Network Analysis and Application
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INTRODUCTION TO BIOLOGICAL NETWORKS



* Characterization of biological processes

* Network examples

- Protein-protein interaction networks .
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Protein Protein interaction Network

* Nodes : Protein ; Edges: interactions.

* High throughput interaction screening methods:
— Yeast two hybrid experiments (Y2H)

— Protein complex purification (PCP)
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Transcriptional Network

* Nodes: Protein (transcription factors or target genes)
* Edges: (directed) from a transcription factor to a gene.

Transcription

Transcription
initiation

—

Co-activator complex \
/ Transcription
initiation comple?as%

LT Mg
Proximal TFES

Cis regulatory module



Proximal regulatory edges
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Co-expression Network

Describes the relation between the expression pattern of
different genes

Nodes: Genes

Edges: Two vertices are connected 1f the corresponding genes
have similar expression patterns.



Figure 1
A Array Data
— acasasacac

Microarray gene expression data.
e marccan: Measure concordance of gene
ﬂ\ expression with a Pearson
L\ AN correlation.
' C. The Pearson correlation matrix 1s
R transformed to an adjacency matrix.

Binary values 1n the adjacency

Data contains correlations
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Disease Gene Networks

A bipartite graph with two sets of vertices.
Nodes: One set represents disease; the other represents genes.

Edges: A gene and a disease are connected if the gene 1s
involved 1n the disease.



Human Disease Network
(HDN)
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a Human Disease Network ,o® c®¢ ¢
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<~ Genetic origins of most diseases, are shared with other
diseases.

<~ The resulting network is naturally and visibly clustered
according to major disorder classes.
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DYNAMICS OF NETWORK



Networks are not static

- Date and party hubs
Networks change during evolution

- Network rewiring



“Party hubs”: interact with
their partners simultaneously.

“Date hubs”: bind their
partners at different times or
locations

Date hub;
different time
and/or space

Par—t; ;»ub;
same time
and space

Yeast PPl (color - Mutual similarity in mRNA
expression )

Han et al., Nature (2004) 17
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Network rewiring

* How do biological interaction networks change overtime?
* Two ways to look at this:
- What forces lead to gain and loss of nodes and edges?

- Evolutionary selective pressure favors the network that
represents the most fit phenotype.
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RESEARCH ARTICLE OPEN a ACCESS

Measuring the Evolutionary Rewiring of Biological Networks

Article Metrics Related Content Comments: 0

1 2 1 -
Chong Shou+, Nitin Bhardwaj<, Hugo Y. K. Lam+, Koon-Kiu £ To add a note, highlight
YanZ, Philip M. Kim2, Michael Snyder?, Mark B. some text. Hide notes

) Make a general comment

Gersteinl.2:5%
* Sought to compare interaction network from various
species and reconstruction of evolutionary history

- Analogous to studying the evolutionary history of genes
by comparing versions from different species



Types of Networks
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Transcription regulatory > Kinase phosphorylation > Protein
interaction > Metabolic interaction

Shou C, Bhardwaj N, Lam HYK, Yan K-K, et al. (2011) Measuring the Evolutionary Rewiring of Biological Networks. PLoS Comput Biol 7(1):

€1001050. doi:10.1371/journal.pcbi.1001050
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1001050
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NETWORK APPLICATION IN DISEASE



Histogram of cumulative growth of disease gene discovery.

2500

2000
The majority of disease
genes still remain
underneath the tip of the
iceberg.

1500

1000

Disease Genes

500
0
o A < (o] e 0] o AN < [Co} [e0) o AN < O [e0]
[ee} [e0) [e0} [ee] [s0] (0] (0] (o)) [} (o)) o o o o o
(o)} (o)) (o)} (0] (o)) (0] (0)] (o)) (o)} (o)) o o o o (@]
~ ~ ~— ~— ~ A ~ ~ - ~ N N N N N
Year

Kann M G Brief Bioinform 2010;11:96-110

Briefings in
© The Author 2009. Published by Oxford University Press. For Permissions, please email:
journals.permissions@oxfordjournals.org

Bioinformatics




GWAS approach

* Genome-wide association studies
(GWAS) are powerful in mapping
disease genes.

- Low resolution: multiple genes Edgeremf/

/X
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1n the disease-associated loci. I P
- Perturbation of molecular .1,-\ i'\ ¢ 3
networks by the gene causes the anad
disease 1 l
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X Wang, et al., 2011
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Network Approach

* Basis: genes associated with the same or similar diseases, tend
to reside in the same neighborhood in networks and form
physical and/or functional modules.



Accuracy (%)

Linkage method

* Predict disease-causing genes in known disease loci by
counting the number of known causative genes in direct
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Percentage of correctly predicted disease genes (accuracy), benchmark set
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Protein—protein interaction sets

M.Oti et al., ] Med. Genet (2006)

10 fold enrichment in
disease genes compared to
random.

Restricting genes to those in
same cellular compartment

as known disease genes,
1000 fold enrichment.
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Disease sub-networks method

* Assumption: disease-associated genes form sub-network

* Approach: find a sub-network that contains most of the disease-
associated genes.



Network-based classification of breast cancer
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Disease sub-networks

* Sub-networks markers outperformed single-gene markers.

B 0.75 Subnetwork
markers
0.7 Single-gene markers
‘ (control for size)
8 0.65
< oel—N |
0.55 \/-\G?)\.
0.5

Random
subnetworks
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Diffusion-based methods

* Measure how connected each gene in the network 1s to the
known disease genes (global distance measure).

- The 1dea 1s that genes with greater “reachability’ from
known disease genes are more likely to be implicated in the
disease.



Diffusion methods: random walk

» Start a random walker at one of the known disease gens, let it
wonder the network.

1) To start, random pick a disease gene .S, with equal probability po
2) From current node, randomly selected a neighbor node.

3) In every time step, restart the walk from disease nodes, with
probability r.

p" =(1-r)Wp' +rp°

pt : probability vector of random walker being at each node at
time t.

W : Matrix of transition probabilities.



Map candidates to
interaction network

Map known disease genes Score candidates Set up ranking
to interaction network by distance/proximity to all  based on score
known disease genes

+

OMIM Entries for

#F201230) @201235) @ 0.003
g . 601236) '

Kohler S and Robinson PN, AJHG, 2011
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Comparison of methods

Not surprising that a comparative study of these
methods, ranking them by predictive power, produces
the following rankings:

1. Diffusion-based methods

2. Disease sub-networks

3. Linkage methods

Navlakha, S. et al., Bioinformatics, 2010
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