tnnt[a] £ =

[Flores et al. (2006) NAR 34:D296.]

Lectures.GersteinLab.org (c) 2007
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Frame 4 (linear)

Interpolation Strategies
Compared with Calmodulin
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Frame 4 (adiabatic)




Transferrin hinge involves absence of
steric constraints (continuously
maintained interfaces), esp. at hinge

Gerstein.info/talks (c) 2003






