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What 1s a mathematical model?

Uses mathematical language to describe a system

A mathematical model consists of a collection
of variables and rules governing their values.

Models are based on assumptions inspired by
observing some real phenomena 1n the hope
that the model behavior resembles the real
behavior.

Mathematical modeling is process of constructing, testing, and
improving mathematical models



Advantages of the modeling approach 1n biology

“Essentially, all models are wrong, but some are useful.”
-George Box, University of Wisconsin

Concise summary of present knowledge of operation of a
particular system

Predict outcomes of modes of operation not easily studied
experimentally 1in a living system

Provide diagnostic tools to test theories about the site of
suspected pathology or effect of drug treatment

Clarify / ssmplify complex experimental data

Suggest new experiments to advance understanding of a
system




Limitations of the modeling approach

“Essentially, all models are wrong, but some are useful.”
-George Box, University of Wisconsin

* Models often require many simplifying
assumptions

— beware of garbage in, garbage out

» Validation of model predictions 1s essential

— examination of behavior under known limiting
conditions

— experimental validation

— limits of model can point out what we don’t
understand




The Immune System

Science that began with Jenner in 1796

* A network of cells, tissues, and organs that work
together to defend the body against attacks by “foreign”
invaders (antigens).

— Primarily microbes (germs)—tiny, infection-causing organisms such as
bacteria, viruses, parasites, and fungi.

* Provides basis for vaccines (e.g., flu shot)

« But also implicated in disease:
— Autoimmune (Lupus, MS, Rheumatoid Arthritis)
— Respond to harmless foreign substance (ragweed pollen) produces allergy
— Sepsis, Cancer

e Understanding will lead to better diagnostics & therapies

Organs of immune system = “lymphoid organs™, since home to lymphocytes
(small white blood cells that are key players in the immune system)




Why Model the Immune System?

Experiments provide only a static window onto the real dynamics of immunity

 Immune response involves the e
. . mm—‘:\;j&;:ﬂ?ﬁ:
collective and coordinated response e
of =102 cells and molecules =l YL

* Spatially-distributed system |
— blood, lymph nodes, spleen, thymus, g
bone marrow, etc.

* Feedback loops and non-linear dynamics

» Experiments often require artificial constructs

Models can help understand the source(s) of variability between experiments



Mechanistic modeling vs. curve fitting

Only mechanistically correct models extrapolate reliably
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Dynamic vs. Static modeling

A dynamic model accounts for the element of time,
while a static model does not

White blood cells produced

Exponential growth of virus by bone marrow

Population size (M)

Population size (V)

Thime (t) Time (t)

Dynamic equations can be simulated to study system behavior




Types of Dynamic Models

Choosing the type of model is an important first step

Continuous: time or state variables (often called ‘density’)
*  Ordinary differential equations

Discrete: time or state variables

« assume a small set of qualitative states e.g. active or inactive
* changes in state are given by discrete (logical) rules

Deterministic: no randomness is involved in the
development of future states of the system

*  Given model structure, parameter values, and initial conditions, there is
no variation in output

Stochastic: the next state of is not fully determined by the
previous state — probability 1s involved

e can take into account the fluctuations in mRNA/protein/cell numbers and
external noise

Spatial structure can also important




Ordinary Differential Equations (ODEs)

Continuous and Deterministic

Production rate
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Most models used in practice not solvable — simulate



Exponential growth (and decay)

Continuous and Deterministic

Population size (N)
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Doubling time: time for population to reach 2x initial value
Half-life: time for population to reach 50% of initial value



Steady-state

Population sizes remain constant at steady-state

Red Blood Cell production

How many cells

\ Y at steady-state?
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Solve for steady state by setting derivatives equal to zero



Density dependence

Birth (or death) rate may depend on population size

Density-dependent
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. bN dN % independent
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Stable steady-state: small perturbations return to same state




Logistic Model (S-shaped curve)

Includes density-dependent birth and death (r=b - d)

av =rN 1—ﬁ
dt K

Initial stage of growth is

approximately exponential;
growth slows as saturation begins,
and then stops at maturity.
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Is this a “model” if can’t explain why birth/death rate r~N/K?
phenomenological model

Carrying capacity (K): population size that can be sustained indefinitely




Modeling Interactions

Law of mass action (also called the mean-field assumption):

Entities encounter each other according to their relative abundance across space -- the rate of an
elementary reaction is proportional to product of concentrations of participating entities

o) Target cells (T) become infected cells (I)
O dT Gl
Target — Target T =0 — oy —|BT1
BT |
R dI ,1, .
Infected — Infected = BI'1— 6,1
(

Other approaches are needed to account for spatial structure




Phase Plane Analysis

Nullclines plot where derivatives are zero (cross at steady-state)
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Phase portraits plot typical trajectories in the state space




The Modeling Process

Starts with a specific scientific question

Real World Working

Problem Model

Interpret Represent

Results/ Mathematical
Conclusions Model

Simulate Translate

Computational
Model

Richard Allen

Model should produce predictions that suggest new experiments




B cells “recognize” antigens thorough antibody receptor

First phase of diversification occurs in bone marrow while cell is maturing

HUMORAL IMMUNITY
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Rearrangement generates diverse receptors:

Membrane-bound Igh (might)

recognition
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First VJ recombination
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Number of functional gene segments
in human immunoglobulin loci
Light Heavy
Segment chains chain
LY x H
Variable (V) 40 0 65
Diversity (D) 0 0 27
Janing {J) 5 4 6

Second phase of diversification (by somatic hypermutation) follows activation



The Modeling Process: V(D)J Recombination

How are VJ segments chosen to generate an Ig light chain?

Hypothesis: VJ chosen

randomly with equal probability

I Simplify
Real World I
I Problem

Observed V usage

J ' | Pr{V.]= UN; P[J..]= /M
Predicted V usage 1

_ - randInteger(N) = floor(N * rand()) + 1

Model should produce predictions that suggest new experiments




The Modeling Process: V(D)J Recombination

Extend rearrangement model to cover different alleles
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Revised model of rearrangement suggest new experiments




Things to ask before any modeling study

Frank Tobin (2009): Modeling 1s Powerful BUT Has Far to Go
BioIT World.co

1. Why do you want to do modeling?

2. How will you know 1f you succeed?

3. What will you do with the model once you have
1t? For what decisions will it be used or what
confirmatory experiments will get performed?

Beware motivation: “We want to create a model of process X...”



(b)

Surface

Forward Modeling

Epithelium 378

Mantle

Detailed mathematical model designed
to incorporate a desired level of
anatomic or physiologic features

Follicle

HEV

Efferent
lymphatics

— Can have arbitrary complexity as desired (Thorley-Lawson et al, 2008)
— Parameter values often obtained from published literature
— Ex: tissue structure formation, cell signaling networks

Used for simulating realistic experimental data under precisely
defined conditions to test hypotheses in silico

Can help design better experiments and reduce animal use

Generally too complicated for fitting to experimental data

Allows generation of synthetic data sets with prescribed
noise characteristics (Monte Carlo simulation) for
evaluating parameters obtained by inverse modeling



Inverse Model

A mathematical model designed to fit experimental data so as
to explicitly quantify physical or physiological parameters of
interest

Values of model elements are obtained using parameter
estimation techniques aimed at providing a “best fit” to the
data

Generally mnvolves an iterative process to minimize the
average difference between the model and the data

Evaluating the quality of an inverse model involves a
combination of established mathematical techniques as well as
intuition and creative insight



Understanding cell proliferation and death

BrdU (thymidine analog) incorporated into cell DNA during S-phase

Flow cytometry to quantify antigen-specific germinal center B cells...
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Labeling curves look similar — suggests same proliferation rate?



Understanding cell proliferation and death

At steady-state, rate at which the fraction of BrdU labeled cells increases is
indicative of the sum of the per cell proliferation and death rates

Quantification of Cell Turnover Kinetics Using
5-Bromo-2'-deoxyuridine’
Sebastian Bonhoeffer,” Hiroshi Molu‘if David Ho,* and Alan S. Perelson®**

The Journal of Immunology, 2000, 164: 5049-5054.

Rapid Turnover of T Lymphocytes in st ssmtlnttoelios. (S gpit il b piin - SRR S
SIV-Infected Rhesus Macaques N L GRS

o o S b hoetes Taon Monard, 1 | Asynchronous differentiation models
www.sciencemag.org + SCIENGE » VOL. 279 » 20 FEBRUARY 1998 explain bone marrow labeling kinetics and
predict reflux between the pre- and

immature B cell pools

The Journal of Immunology
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Taking Advantage: High-Affinity B Cells in the Germinal Ramit Mehr!, Gltit Shahaf’, Alex Sah” and Michas! Cancro®

Center Have Lower Death Rates, but Similar Rates of
Division. Cumparud to L(lW-Afﬁllit}' Ce]]sl © 2005 Nature Publishing Group All ngn?:fgfr:c[igq:sc,-;gzﬂgéds;as 55

www.nature comfonc

Shannon M. Anderson,* Ashraf Khalil,” Mohamed Uduman,”® Uri Hershberg,*"*

Yoram Louzoun,” Ann M. Haberman,” Steven H. Kleinstein,” and Mark J. Shlomchik**' Reduced cell turnover in l_\'mphocytlc monkeys infected b-‘l human

T-lymphotropic virus type 1

Christophe Debacq', Jean-Michel Héraud>*, Becca Asquith?, Charles Bangham®, Fabrice
Merien?, Vincent Moules*, Franck Mortreux®, Eric Wattel*, Arséne Burny', Richard Kettmann',
Mirdad Kazanji* and Luc Willems*!

Models of BrdU incorporation integral part of many studies




BrdU labeling of CD4+ and CD8+ T lymphocytes

SIV-infected and an uninfected macaque. Data are from Mohri et al., Science (1998)
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Is there a difference in cell turnover?

SIV infected

uninfected




Model of BrdU Labeling

Start with a basic model of cell population dynamics...

proliferation
p
S d
source death
Rate of change

in B cell

opulation B
- a8 =s+ pB—-dB
dt

Often can often assume population in steady-state (1.e., constant)




Model of BrdU Labeling

Split the B cell population into Labeled (B, ) and Unlabeled (By) subsets

B) During BrdU dB,,
administration =5, + dBU
b dt
O) dB
s d - :Sl+pBL —dB,
B, I
i
p
Sy d

Do data contain enough information to estimate parameters?




Model of BrdU Labeling

Label 1s administered continuously over some time-period

B) During BrdU . —(d+p)t
administration f L (t ) o Al (1 € )
mp 4 =1- SU x(d_p)
g L (sy+s) (d+p)
S d e ——————
— ] B D %8,, |
L % 0.15 i
i ©
p 3 0
S oosf
SU B d §
u e
time (weeks)

Labeling curve reflects both proliferation AND death




Model Identifiability

A model is identifiable if possible to learn true value of underlying
parameter after obtaining enough observations

Identifiable parameters are those which effect the
value of the data and can be estimated with some
degree of certainty.
Non-identifiable parameters are those which effect
the value of the data but which cannot be estimated
accurately
Non-observable parameters are those which don't
have an effect on the data.

Cannot estimate both proliferation AND death




Model of BrdU DE-Labeling

Stop administering label after some time (t.)

C) After BrdU —(d—-p)(t-t,)
administration f L ( ) + A € )
P
) A=y A
S d
L BL 22—+

01

0.05

o]
fraction of BrdU labeled cells

o

time (weeks)

Now, we can estimate BOTH proliferation AND death




Inverse Model

A mathematical model designed to fit experimental data so as
to explicitly quantify physical or physiological parameters of
interest

Values of model elements are obtained using parameter
estimation techniques aimed at providing a “best fit” to the
data

Generally mnvolves an iterative process to minimize the
average difference between the model and the data

Evaluating the quality of an inverse model involves a
combination of established mathematical techniques as well as
intuition and creative insight
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Characteristics of a
Good Inverse Model

* Fit1s good—model should be able to adequately
describe a relatively noise-free data set (of
course a poor fit provides some 1nsight also)

* Model parameters are unique
— Theoretically 1dentifiable for noise-free data

— Well-determined model parameters in presence of
measurement noise

* Values of parameter estimates are consistent with

hypothesized physical or physiologic meanings and
change appropriately 1n response to alterations in the
actual system



