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Introduction: RNA-seq utilizes high-throughput sequencing technology to quantify RNA 
expression profiles. After extracting all RNAs from cells, these RNAs are converted to 
complementary DNA (cDNA). cDNAs are then sheared into small fragments, typically 200-300 
bp. Each of these short sequences, or “reads”, is then determined by next-generation 
sequencing technology. Computationally, by mapping these short sequences back to the 
reference genome or transcriptome, gene expression level can be inferred from read 
abundance at each position. Downstream analysis of RNA-seq includes quantifying differential 
gene expression, RNA editing, transcriptional profiling, novel gene identification, alternative 
splicing and SNP discovery. 
 
A typical RNA-seq pipeline consists of a few major components: read alignment and assembly, 
quantification and downstream analyses. The final projects will focus on major parts in RNA-seq 
pipeline. The workflow is adapted from: 
https://main.g2.bx.psu.edu/u/jeremy/p/galaxy-rna-seq-analysis-exercise 
 
Late policy: Barring a valid medical reason (with supporting documentation), or sufficient 
advance notice of a schedule conflict (at least two weeks before the due date), late projects will 
not be accepted. 
 
Plagiarism: Following are documents on Yale’s policies on academic integrity, and how to 
avoid plagiarism:  
http://www.yale.edu/graduateschool/academics/forms/Avoiding%20plagiarism.pdf 
http://www.yale.edu/graduateschool/academics/forms/integrity_resources.pdf 
 
 
 
 
 

● For MBB/MCDB students:  
Your final project consists of two sections: a semi-computational section (30%) and a literature 
survey (70%). 
 
Please zip up all the files to be submitted, with filename according to format: 
netID_firstNameLastName_cbb752a12_finalproj_MBB.zip. The completed assignment 
should be emailed to cbb752@gersteinlab.org. 
 
 
Section 1: RNA-seq read mapping in GALAXY 
For the semi-computational section, to get a tiny sense of how RNA-seq informatics is done, 
you will use GALAXY to only do the initial quality control and then the mapping of reads. For 
this section, you only need to submit the answers to the parts in red. 



 
GALAXY is an open, web-based computational portal, that is specifically designed to be 
“accessible, reproducible and transparent” to ALL scientists (Giardine et. al., Genome Res., 
2005). It was designed in a modular fashion called ‘workflows’, that are meant to be intuitive and 
less computationally involved - specially for use by experimental researchers in genomics 
analyses (Brankenburg et. al., Curr Protoc Mol Biol, 2010). They offer a range of file and data 
manipulation tools and a myriad of other tools for downstream analyses. No programming 
experience is required. 
 
1) Importing the data and understanding the data file 
(a) Unzip the FOUR files in ‘cbb752a12_galaxy_rnaseq_files.zip’ found on class wiki. 
(b) Upload them onto your workspace on GALAXY by the “Get Data” tool. These are four 
FASTQ sample files from the Illumina BodyMap 2.0 project adrenal and brain tissues. They 
contain data from paired-end reads of 50 base pairs on chromosome 19 physical positions 
3000000-3500000. 
 
Q1) Each read is denoted by 4 lines in a typical FASTQ file. In the first entry of adrenal_1.fastq 
file, what does this line show: 
‘5.544,444344555CC?CAEF@EEFFFFFFFFFFFFFFFFFEFFFEFFF’? 
 
2) Quality Control (QC) of the reads. 
The “NGS: QC and manipulation” is toolbox for FASTQ and FASTA files manipulation. 
(a) Use FASTQC under “NGS: QC and manipulation” to generate a summary of the reads 
required for QC. There are a number of ways to assess sequence quality using FASTQC 
(HINT). The easiest way is by per base sequence quality.  
 
Q2) Paste the output of your sequence qualities for the 4 sets of reads. What are these plots 
and what do they show? Comment on the sequence qualities. 
 
3) Trim reads.  
Based on your QC in Q2, assess the number of positions to be trimmed for each set of reads. 
Do the necessary trimming by using FASTQ trimmer under “NGS: QC and manipulation”. It 
might be a good idea to name your modules for this step more intuitively. 
 
Q3) How many positions did you trim? Substantiate your assessment. 
 
4) Read mapping using TopHat 
The reads, if you recall, are cDNAs, so they do not contain introns. There is a potential issue of 
reads mapping across splice junctions, so a specialized mapper like TopHat is essential to this 
endeavor. 
(a) Go to “NGS: RNA Analysis” to find TopHat. Map the reads to hg19 “Canonical Female build”. 
(b) Set the mean inner distance between pairs of reads to be 110 for Illumina BodyMap data. 
(c) You might already have noticed by now that the dataset is made up of paired-end reads.  
(d) Finally, use default TopHat settings. 



 
Q4) Copy and paste the top 10 hits for your ‘splice junctions’, ‘insertions’ and ‘deletions’. 
 
5) Rename your workflow in the format: netID_cbb752a12_finalmywf. Publish your ‘workflow’ 
and obtain a URL. To publish the workflow, click on the ‘gear’ icon on the right hand side of the 
‘Histories’ bar, then choose ‘Share or publish’.  
 
Q5) Copy and paste the URL of your workflow. 
 
 
 
Section 2: RNA-seq or ChIPseq? 
Literature Survey: Limit your writing less than 10 pages (12 pt font, Times New Roman 
font, double-spaced and 1” border), with citations in the end (citations and Section 1 do 
not count towards the 10 pages).  
 
Suggested format: 
1) Background (~ 1-2 pages) 
2) Limitation discussion (~ 1-3 pages) 
2) Results: Case Study (~ 3-5 pages) 
3) Discussion (~1-2 pages) 
4) References 
NOTE: Some suggested reference managers: Mendeley, Zotero or EndNote. For references, 
please follow the Nature citation format: http://www.nature.com/nature/authors/gta/#a5.4.  
 
ChIPseq and RNA-seq are both powerful genome-wide techniques in the study of regulatory 
elements. But they do possess certain limitations.  
(i) Explore the experimental limitations (via your own observations or from literature survey) of 
one of these techniques and relate their impact to downstream informatics analyses.  
(ii) Also, choose a specific case study that mentioned at least one of these experimental 
limitations and their potential impacts downstream and discuss, if they did, how they tried to 
resolve or circumvent the constraints. 
  
You can also provide your own thoughts and suggestions. 
 
 
References: 
1. Pepke et. al. Computation for ChIP-seq and RNA-seq studies, Nature Methods (2009) 
2. Wang et. al. RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews (2009) 
 
 
 
 
 



 
 

● For CBB/CPSC students: 
The final project pertains to RNA-seq analysis and consists of 3 sections. You are required to 
choose only ONE of the sections as your project. Programming is mandatory in the analysis 
and the use of portals such as GALAXY will not be accepted.  
 
For your submission, please provide the following: 
1) Source code (source code should directly read input files from common directory in bulldogl 
(/home/cpsc752/common/), and produce output files in your current directory).  
2) Output file(s) 
3) A short README file on description of your files and how to execute your program. 
Unexplained files will be regarded as missing/unused files. 
4) A short write-up on the algorithm implemented. Include also your answers to the questions in 
red and references, maximum 3 pages (excluding references).  
 
Please zip up all your files, with filename according to format: 
netID_firstNameLastName_cbb752a12_finalproj_sectionNum.zip.  The completed 
assignment should be emailed to cbb752@gersteinlab.org. 
For each of your file, please prefix: netID_firstNameLastName_sectionNum_  
 
NOTE: Some suggested reference managers: Mendeley, Zotero or EndNote. For references, 
please follow the Nature citation format: http://www.nature.com/nature/authors/gta/#a5.4. 
 
 
 
 
 
Section 1: Expression quantification  
[ Grading policy: 80% on programming; 20% on writing. For programming part, grading 
will be based on: 1) source code and output (80%)  2) programming style (eg. comments) 
and clearly document how your script works (README.txt) in order for us to successfully 
run your script (20%). Programs that do not compile will get an immediate 0. 
To receive partial credits, please make sure your program is well-commented ]  
 
File directory on Bulldogl :  /home/cpsc752/common/Section1/  
Input data 1: We provide two RNA-seq datasets that contain the aligned reads of chromosome 
19 from the heart of an embryonic mouse (GSM850907_heart-E14.5-1.chr19.sam) and adult 
mouse (GSM723770_RenLab-RNA-Seq-heart-ZY6.chr19.sam), from GSE29278 in the Gene 
Expression Omnibus (GEO) (Shen et al. A map of the cis-regulatory sequences in the mouse 
genome. Nature 2012). These files are in SAM format.  
Input data 2: You are also given a list of genomic elements with their gene names on 
chromosome 19 (mm9_genes_chr19.gtf) in GTF format.  
Sample Test data: test.sample.   



 
One of the main challenges in quantification is transcript abundance estimation. There are a 
number of publicly available software that perform such estimates, for instance Cufflinks and 
ERANGE.  
 
To simplify this problem, we assume that each read maps to a single-isoform gene and that 
reads in chromosome 19 (this file) represents the entire set of reads.  
(a) Extract the exons from input data 2. It is optional to include this step in the script below, i.e. 
not required. 
(b) Fragments per kilobase of million fragments mapped, or FPKM, is a metric devised to 
quantitate relative abundance and also account for bias due to longer exons. Write a script to 
calculate the FPKM for each GENE. 
 

 
 
Q1) The start and end positions in the GTF format are 1-based. How is this different from a 0-
based system? 
Q2) What do values of 0 and 16 in the second column of the SAM file mean?  
Q3) Are the assumptions made here justified in an actual RNA-seq pipeline? What are other 
considerations and confounders? Discuss. 
 
References:  
1. Roberts et. al., Improving RNA-seq expression estimates by correcting for fragment bias, 
Genome Biology (2011). 
2. Trapnell et. al., Transcript assembly and quantification by RNA-seq reveals unannotated 
transcripts and isoform switching during cell differentiation. Nature biotechnology (2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Section 2: Detect and Analyze Differentially Expressed Genes 
[ Grading policy: 80% on programming; 20% on writing. For programming part, grading 
will be based on: 1) source code and output (80%)  2) programming style (eg. comments) 
and clearly document how your script works (README.txt) in order for us to successfully 
run your script (20%). If any external pre-existing codes or libraries is used, please make 
sure they are properly placed or installed, that we could easily rerun your code. 
Programs that do not compile will get an immediate 0. 
To receive partial credits, please make sure your program is well commented.  
In writing your program, you may use libraries and pre-existing code for certain 
“supporting computations”, such as matrix multiplication. You may not use libraries or 
pre-existing code for any computation that operates directly on the network, including 
storage and retrieval of network nodes and edges, calculating path lengths, and 
computation of betweenness centrality. If you are unsure of whether a particular library 
is permissible, please contact the TFs first.]  
 
 
File directory on Bulldogl :  /home/cpsc752/common/Section2/  
Input data 1: Gene expression profiles (chromosome 19) derived from RNA-seq data of two 
samples, an embryonic mouse heart (Embryo.fpkm) and adult mouse heart (Adult.fpkm). 
(Gene expression values are estimated by relative reads abundance mapped to the particular 
gene. Values are shown in FPKM - Fragments per kilobase of million fragments mapped. FPKM 
is a well-recognized metric to quantify expression values, taking into account exon length bias.) 
Input data 2: A collected set of mouse protein-protein interaction data  (Mouse.PPI) from five 
PPI databases: DIP, BIND, MIPS, MINT and IntAct. Each line represents an interacting gene 
pair.  
Sample test data: test.sample 
 
As we learned, RNA-seq reads can be mapped and assembled to quantify gene expression 
values. One further application of RNA-seq is to detect differentially expressed genes under 
different conditions or in different tissues. Genes that are significantly highly or lowly expressed 
in one sample compared to other samples are termed as differentially expressed genes. Why do 
some genes tend to have different expression values under different conditions or different 
tissues ? One reason is that they might play critical biological roles. To get a glimpse of their 
functional involvement in particular conditions or samples, we will investigate if they are 
enriched in certain functional pathways. This pathway information provides us the clue to the 
functional differences. Here, we provide a simplified procedure aiming to analyze differentially 
expressed genes in embryo and adult hearts.    
 
1.  Identify differentially expressed genes and their functions.  
The simplest way to detect differentially expressed genes is to directly compare expression 
values.  For each gene in Input 1, obtain its expression ratio in embryonic and adult mouse 
hearts. Set your own ratio cut-off to define differentially expressed genes.  
 



Q1) Provide the gene expression ratio file indicating which sample is the denominator. What is 
your cut-off? Justify your choice of this cut-off.  
 
Q2) Based on your cut-off, how many genes are highly expressed in embryonic heart? How 
many are highly expressed in the adult heart?   
 
Upload the gene lists that are highly expressed in embryonic and adult hearts separately to 
DAVID (a functional annotation tool) to perform function and pathway analysis.  (HINT: go to 
“Functional Annotation”, then upload or paste the file with “select identifier - 
official_gene_symbol”) 
 
 
Q3) Give a snapshot of the DAVID outputs. Present and comment on the results.  
 
2. Network Analysis of differentially expressed genes.  
In biological networks, hub proteins tend to be more conserved during evolution and more likely 
to be essential. Here we try to quantify network positions of differentially expressed genes 
derived from the previous step.  
 
For EACH GENE in the mouse PPI (not just differentially expressed ones), write your own 
script to calculate their degree centrality and betweenness centrality. Degree centrality is 
defined as the number of edges that a node has. Betweenness centrality is defined as:  

  
where is the total number of shortest paths from node s to node t and  is the number 
of these paths through node v. Your program should produce three-column list where the first 
column is the gene, the second column is the degree centrality, and the third column is the 
betweenness centrality. 
 
Q4) List the centralities of the differentially expressed genes, if they exist. 
Q5) Use Cytoscape to visualize the network, and highlight the differentially expressed genes.  
 
 
[Appendix, additional information on the quantitation of differential gene expression: The 
simple cut-off method does not take into account the underlying possible gene expression 
levels. In other words, gene expression value under certain conditions possess certain 
variations. To obtain accurate significant P values, RNA-seq experiments are usually done with 
replicates. The sound statistical framework is described below.   
To test whether an observed difference in a gene's expression is significant, first get the 
expression ratio in two conditions:  

 



The log of the ratio (T) of expression in two conditions can actually be used as a test statistic, 
because the quantity: 

 
is approximately normally distributed and can be calculated as 

 
With replicated, expression variations under same conditions are easy to get and be applied to 
this equation. The corresponding P value could be obtained from normal distribution.  
 
In our case without replicates, cuffdiff (cufflinks software) can tackle this problem based on 
certain assumptions (for details, go to http://cufflinks.cbcb.umd.edu/howitworks.html#hdif ). ] 
 
 
Reference: 
1. Xiao Li, Jiabao Xu, Haoyang Cai, Yizheng Zhang. A mouse protein interactome through 
combined literature mining with multiple sources of interaction evidence. (Under review) 
2. Trapnell et. al., Transcript assembly and quantification by RNA-seq reveals unannotated 
transcripts and isoform switching during cell differentiation. Nature biotechnology (2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Section 3: SNV calling and functional interpretation 
[ Grading policy: 60% on programming; 40% on writing. For programming part, grading 
will be based on: 1) source code and output (80%)  2) programming style (eg. comments) 
and clearly document how your script works (README.txt) in order for us to successfully 
run your script (20%). For writing part, incomplete answers will get partial credits. 
Programs that do not compile will get an immediate 0. 
To receive partial credits, please make sure your program is well-commented. ]  
 
File directory in BulldogL:  /home/cpsc752/common/Section3/ 
Input data 1: To simplify this process, Adult.Heart.pileup is provided (pileup format file 
facilitating SNP/indel calling). For detailed information, see Pileup format. To obtain this format 
from RNA-seq aligned data, SAMtools (pileup function) is used to convert Bam file to Pileup 
format. This file contains reads in mouse chr19 : 5,000,000 - 8,000,000.   
Input data 2: You are also given a list of genomic elements with their gene names on 
chromosome 19 (mm9_genes_chr19.gtf) in GTF format.  
 
Ten column pileup format 
The ten-column (consensus) pileup incorporates additional consensus information: 
  1    2  3  4   5   6   7   8       9       10 
------------------------------------------------ 
chrM  412  A  A  75   0  25  2       .,       II 
chrM  413  G  G  72   0  25  4     ..t,     IIIH 
chrM  414  C  C  75   0  25  4     ...a     III2 
chrM  415  C  T  75  75  25  4     TTTt     III7 
 
where: 
Column Definition 
------- -------------------------------------------------------- 
      1 Chromosome 
      2 Position (1-based) 
      3 Reference base at that position 
      4 Consensus bases 
      5 Consensus quality (Phred scaled consensus quality) 
      6 SNP quality (Phred scaled probability of difference from reference bases) 
      7 Maximum mapping quality 
      8 Coverage (# reads aligning over that position) 
      9 Bases within reads 
     10 Quality values (ASCII: phred+33 scale) 
 
 
1. SNV (single nucleotide variant) calling.  
Similar to direct genomic DNA sequencing, RNA-seq technology could also be used to call 
variants. Instead of calling genome-wide variants, RNA-seq variant calling identifies expressed 
variants. Compared to variants happened in silent genes, expressed variants are much more 



likely to possess functional impact on proteins, thus affecting phenotypes. There are a number 
of software that perform variant calling, such as VarScan, Bcftool, GATK and SOAPsnp. These 
methods apply sophisticated statistical models to infer variants.  
 
Here, we will perform a simple variant filtering process to find potential SNVs from the raw 
pileup file. Please write your own code following the filtering criteria listed below and report 
identified SNVs in the following format: Chromosome, Position, Reference base at that position, 
Number of A reads, Number of C reads, Number of G reads, Number of T reads, Quality 
adjusted read coverage, also genes (if any) the SNV resides in). 
 
Filtering:  
1) minimum SNP quality is 20.  
2) minimum Maximum mapping quality is 25.  
3) Filter out read mapping bases with quality (phred quality score) lower than 20.  
4) After filtering, the read depth should between 3 and 100.  
5) After filtering, at least one mapped reads contain mutation.   
 
Q1) What is Phred Quality Score? How is it defined?  
Q2) The simple filtering process will certainly reduce false positive rate. What are the potential 
drawbacks of this approach?  
Q3) Provide the SNV calling results. Among these identified SNVs, do you observe variants with 
partially mutated bases (bases in aligned reads)? If yes, give some explanations. For positions 
with 100% mutated bases, what are the situations that can result in such cases?  
 
2. Variant Functional Interpretation.  
Variants occurring in different genomic locations may have different functional impacts. For 
example, non-synonymous variants in translated genes are more likely to have a greater impact 
than synonymous variants. Many methods have been developed to assess SNV effect, such as 
VEP (Variant Effect Predictor) and VAT (Variant Annotation Tool). Here, we will use VEP to 
annotate our identified SNVs. Go to 
http://may2012.archive.ensembl.org/Mus_musculus/Info/Index, click “Manage Data”, then 
“Variant Effect Predictor”. (Convert your SNV file to proper format, use “+” as strand 
information).   
 
Q4) Paste your result from VEP. What do synonymous and nonsynonymous SNVs mean? Even 
in nonsynonymous SNVs, you could further quantify their potential damage effect. Please 
provide some other ideas that could be used to further interpret or validate SNV effects.  
Q5) RNA-seq, in theory, should capture mRNA sequences. However, some SNVs occur in 
intronic regions which are not transcribed.  What could possibly explain this phenomenon that 
we are observing these ‘intronic’ SNVs in RNA-seq?  
 
Go to the UCSC Genome Browser, and navigate to those SNV positions in the mm9 mouse 
genome assembly. Look at the vertebrate multiple alignment for these positions. If you are 



unfamiliar with the UCSC genome browser, please check out this link: 
http://www.openhelix.com/ucsc. 
 
Q6) Show a print-screen of the multiple alignment of one of the SNVs found in UCSC. How can 
one tell if these SNVs are evolutionarily important? Based on this, can you infer if ANY positions 
are possibly more important than others?  
 
 
 
References:  
1. Heng Li, A statistical framework for SNP calling, mutation discovery, association mapping and 
population genetical parameter estimation from sequencing data, Bioinformatics (2011) 
2. Li H, Handsaker B, et al., 1000 Genome Project Data Processing Subgroup. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics (2009) 
 


